MODERATE RESOLUTION JET COOLED CAVITY RINGDOWN SPECTRA OF THE \tilde{A} STATE OF NO₃ RADICAL

<u>TERRANCE J. CODD</u>, MING-WEI CHEN^{*a*}, MOURAD ROUDJANE and TERRY A. MILLER, *Laser Spectroscopy Facility, The Ohio State University, Columbus, Ohio 43210.*

The \tilde{A} - \tilde{X} spectrum of NO₃ has been previously observed using cavity ringdown spectroscopy (CRDS) by Andrei Deev *et. al* under ambient conditions.^{*a*} There the authors assigned a number of vibronic bands in the spectrum. However, under these conditions, hotbands may be present and the spectrum becomes very congested at frequencies higher than ~8700 cm⁻¹ due to the density of vibronic states and the overlap of their rotational contours. In order to obtain more information about the \tilde{A} state of NO₃ we recently obtained spectra from 7550 cm⁻¹ to over 10000 cm⁻¹ using our moderate resolution ($\simeq 0.05$ cm⁻¹) jet cooled CRDS apparatus. Jet cooling in our apparatus reduces the rotational temperature to <30 K and eliminates vibrational hot bands greatly simplifying the spectrum. We are able to resolve and assign more than 15 vibronic features including a new assignment of the 3¹₀ band. Analysis of the ν_1 progression shows weak Jahn-Teller coupling in this mode. Anomalous band contours and anharmonic spacings are observed for the $\nu_1\nu_4$ combination bands and the cause is being investigated. We also see some features that could belong to vibronically forbidden transitions which may be magnetic dipole allowed.

^apresent address: University of Illinois at Urbana-Champaign, Urbana, IL 61801

^aA. Deev, J. Sommar, and M. Okumura, J. Chem. Phys. 122, 224305 (2005)