FTIR SPECTRUM AND PERTURBATION ANALYSIS OF THE ν_2 BAND OF $^{15}\mathrm{NO}_3$

N. SHIMIZU, R. FUJIMORI, J. TANG, <u>K. KAWAGUCHI</u>, Department of Chemistry, Faculty of Science, Okayama University, 3-1-1, Tsushima-Naka, Okayama 700-8530, Japan; T. ISHIWATA, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Otsuka-Higashi, Hiroshima 731-3194, Japan,.

In 1987, Friedl and Sander^{*a*} reported observation of the FTIR spectrum of the ν_2 band of ¹⁴NO₃ in 762 cm⁻¹ region, and rotational analysis was carried out for only transitions with K=3. The obtained negative centrifugal distortion constant D_N implied presence of perturbation from other states, but the perturbation analysis has not been carried out. In the present study, the ν_2 band of ¹⁵NO₃ was first observed in 742 cm⁻¹ region. In contrast to the case of ¹⁴NO₃, rotational assignments were carried out for K=0, 3, 6, 9, 12, and 15, and transitions with N≤12 were fitted with usual energy level expression for D_{3h} molecule. However, when we included higher N transitions up to N=22, an effect of Coriolis interaction from v₄=2 appeared in negative D_N for K=0 and staggering in K=3. An energy matrix including ℓ =0 and ℓ =±2 of v₄=2 and ℓ =0 of v₂ =1 was used to obtain the energy values of v₂ =1, including the Corilis and ℓ -type resonance terms. From the determined interaction constant between v₂ =1 and v₄=2, anharmonic constant k₄₄₄ was estimated, by assuming a mixing of v₄=1 and v₄=2.

^aR. R. Friedel and S. P. Sander, J. Phys. Chem. 91, 2721 (1987).