SPECTROSCOPIC AND COMPUTATIONAL STUDIES OF MATRIX ISOLATED ISO-CXBr ${ }_{3}$ ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$)

AIMABLE KALUME, LISA GEORGE AND SCOTT A. REID, Department of Chemistry, Marquette University, Milwaukee, WI 53233; BRIAN J. ESSELMAN, ROBERT J. MCMAHON, Department of Chemistry,

 University of Wisconsin-Madison, Madison, WI 53706.Iso-polyhalomethanes are important reactive intermediates in the condensed and gas-phase chemistry of halomethanes. Building upon our recent study of iso-bromoform, in this work the substituted iso-tribromomethanes (iso- $\mathrm{CXBr}_{3} ; \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations, to further probe the structure, spectroscopy, properties, and photochemistry of these important intermediates. Selected wavelength laser irradiation of CXBr_{3} samples in an inert rare gas (typically Ar; mixing ratio $1: 500$) held at $\sim 5 \mathrm{~K}$ yielded iso- CXBr_{3} ($\mathrm{XBrC}-\mathrm{Br}-\mathrm{Br}$ or $\mathrm{Br}_{2} \mathrm{C}-\mathrm{Br}-\mathrm{X}$). The observed infrared and UV/Visible absorptions are in excellent agreement with computational predictions, and the energies of various stationary points on the CXBr_{3} Potential Energy Surfaces (PESs) were characterized computationally using DFT, MP2, and CCSD(T) methods in combination with triple and quadruple-zeta quality basis sets. These calculations show that the isomers are minima on the PESs that lie $\sim 200 \mathrm{~kJ} / \mathrm{mol}$ above the global CXBr_{3} minimum, yet are bound by some $60 \mathrm{~kJ} / \mathrm{mol}$ in the gas-phase with respect to the $\mathrm{CXBr}_{2}+\mathrm{Br}^{\text {asymptote. Laser }}$ irradiation of the isomers resulted in back photoisomerization to CXBr_{3}, and intrinsic reaction coordinate (IRC) calculations confirmed the existence of a first order saddle point connecting the two isomers. Calculations of important stationary points on the CXBr PESs_{3} show that in the gas-phase the isomerization barrier lies energetically near the threshold for simple bond fission. The iso- CXBr_{3} species are significantly stabilized in the condensed phase, due to the high degree of ion-pair character, as revealed by Natural Resonance Theory analysis.

