STRUCTURES AND SPECTROSCOPIC PROPERTIES CALCULATED FOR C$_6$H$_7^+$ AND ITS COMPLEXES WITH Ne, Ar, N$_2$, OR CO$_2$

P. BOTSCHWINA and R. OSWALD, Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany.

Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) levela in conjunction with the double-hybrid density functional B2PLYP-Db has been employed in a study of the benzenium ion (C$_6$H$_7^+$) and its complexes with simple ligands (L = Ne, Ar, N$_2$, or CO$_2$).c The ground-state rotational constants of C$_6$H$_7^+$ are predicted to be $A_0 = 5445$ MHz, $B_0 = 5313$ MHz, and $C_0 = 2731$ MHz. For the complexes with L = Ne, Ar or N$_2$, the energetically most favourable structure is of π-bonded type, but for the most strongly bound complex C$_6$H$_7^+$ · CO$_2$ a conformer with the CO$_2$ ligand lying in the ring-plane of the C$_6$H$_7^+$ moiety is slightly lower in energy.

cP. Botschwina and R. Oswald, J. Phys. Chem. A 115, 13664 (2011);