SPONTANEOUS EMISSION BETWEEN ORTHO- AND PARA-LEVELS OF WATER-ION, H₂O⁺

KEIICHI TANAKA, Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, TAIWAN, Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 JAPAN; KENSUKE HARADA, Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 JAPAN; SHINKOH NANBU, Department of Materials and Life Sciences, Faculty of Science and Engineering, Sophia University, Tokyo 102-8554, JAPAN; TAKESHI OKA, Department of Astronomy and Astrophysics and Department of Chemistry, the Enrico Fermi Institute, the University of Chicago, Chicago, Illinois, 60637, USA.

Nuclear spin conversion interaction of water ion, H_2O^+ , has been studied to derive spontaneous emission lifetime between *ortho-* and *para*-levels. H_2O^+ is a radical ion with the 2B_1 electronic ground state. Its off-diagonal electron spin-nuclear spin interaction term, $T_{ab}(S_a\Delta I_b + S_b\Delta I_a)$, connects *para* and *ortho* levels, because $\Delta I = I_1 - I_2$ has nonvanishing matrix elements between I = 0 and 1. The mixing by this term with $T_{ab} = 72$ MHz predicted by *ab initio* theory in the MRD-CI/Bk level,^{*a*} is many orders of magnitude larger than for closed shell molecules because of the large magnetic interaction due to the un-paired electron. Using the molecular constants reported by Mürtz et al. by FIR-LMR^{*b*}, we searched for *ortho* and *para* coupling channels below 1000 cm⁻¹ with accidental near degeneracy between *para* and *ortho* levels. For example, hyperfine components of the $4_{2,2}(ortho)$ and $3_{3,0}(para)$ levels mix by 1.2×10^{-3} due to their near degeneracy ($\Delta E = 0.417 \text{ cm}^{-1}$), and give the *ortho-para* spontaneous emission lifetime of about 0.63 year. The most significant low lying $1_{0,1}(para)$ and $1_{1,1}(ortho)$ levels, on the contrary, mix only by 8.7×10^{-5} because of their large results qualitatively help to understand the observed high *ortho-* to *para-* H₂O⁺ ratio of 4.8 ± 0.5^c toward Sgr B2 but they are too slow to compete with the conversion by collision unless the number density of the region is very low ($n \sim 1 \text{ cm}^{-3}$) or radiative temperature is very high ($T_r > 100 \text{ K}$).

^aM. Staikova, B. Engels, M. Perić, and S.D. Peyerimhoff, Mol. Phys. 80, 1485 (1993)

^bP. Mürtz, L.R. Zink, K.M. Evenson, and J.M. Brown J. Chem. Phys. 109, 9744 (1998).

^cLP. Schilke, et al., A&A **521**, L11 (2010).