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Abstract. Let n be a positive integer and f belong to the smallest ring of functions
Rn → R that contains all real polynomial functions of n variables and is closed under
exponentation. Then there exists d ∈ N such that for all m ∈ {0, . . . , n− 1} and c ∈ Rm,
if x 7→ f(c, x) : Rn−m → R is harmonic, then it is polynomial of degree at most d. In
particular, f is polynomial if it is harmonic.

Throughout, n ranges over the nonnegative integers, N.
Let En be the smallest ring of functions Rn → R that contains all real polynomial

functions of n variables and is closed under exponentation (with respect to base e). We
identify E0 with R. Routine induction on complexity yields that all elements of En are
(real-) analytic and that En is closed under taking partial derivatives. Thus, En is a dif-
ferential integral domain in the usual way. Put E =

⋃
n∈N En. We refer to elements of E

as exponential terms. (For readers acquainted with basic first-order logic, En consists
of the functions Rn → R given by n-ary terms in the structure (R,+,−, ·, ex, (r)r∈R), with
constants regarded as nullary functions.)

If U ⊆ Rn is open, then a function f : U → R is harmonic if it is C2 (twice continuously
differentiable) and ∆f = 0, where ∆ denotes the Laplace operator

∑n
k=1 ∂

2/∂x2
k. Note that

∆ is linear. Indeed, if f is harmonic, then it is analytic, and if U = Rn, then f has infinite
radius of convergence. (For this, and other basic facts about harmonic functions, see Axler
et al. [1].)

Every affine linear function Rn → R is harmonic. More generally, for n ≥ 2, there are
infinitely many harmonic polynomials Rn → R of each degree. If j and k are distinct
positive integers bounded above by n, then all R-linear combinations of exj sinxk and
exj cosxk are harmonic functions Rn → R.

Here is the main result of this note.

Theorem. For all f ∈ En there exists d ∈ N such that for all m ∈ {0, . . . , n} and c ∈ Rm,
if x 7→ f(c, x) : Rn−m → R is harmonic, then it is polynomial of degree at most d.

As we shall see later, the crucial point is to establish the case m = 0, that is, every
harmonic exponential term is polynomial.

Corollary. If u : Rn → R is harmonic and there exists N ∈ N such that, for each j =
1, . . . , n, the N -th partial derivative of u with respect to the j-th variable lies in En, then
u is polynomial. In particular, if ∇u (the gradient of u) lies in En

n , then u is polynomial.
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Proof. Partial derivatives of harmonic functions are harmonic. □

Before proceeding to the proof of the Theorem we provide some context and motivation.
Let R be an o-minimal expansion of the real field and g : Rn → R be definable. (See, e.g.,
van den Dries and Miller [4] for definitions and other basics.) We are interested in definable
solutions to the Poisson equation ∆y = g. The question of existence can be subtle, but
suppose we have such a solution f ; then so is f + p for every n-ary harmonic polynomial p
(by linearity of ∆). We would like for there to be no other solutions, equivalently, that R
does not define any nonpolynomial total n-ary harmonic functions.

Question 1. If n ≥ 2, u : Rn → R is harmonic and (R,+, ·, u) is o-minimal, must u be
polynomial?

This is true for n = 2, as author Miller observed in the early 1990s, The proof is very
easy relative to classical complex analysis, but does not work for odd n, and extends only to
rather special even n. Thus, the result was never submitted for publication. We sketch the
proof. The map F := (∂u/∂x,−∂u/∂y) : R2 → R2 is definable in (R,+, ·, u). Identify F
with a function f : C → C. By the Cauchy-Riemann equations (using that u is harmonic),
f is complex differentiable. By o-minimality, each level set of F has only finitely many
connected components, and so the same is true of f . By the “Big” Picard Theorem, f is
a complex polynomial, and so F is a real polynomial map. Basic calculus now yields that
u is polynomial. (It is worth noting that the result fails if u is not defined on all of R2,
for example, the function log(x2 + y2) is harmonic and (R,+, ·, log(x2 + y2)) is o-minimal
by Wilkie [11].) With only slightly more work (but we omit details), the result can be
extended somewhat: If u : R2m → R is the real part of a holomorphic f : Cm → C and
(R,+, ·, u) is o-minimal, then u is polynomial.
The answer to Question 1 is also affirmative if (R,+, ·, u) is polynomially bounded (that

is, for each unary definable function f there exists d ∈ N such that lim supt→+∞|f(t)|/td <
+∞), as then u is polynomial by the Harmonic Liouville Theorem. If (R,+, ·, u) is o-mini-
mal and not polynomially bounded, then by Growth Dichotomy [7], (R,+, ·, u) defines the
function ex. Thus, it is natural we should first attempt to establish that u is polynomial if
it is definable in (R,+, ·, ex), beginning with u ∈ En.

