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Caveat. This note has become seriously out of date due, among other things, to recent
work by Philipp Hieronymi [Defining the set of integers in expansions of the real field by a
closed discrete set. Proc. Amer. Math. Soc. 138 (2010), no. 6, 21632168. MR2596055].
In particular, the paragraph after the proof of Corollary 4 should be struck. Rather than
update this particular note, we are are actively working on an actual submittable paper.
See also [Miller, Chris Expansions of o-minimal structures on the real field by trajectories
of linear vector fields. Proc. Amer. Math. Soc. 139 (2011), no. 1, 319330. MR2729094]
for related current developments.

We are interested in expanding o-minimal structures on the real field by trajectories1 of
definable vector fields. This note2 is a preliminary report on some progress. We do not
attempt to state and prove results as efficiently as possible or in the greatest generality.

The reader is assumed to be familiar with o-minimal expansions of the real field; see [4–6]
for basic references and surveys. We also need a fair amount of ODE theory, some quite
basic, some less so; see e.g. [14].3 An important source of inspiration was the essentially
expository [1, Ch. 5]. See [8, 9, 12] for some related material, and [11] for discussion of a
more extensive context into which this paper fits.

Throughout, “definable” means “parametrically definable”; “analytic” means “real ana-
lytic”. Given structures R1 and R2, we write R1 = R2 if they are interdefinable. The open
ball about the origin of radius r > 0 is denoted by Br(0). As usual, we abuse notation and
write 0 instead of (0, 0).

Before we can state our main result, we must introduce the cast of characters.
The real field (R,+, · ) is denoted by R. Recall that a subset of Rn is definable in R if

and only if it is semialgebraic; see e.g. [4, Ch. 2].
The expansion (R,Z) of R by the set of all integers is denoted by PH, short for “(real)

projective hierarchy”. A subset of Rn is definable in PH if and only if it is projective in
the sense of descriptive set theory. Every Borel subset of Rn is definable in PH; then so are

Thanks to Dmitry Novikov for technical assistance with some of the ODE theory.
Some details of the main result of this note were fleshed out, with help from the participants, at a

workshop held at The Fields Institute (Toronto), May 25–27, 2004. We thank the Institute for its support.
1A.k.a. phase curves, solution curves, orbits, . . . . As is often done in the literature, we sometimes

identify trajectories with their images.
2More precisely, an unpublished note; not a preprint. Comments are welcome.
3This book omits the proofs of some of the theorems that we need, but it is much easier reading than

most of the sources to which it refers, so we use it for now.
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all projections of Borel sets, complements of projections of Borel sets, and so on. Hence,
PH is quite wild from the standpoint of real-analytic geometry (or even geometric measure
theory, for that matter). All structures that come under consideration in this note are
reducts (in the sense of definability) of PH. See e.g. [7, Ch. V] for basic definitions and
facts about the projective hierarchy; also interesting is [4, Ch. 1.2.6].

The expansion of R by all restricted analytic functions is denoted by Ran. A subset of
Rn is definable in Ran if and only if it is globally (sometimes called “finitely”) subanalytic.
In particular, if γ is a trajectory of an analytic planar vector field, then every compact
connected subset of γ is definable in Ran. See [3, 6] for more information about Ran.

The Pfaffian closure of Ran is denoted by P(Ran). We do not need the precise definition;
we need only know that P(Ran) is an o-minimal expansion of Ran such that if g : R2 → R
is definable in P(Ran) and f : (a, b) → R satisfies f ′(t) = g(t, f(t)) for all t ∈ (a, b), then
f is definable in P(Ran). Note that we may regard the graph of f as a trajectory of the
definable (in P(Ran)) vector field (x, y) 7→ (1, g(x, y)) : (a, b) × R → R2. See [13, 15] for
details and more information.

For a + ib ∈ C, xa+ib denotes the map t 7→ ta(cos b log t, sin b log t) : R>0 → R2, i.e., the
restriction to the positive real line of the complex power function za+ib taken with respect
to an appropriate branch of log z. For a ∈ R, identify xa+i0 with the real power function xa.
Note that (R, xa+ib) = (R, xa, xib). Since xa+ib is analytic, every compact connected subset
of its graph, and of its image, is definable in Ran. The image of xa+ib is a trajectory of the
linear vector field with matrix

(
a −b
b a

)
(re-parameterize by es, s ∈ R). Hence, if ab 6= 0,

then the image of xa+ib is the logarithmic spiral Sω := { (e(1+iω)t : t ∈ R } where ω = |a/b|.
We collect a few more easy facts.

1. Lemma. Let ω > 0. Put α = e2π/ω and αZ = {αk : k ∈ Z }.
(1) (R, Sω) = (R, x1+iω) = (R, xiω).
(2) For r > 0, (R, xiω�(0, r)) = (R, xiω) = (R, xiω�(r,∞)).
(3) For r > 0, (R, Sω ∩Br(0)) = (R, Sω) = (R, Sω \Br(0)).
(4) (R, xiω) defines αZ.
(5) (R, xiω�[1, α], αZ) defines xiω.
(6) (Ran, x

iω) = (Ran, α
Z) = (Ran, Sω).

