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Throughout, R denotes a structure on R. Definability is with respect to R. Given A ⊆ R, dcl(A)
denotes the definable closure of A, that is, the set of all A-definable points in R.

R has the Exchange Property if for all A ⊆ R and x, y ∈ R:

y ∈ dcl(A ∪ {x}) \ dcl(A) =⇒ x ∈ dcl(A ∪ {y}).
R is d-minimal if for every n ∈ N and definable A ⊆ Rn+1, there exists N ∈ N such that for every

x ∈ Rm, the fiber { t ∈ R : (x, t) ∈ A } either has interior or is a union of N (not necessarily distinct)
discrete sets. (Recall that Y ⊆ Rm is discrete if for every y ∈ Y there is an open box B such that
Y ∩B = {y}.)

Proposition. If R is a d-minimal expansion of (R,+, ·), then it has the Exchange Property.

Proof. Let A ⊆ R and x, y ∈ R be such that y ∈ dcl(A ∪ {x}) \ dcl(A). Then there is an A-definable
function f : R → R such that f(x) = y. By arguing as in the proof of [?, Theorem 3.3], there is an
A-definable S ⊆ R such that S is closed and has no interior, and for every open interval I ⊆ R \ S, the
restriction f�I is either constant or strictly monotone. By d-minimality, there exists N ∈ N such that S
is a union of N discrete sets. The set of all isolated points of S is A-definable. Since Q ⊆ dcl(∅), every
isolated point of S is A-definable. Hence (by an easy induction on N ), each s ∈ S is A-definable. Since
y /∈ dcl(A), we have x /∈ S, so there is an A-definable open interval I about x such that f�I is strictly
monotone. Since the compositional inverse of f�I is A-definable, x ∈ dcl(A ∪ {y}). �

An examination of the proof shows that we needed neither d-minimality nor the field structure per se:

Corollary (of the proof). Suppose that < is ∅-definable and dcl(∅) is dense in R—in particular, if R is
an expansion of (R, <, +, 1)—and every definable subset of R either has interior or is a finite union of
discrete sets. Then R has the Exchange Property.

Warning. It may appear that no use was made of working over R, but this is not true: I do not know how
to get the conclusion of the third sentence of the proof just from d-minimality (I use the Baire Category
Theorem).
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