A WEAK GROWTH DICHOTOMY FOR D-MINIMAL EXPANSIONS OF THE REAL FIELD*

CHRIS MILLER

Version: December 15, 2006

An expansion \mathfrak{R} of the real line is **d-minimal** if for every $n \in \mathbb{N}$ and definable $A \subseteq \mathbb{R}^{n+1}$, there exists $N \in \mathbb{N}$ such that for every $x \in \mathbb{R}^m$, the fiber $\{t \in \mathbb{R} : (x,t) \in A\}$ either has interior or is a union of N (not necessarily distinct) discrete sets. For more information on d-minimality, see [1, 2, 3, 5, 6, 8].

Until further notice, \mathfrak{R} denotes an expansion of the real field; definability is with respect to \mathfrak{R} . We obtain a generalization of a result that holds for o-minimal expansions of $\overline{\mathbb{R}}$.

1. **Theorem.** If \mathfrak{R} is d-minimal, then either \mathfrak{R} is exponential or every definable power function is \emptyset -definable.

The above is not quite a dichotomy—every power function is \emptyset -definable in the o-minimal (hence d-minimal) structure $(\mathbb{R}, +, e^x, (r)_{r \in \mathbb{R}})$ —but having $dcl(\emptyset) = \mathbb{R}$ is the only obstruction to a dichotomy.

The property of all definable power functions being \emptyset -definable has been quite useful in o-minimality; perhaps the same will be true for d-minimality (but it's probably too early to tell).

By the usual tricks, the theorem is an easy consequence of the next four results.

2. Lemma. Let $F : \mathbb{R}^{m+1} \to \mathbb{R}$ be \emptyset -definable. Then $\{(a,r) \in \mathbb{R}^{m+1} : F(a,\cdot) = x^r\}$ is \emptyset -definable.

Proof. For all $(a, r) \in \mathbb{R}^{m+1}$, we have $F(a, \cdot) = x^r$ if and only if F(a, 1) = 1, $F(a, \cdot) \upharpoonright (0, \infty)$ is differentiable, and $t(\partial F/\partial t)(a, t) = rF(a, t)$ for all t > 0.

3. Lemma. If \mathfrak{R} has definable Skolem functions and there exist $m \in \mathbb{N}$ and definable $F \colon \mathbb{R}^{m+1} \to \mathbb{R}$ such that $\{r \in \mathbb{R} : \exists a \in \mathbb{R}^m, F(a, \cdot) = x^r\}$ has interior, then \mathfrak{R} is exponential.

Proof. Argue as in [4, 4.1], using the previous lemma.

4. **Proposition** ([3]). If \mathfrak{R} is d-minimal, then \mathfrak{R} has definable Skolem functions.

5. Lemma. Suppose that every \emptyset -definable subset of \mathbb{R} either has interior or is a finite union of discrete sets.

- (1) If $A \subseteq \mathbb{R}$ is \emptyset -definable and has no interior, then $A \subseteq \operatorname{dcl}(\emptyset)$.
- (2) Every nonempty \emptyset -definable set (of any arity) contains a \emptyset -definable point.

Proof. (1). Since $dcl(\emptyset)$ is dense in \mathbb{R} , every nonempty open interval intersects $dcl(\emptyset)$, and every isolated point of a \emptyset -definable subset of \mathbb{R} is \emptyset -definable. The set of isolated points of a \emptyset -definable set is \emptyset -definable.

(2) follows from (1) by an easy induction.

^{*}This is **not** a preprint; please do not refer to it as such.

By similar arguments:

6. Theorem. If \mathfrak{R} is a d-minimal expansion of $(\mathbb{R}, <, +, 1)$, then either \mathfrak{R} defines multiplication or every definable scalar function is \emptyset -definable.

Details are left to the interested reader; see e.g. [7] for some relevant tricks.

References

- H. Friedman and C. Miller, Expansions of o-minimal structures by fast sequences, J. Symbolic Logic 70 (2005), 410–418.
- 2. C. Miller, *D-minimal expansions of the real field have the exchange property*, unpublished note, available on Miller's web page, see below for URL.
- 3. _____, *Definable choice in d-minimal expansions of ordered groups*, unpublished note, available on Miller's web page, see below for URL.
- 4. _____, A growth dichotomy for o-minimal expansions of ordered fields, Logic: From Foundations to Applications, Oxford Sci. Publ., Oxford Univ. Press, New York, 1996, pp. 385–399.
- Tameness in expansions of the real field, Logic Colloquium '01 (Vienna, 2001), Lect. Notes in Logic, vol. 20, Assoc. Symbolic Logic, Urbana, IL, 2005, pp. 281–316.
- 6. _____, Avoiding the projective hierarchy in expansions of the real field by sequences, Proc. Amer. Math. Soc. **134** (2006), 1483–1493.
- C. Miller and S. Starchenko, A growth dichotomy for o-minimal expansions of ordered groups, Trans. Amer. Math. Soc. 350 (1998), 3505–3521.
- C. Miller and J. Tyne, Expansions of o-minimal structures by iteration sequences, Notre Dame J. Formal Logic 47 (2006), 93–99.

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, 231 WEST 18TH AVENUE, COLUM-BUS, OHIO 43210, USA

E-mail address: miller@math.ohio-state.edu *URL*: http://www.math.ohio-state.edu/~miller