Proof. (1). For the first equality, parameterize Sω by distance to the origin.
(2). For every s > 0, we have siω = limt→0+(st)iω/tiω = limt→+∞(st)iω/tiω.
(3). This is immediate from (1) and (2).
(4). αZ × {0} = Sω ∩ (R>0 × {0}).
(5). z = tiω iff there exist a ∈ αZ and b ∈ [1, α) such that t = ab and z = biω.
(6). xiω�[1, α] is analytic, hence definable in Ran. Now apply (1), (4) and (5). �

For 0 6= ω ∈ R, (Ran, x
iω) is clearly not o-minimal, but it turns out to be as well behaved

as one could reasonably expect:

2. Proposition. Let A be a finite collection of subsets of Rn definable in (Ran, x
iω). Then

there is a finite partition M of Rn into embedded, analytic, not necessarily connected
submanifolds of Rn, each definable in (Ran, x

iω), and there is a countable partition C of
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Rn into analytic cells, each definable in Ran, such that C is compatible with M, and M is
compatible with A.

Proof. By Lemma 1.6, there exists α > 1 such that (Ran, x
iω) = (Ran, α

Z). By [3], Ran

defines no irrational power functions. Now see [11, §8.6, Remark]. �

In particular, every subset of R definable in (Ran, x
iω) is the union of an open set and

finitely many discrete sets4, so (Ran, x
iω) is certainly a proper reduct of PH.

We are now ready to state the main result of this note.

3. Theorem. Let F = (F1, F2) : R2 → R2 be analytic such that F−1(0) = {0}; λ1, λ2 ∈ C
be the eigenvalues of the Jacobian matrix of F at 0; γ : R→ R2 \{0} be differentiable such
that γ′ = F ◦ γ and limt→+∞ γ(t) = 0; and γr := γ([r,∞)) for r ∈ R.

(a) If 0 6= λ1 is imaginary, then (R, γr) = PH for every r ∈ R.
(b) If λ1 = a+ ib for a, b ∈ R \ {0}, then (Ran, γr) = (Ran, x

ia/b) for every r ∈ R.
(c) If 0 6= λ1 ∈ R, then γr is definable in P(Ran)—so (Ran, γr) is o-minimal—for every

r ∈ R.

The theorem is trichotomous with respect to the assumption that at least one of λ1, λ2

is nonzero (recall that λ1, λ2 are either both real or they are complex conjugates). Loosely
speaking, the theorem says that things go either as nicely as possible or as unpleasantly as
possible. Naturally, the question arises: Does the trichotomy hold without the assumptions
on the eigenvalues? At present, we do not know; work is ongoing.

Note. Only for temporary expositional convenience do we take F to be analytic on all of
R2 and γ to be defined on all of R. All results, appropriately modified, hold for F analytic
on an open neighborhood U of 0 and γ defined on an open subinterval of R.

4. Corollary. Let F1, . . . , Fn : R2 → R2 be analytic such that for k = 1, . . . , n, F−1
k (0) =

{0} and the Jacobian of Fk at 0 has a nonzero eigenvalue. Then there is a finite Ω ⊆ R\{0}
such that for any collection T of trajectories of F1 . . . , Fn, each having 0 as a limit point,
at least one of the following holds:

(a) (Ran, T ) = PH.
(b) There exist ∅ 6= ΩT ⊆ Ω and a polynomially bounded o-minimal reduct RT

of (Ran, T ) such that (Ran, T ) = (RT , (x
iω)ω∈ΩT

)
.

(c) (Ran, T ) is a reduct of P(Ran) (and thus is o-minimal).

Proof. Let Ω be the set of all |a/b| such that a+ ib is an eigenvalue of some Fk and ab 6= 0.
Let T be a collection of trajectories of F1, . . . , Fn, each having 0 as a limit point. Suppose
that neither (a) nor (c) holds; we show that (b) holds. It suffices to assume that each Fk
has a trajectory that belongs to T and show that (b) holds with ΩT = Ω. Since (a) fails,
none of the eigenvalues of the Fk are purely imaginary. Since (c) fails, Ω 6= ∅. If none of the
eigenvalues of the Fk are real, then put RT = Ran. Finally, suppose that 1 ≤ m < n and
F1, . . . , Fm are the Fk having real eigenvalues. The expansion RT of Ran by the trajectories
in T of any of F1, . . . , Fm is a reduct of P(Ran), and thus is o-minimal. Suppose, toward a
contradiction, that RT is not polynomially bounded. By growth dichotomy [10], it defines

