SATURATION OF THE NO$_2$ $\nu_1 + \nu_3$ AND THE CH$_4$ ν_3 TRANSITIONS IN HELIUM NANODROPLETS

ROBERT R. FEHNEL, KEVIN K. LEHMANN, Department of Chemistry, University of Virginia, Charlottesville VA, 22904-4319.

We will report our findings of quantitative study of saturation of IR transition in Helium nanodroplets. The excitation source is an Argos cw PPLN OPO (Aculight) that is focused to a spot of 27 μm, producing a peak power of 87 kW/cm2.

We have also used a “Perry Cell” multi pass cell to study of the effect of extending the interaction time. We will present results for a study of the 2905.566 cm$^{-1}$ R(0) transition of NO$_2$ and the 3029.07 cm$^{-1}$ R(0) transition of CH$_4$.