Given the above and the Theorem, we revise Question 1.

Question 2. If n ≥ 3 and u : Rn → R is harmonic and definable in an o-minimal expansion
of (R,+, ·, ex), must u be an exponential term?

As of this writing, even the case that n = 3 and u is definable in (R,+, ·, ex) is open.
Work is ongoing.

Remark. It seems that the analytic geometry (as opposed to the function theory) of har-
monic functions R3 → R is poorly understood; see, e.g., De Carli and Hudson [2] and
Enciso and Peralta-Salas [5, 6].

Acknowledgments. The content of this paper and some related results are also addressed in
the doctoral thesis of author Borgard, supervised by author Miller, with research conducted
at the Department of Mathematics of The Ohio State University.

We now proceed toward the proof of the Theorem. Fix n ∈ N. In order to avoid potential
trivialities, let n ≥ 2. (Every solution on R to y′′ = 0 is affine linear.)
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In order to motivate our proof of the case m = 0 of the Theorem, we illustrate some of
the main ideas by first considering some special cases. Let f, g : Rn → R be polynomial.
Differential calculus yields

∆(feg) = eg(f |∇g|2 +∆f + 2∇f · ∇g + f∆g)

where ∇ indicates the gradient, | | indicates the Euclidean norm and · indicates scalar
product. Hence, if feg is harmonic, then

(∗) −f |∇g|2 = ∆f + 2∇f · ∇g + f∆g.

A routine formal argument via degree yields f |∇g|2 = 0, and so either f = 0 or g is constant.
Hence, feg is polynomial. Now let J ∈ N and f1, . . . , fJ , g1, . . . , gJ be polynomial. Suppose
that

∑J
j=1 fje

gj is harmonic and {eg1 , . . . , egJ} is algebraically independent. By calculus and
linearity of ∆, each fje

gj is harmonic—hence polynomial—and so
∑J

j=1 fje
gj is polynomial.

It is natural to try to generalize the argument, starting with arbitrary f, g ∈ En. The
formal complexity of f is less than that of feg, so if feg is harmonic and g is constant, we
could conclude inductively that feg is polynomial. But in order to show that g must be
constant if f ̸= 0, we would have to deal with equation (∗), and it is not immediately clear
how to do so in this generality. Indeed, relative to extant facts about exponential terms,
this will be the most critical part of the proof of the Theorem.

We rely heavily on some work of van den Dries [3]; for convenience, we adopt some of
the notation used there. Put R−1 = R. Let R0 be the set of all real polynomial functions
Rn → R. Put A0 = { g ∈ R0 : g(0) = 0 }. Inductively, put Rk = Rk−1[ e

g : g ∈ Ak−1 ]

and let Ak be the set of all finite sums
∑J

j=1 fje
gj (J ranging over N) such that if J ̸= 0,

then each fj ∈ Rk−1 \ {0} and g1, . . . , gJ are pairwise distinct elements of Ak−1 \ {0}. A
routine induction on k yields that each Rk is contained in En and is closed under partial
differentiation. A routine induction on complexity yields En ⊆

⋃
k∈N Rk. Hence, the case

m = 0 of the Theorem is equivalent to showing that for all k ∈ N, every harmonic element
of Rk lies in R0.

NB. In [3], the Rk and Ak are defined as formal objects, but by [3, 4.2], the natural
interpretation as functions Rn → R is an exponential-ring isomorphism. This has impor-
tant consequences for us. In particular, each element of Ak has a unique representation∑J

j=1 fje
gj as described above.

Remark. In [3], elements of En would be called “exponential polynomial functions (with
respect to (R,+, ·, 0, 1, ex))”, but we prefer “exponential terms” in order to avoid any
confusion with functions from R[x1, . . . , xn, e

x1 , . . . , exn ].

