INFRARED SPECTROSCOPIC EVIDENCE FOR ISOTOPOLOGS OF THE HOHOH ANION TRAPPED IN SOLID NEON

MARILYN E. JACOX and WARREN E. THOMPSON, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8441.

Although properties of the HOHOH anion have long been sought, only recently have quantum chemical calculations converged on a centrosymmetric structure for it. One vibrational fundamental, the antisymmetric stretching motion of the central H atom along the OHO axis, has even more recently been identified in the gas phase ^{*a*}. In experiments involving the codeposition at 4.3 K of a Ne:O₂ mixture with a Ne:H₂ mixture that has been passed through a microwave discharge, this fundamental absorption appears very close to its gas-phase position. Experiments involving partial and full deuterium enrichment confirm the presence of multiple H atoms in the anion and provide the first observation of the corresponding fundamental of the fully deuterium-substituted species.

^aE. G. Diken, J. M. Headrick, J. R. Roscioli, J. C. Bopp, M. A. Johnson, and A. B. McCoy, J. Phys. Chem. A 109, 1487 (2005).