THE CYCLOPENTADIENYL RADICAL REVISITED: THE EFFECTS OF ASYMMETRIC DEUTERATION OF JAHN-TELLER MOLECULES

<u>SAMANTHA STROM</u>, JINJUN LIU, University of Louisville, Department of Chemistry, Louisville, KY 40292.

Asymmetric deuteration of Jahn-Teller active molecules partially lifts the vibronic degeneracy and hence provides a unique approach to understanding the Jahn-Teller effect. Previously, a spectroscopic model was proposed and used to simulate the spectra of the asymmetrically deuterated isotopomers of the methoxy radical.^{*ab*} The same model has been implemented and successfully simulated the previously reported high-resolution laser-induced fluorescence (LIF) spectra of the asymmetrically deuterated cyclopentadienyl radical (C_5H_4D and C_5HD_4).^{*c*} A joint fitting of the transitions from both of the zero-point levels of the \tilde{X}^2E_1'' ground electronic state, split by the asymmetric deuteration, to the \tilde{A}^2A_2'' state yields one set of molecular constants for both levels, which, when combined with molecular constants of C_5H_5 and C_5D_5 , can be used to determine the molecular geometry and magnitude of the Jahn-Teller distortion. The main goal of this new investigation is to resolve the discrepancy between the experimentally determined and the ab initio calculated Jahn-Teller distortion.^{*d*} In addition, a theoretic model is proposed to quantitatively reproduce the splitting of the zero-point level due to the asymmetric deuteration and zero-point energies for the Jahn-Teller distorted structures around the conical intersection.

- ^cL. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J. Chem. Phys. 98, 2682 (1993).
- ^dM. J. Bearpark, M. A. Robb, and N. Yamamoto, Spectrochim. Acta Part A 55, 639 (1999).

^aD. G. Melnik, J. Liu, R. F. Curl, and T. A. Miller, Mol. Phys. 105, 529 (2007).

^bD. G. Melnik, J. Liu, M.-W. Chen, T. A. Miller, and R. F. Curl, J. Chem. Phys. 135, 094310 (2011)