We note some basic facts from differential calculus; proofs are exercises.

— If f, g ∈ C2(Rn,R), then ∆(feg) = eg(∆f + 2∇f · ∇g + f∆g + f |∇g|2).
— If f, g ∈ C2(Rn,R), then feg is harmonic iff f |∇g|2 +∆f + 2∇f · ∇g + f∆g = 0.
— If f1, . . . , fJ , g1, . . . , gJ ∈ C2(Rn,R) and {eg1 , . . . , egJ} is Z-linearly independent over

Z [fj,∇fj,∆fj,∇gj,∆gj : j = 1, . . . , J ],

then
∑J

j=1 fje
gj is harmonic iff each fje

gj is harmonic.

Next is a key technical result.

Lemma. Let k ∈ N, f ∈ Rk \ {0} and g ∈ Ak \ {0}. Then feg is not harmonic.
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Proof. We have already established this for k = 0 (that is, f and g are polynomial).
Assume now that k > 0. By [3, 1.7] (and [3, 4.2]), there is a finite P ⊆ Ak−1 such that
f, g ∈ Rk−1[ e

p, e−p : p ∈ P ] and { ep : p ∈ P } is algebraically independent over Rk−1.
For ease of notation, we first give details for the case that P contains only one element,

p. We have f =
∑

j∈Z fje
jp and g =

∑
j∈Z gje

jp, with each fj, gj ∈ Rk−1 and only finitely

many of them are nonzero. Since g ∈ Ak \ {0}, it is not in Rk−1 (recall the uniqueness
of representations), and so there exist nonzero j ∈ Z such that gj ̸= 0. If necessary, we
replace p with −p and re-index the sum so that there exist j > 0 with gj ̸= 0. Put
γ = max{ j ∈ Z : gj ̸= 0 } and ϕ = max{ j ∈ Z : fj ̸= 0 }. Note that γ > 0. Suppose,
toward a contradiction, that feg is harmonic; then f |∇g|2 + ∆f + 2∇f · ∇g + f∆g = 0.
Put α = ϕ+ 2γ. By basic differential algebra using that Rk−1 is a differential domain over
which ep is algebraically independent, and letting i, j and ℓ range over Z, we obtain

0 =2
∑

i+j=α

(∇fi + ifi∇p) · (∇gj + jgj∇p)

+
∑

i+j+ℓ=α

fi(∇gj + jgj∇p) · (∇gℓ + ℓgℓ∇p)

+ ∆fα + 2α∇fα · ∇p+ α2fα|∇p|2 + αfα∆p

+
∑

i+j=α

fi(∆gj + 2j∇gj · ∇p+ j2gj|∇p|2 + jgj∆p).

Now, α > ϕ, so fα = 0. And if i + j = α, then i + j > ϕ + γ, so fi = 0 or gj = 0.
Thus, the only nonzero terms occur in the second line when i = ϕ and j = ℓ = γ,
yielding fϕ|∇gγ + γgγ∇p|2 = 0. Since fϕ ̸= 0, we have ∇gγ + γgγ∇p = 0, hence also
0 = eγp(∇gγ+γgγ∇p) = ∇(gγe

γp). Thus, gγe
γp is constant, contradicting the independence

of ep over Rk−1 (because γ ̸= 0 and gγ ̸= 0). Hence, feg is not harmonic, as was to be
shown.

The argument for the case that P contains more than one element is essentially the same,
but with extra clerical details: Fix p0 ∈ P , take the fj and gj in Rk−1[ e

p, e−p : p ∈ P\{p0} ],
and proceed similarly as above. (The underlying idea is that, by independence, we can think
of ep0 as a distinguished variable with an associated notion of degree.) □

Next is a minor variant of the Piecewise Uniform Asymptotics Theorem for polynomially
bounded o-minimal structures ([8, 5.2] or [10, 1.2]).

Proposition. Let h : Rn+1 → R be such that (R,+, ·, h) is o-minimal. Assume there is a
proper subfield K of R such that for all x ∈ Rn there exists nonzero b (depending on x) such
that either h(x, t) = 0 for all t > b or there exists r ∈ K such that limt→+∞ h(x, t)/tr = b.
Then there is a finite S ⊆ K such that for all x ∈ Rn either t 7→ h(x, t) is ultimately
identically 0 or there exists r ∈ S such that limt→+∞ h(x, t)/tr ∈ R \ {0}.

