SURPRISING COMPLEXITY OF A SMALL MOLECULE: PHOTOFRAGMENTATION DYNAMICS OF ICN, ICN·Ar_n and ICN· $(CO_2)_n$

<u>ANNE B. McCOY</u>, Department of Chemistry, The Ohio State University, Columbus, OH 43210; AMANDA S CASE, JOSHUA P. MARTIN, and W. CARL LINEBERGER, JILA and Department of Chemistry and Biochemistry University of Colorado, Boulder, CO 80309.

The photofragmentation dynamics of ICN⁻ in isolation and in complexes with argon or CO₂ are investigated through a combination of experimental and theoretical studies. Experimentally, we probe the excited state dynamics of ICN⁻ following excitation to the lowest energy state that correlates to I⁻ + CN products. In the absence of solvating atoms or molecules, most of the excess charge localizes on I⁻, although \approx 3% of the products have the charge localized on the CN⁻. The introduction of a single CO₂ or argon atom changes the branching ratio between the three possible product channels (I⁻, CN⁻ or ICN⁻). Interestingly when one argon atom changes roughly 5% of the products undergo cage recombination to form ICN⁻, providing an example of single atom caging.^a When CO₂ is introduced, cage recombination is only seen in larger complexes, but a significant fraction of the photoproducts obtained following excitation of ICN⁻·CO₂ have the charge localized on the CN. These results will be discussed and analyzed using potential surfaces evaluated at the MR-SOCISD level of theory.^b

^{*a*}A. S. Case, E. M. Miller, J. P. Martin, Y.-J. Lu, L. Sheps, A. B. McCoy and W. C. Lineberger, Angew. Chem. Int. Ed. **51**, 2651 (2012) ^{*b*}A. B. McCoy, IJQC, (in press).