The proof is quite similar to that of [8, 5.2] or [10, 4.1], but is easier, because if R is an
o-minimal expansion of the real line and A is any subset of R that has empty interior, then
every subset of A definable in R is finite. We leave the details to the reader.

Proof of Theorem. Let f ∈ En. We must find d ∈ N such that for all m ∈ N ∩ [0, n] and
c ∈ Rm, if x 7→ f(c, x) : Rn−m → R is harmonic, then it is polynomial of degree at most
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d. It suffices to fix m ∈ N and find such a d for m. The result is trivial for m = n, so let
m < n.

First, assume that m = 0 and f is harmonic. We show that f is polynomial. Let k
be minimal such that f ∈ Rk; we show that k = 0. Toward a contradiction, assume
that k > 0. By [3, 1.7], there is a finite P ⊆ Ak−1 of minimal cardinality N such that
f ∈ Rk−1[ e

p, e−p : p ∈ P ] and { ep : p ∈ P } is algebraically independent over Rk−1. By
minimality of k, we have N > 0.
Suppose N = 1, say, P = {p}. There exists J ∈ N such that f =

∑J
j=−J fje

jp with each
fj ∈ Rk−1. By the minimality of k, we have f ̸= f0, and so there exists ℓ ∈ Z such that
0 < |ℓ| ≤ J and fℓ ̸= 0. As f is harmonic,

0 = ∆f =
∑
j∈Z

∆(fje
jp) =

∑
j∈Z

ejp[∆fj + 2j∇fj · ∇p+ jfj∆p+ j2fj|∇p|2].

It follows from the independence of ep over Rk−1 that fℓe
ℓp is harmonic, contradicting the

Lemma.
If N > 1, then fix any p0 ∈ P and take the fj ∈ Rk−1[ e

p, e−p : p ∈ P \ {p0} ]. Observe
that f ̸= f0 and proceed as above. (This ends the proof of the case m = 0.)
Assume now that 0 < m < n. For c ∈ Rm, let fc denote the function x 7→ f(c, x) : Rn−m →

R. Note that fc ∈ En−m. The set C := { c ∈ Rm : ∆fc = 0 } is definable (without parame-
ters) in (R,+, ·, f). By the case m = 0, fc is polynomial for each c ∈ C. It follows from the
Proposition (with K = Q) that there is a uniform bound on the degrees of the fc. (This
ends the proof of the Theorem.) □

We close with a brief discussion of optimality.
Model theorists might wonder whether working over R is necessary, especially given the

general setting of [3]. It is easy to see that the conclusion of the Theorem is preserved un-
der elementary equivalence, (“transfer principle”), but more is true: By [3, 4.4] and results
from [9], our proofs yield that the Theorem holds over any ordered nontrivial exponential
ring M := (M,<,+, ·, 0, 1, E) that satisfies the intermediate value theorem for definable
unary functions (equivalently, that M is “definably complete”), though the use of o-mini-
mality must be replaced with a model-theoretic compactness argument in order to obtain a
bound on the degrees. However, the utility of this observation is questionable, as we do not
know of any examples of such M that are not elementarily equivalent to (R, <,+, ·, 0, 1, ex).

There are limits to generalization: If c ∈ Cn \ {0} is such that
∑n

j=1 c
2
j = 0 (e.g.,

c = (1, i, 0, . . . , 0)), then
∏n

j=1 e
cjzj is not polynomial, but it is a complex exponential term

that is harmonic with respect to complex differentiation. The proof of the Lemma does
show that if f and g are n-ary complex exponential terms and ∆(feg) = 0, then f = 0
or ∇g · ∇g = 0. Thus, we could state some version of the Theorem over the complex
exponential field, but it is unclear to us how useful it could be. (Indeed, we could find no
mention in the literature of several complex variables of the notion of being harmonic with
respect to complex differentiation.) More generally, if (R,+,−, ·, 0, 1, E) is a nontrivial
exponential differential ring as defined in [3] and c ∈ Rn, then ∆(E(c · x)) = 0 if and only
if c · c = 0, and E(c · x) is polynomial if and only if c · x = 0. Hence, in order for all of the
harmonic terms to be polynomial, the underlying ring must be totally real (“orderable”).
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