4Actually, (Ran, x
iω) is d-minimal, but we don’t want to make an issue of this right now.
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the real exponential function ex. Then (Ran, T ) is an expansion of (R, ex, xiω) for some
ω 6= 0. But (R, ex, xiω) defines complex exponentiation—x1/ω is definable in (R, ex) and
ex+iy = ex((ey)iω)1/ω—hence also Z, contradicting that (a) does not hold. �

We do not know if the corollary is a trichotomy. Very little is known about the structures
of case (b) unless RT defines no irrational powers and there exists ω ∈ ΩT such that
ΩT ⊆ Q.ω, in which case something similar to Proposition 2 holds (for the same reasons).
Indeed, we do not yet understand structures (R, αZ, βZ) where α, β > 1 and β is not a
rational power of α, except that (R, αZ, βZ) defines sets that are somewhere both dense
and codense, e.g., the product group αZ · βZ. Note that if r is irrational, then (R, xr, xiω)
defines the groups αZ and αrZ (α = e2π/ω).

We now begin the proof of Theorem 3.

5. Lemma ([12]). A structure on R defines Z iff it defines the range of a sequence (ak)k∈N
of real numbers such that limk→+∞(ak+1 − ak) ∈ R \ {0}.

Proof of Theorem 3(a). Suppose that 0 6= λ1 is imaginary and let r ∈ R. We show that
(R, γr) defines Z. Since F is analytic, there exists δ > 0 such that the Poincaré return map
P of F exists on (0, δ), extends analytically to (−δ, δ) and P ′(0) = 1; see e.g. [14, pg. 218].
Since limt→+∞ γ(t) = 0, there is a neighborhood of 0 that is disjoint from any closed
trajectories. Hence, P is not the identity, so there exist c 6= 0 and an integer N > 1
such that P (x) = x + cxN + o(xN) as x → 0+. Moreover, after shrinking δ, we have
0 < P (x) < x for all x ∈ (0, δ). Choose any a0 such that 0 < a0 < δ and (a0, 0) ∈ γr.
Inductively, put ak+1 = P (ak) for k ∈ N; then γr ∩

(
(0, a0] × {0}

)
= { (ak, 0) : k ∈ N }.

Hence, the set { a1−N
k : k ∈ N } is definable in (R, γr). Routine computation5 yields

limk→+∞(a1−N
k+1 − a

1−N
k ) = c(N − 1) 6= 0. Apply Lemma 5. �

Proof of Theorem 3(b). Suppose that λ1 = a + ib for nonzero a, b ∈ R. Put ω = |a/b|
and let r ∈ R. We show that (Ran, γr) = (Ran, x

iω). This is essentially immediate from ODE
theory, and is easy to explain informally: “Near the origin, F is analytically equivalent to
its linear part”; see e.g. [2, §24]. This means that there is an open neighborhood U of 0
and an analytic isomorphism H : U → V ⊆ R2 such that H maps trajectories of F �U onto
trajectories of T �V , where T is the linear vector field with matrix

( −1 ω
−ω −1

)
. By shrinking

U , both H and H−1 are definable in Ran. Hence, by increasing r and replacing γr with
H(γr), we may assume that γr is a (half) trajectory of T . Then there exist ε > 0 and
0 6= z0 ∈ C such that Sω ∩Bε(0) = { γ(t)z0 : t > r }. Apply Lemma 1. �

Proof of Theorem 3(c). Here, we need neither the analyticity of F nor any special
properties of Ran (other than o-minimality), so we drop all earlier assumptions and start
over.

Let R be an o-minimal structure on R; “definable” means “definable in R”. Cells and
decompositions are taken with respect to R. By passing to its Pfaffian closure, we may
assume that the following holds.

5Credit goes to Kobi Peterzil for noticing, during the workshop at Fields mentioned in the first-page
footnotes, that this is the routine computation to check.
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6. Proposition ([13, Prop. 7]). Let g : R2 → R be definable, I be an open subinterval
of R and f : I → R be differentiable such that f ′(t) = g(t, f(t)) for all t ∈ I. Then f is
definable.

Note. There are no assumptions on g other than definability.
A subset A of R2 is a spiral (around the origin) if 0 /∈ A and there exist continuous

functions ρ, θ : R→ R such that A = { ρ(t)eiθ(t) : t ∈ R }, ρ > 0, limt→+∞ ρ(t) = 0, and θ is
either ultimately increasing and unbounded above, or ultimately decreasing and unbounded
below.

Let F : R2 → R2 be C1 and definable such that F−1(0) = {0}. Let γ and γr be as before.

7. Theorem (the “fundamental alternative”; cf. [1, pp. 84-85]). Either γ(R) is a spiral or
every γr is definable.

Assuming this for the moment, we have the following generalization of Theorem 3(c):

8. Proposition. If F is C2 in a neighborhood of 0 and the Jacobian of F at 0 has a nonzero
real eigenvalue, then γr is definable for every r.

Proof. By the fundamental alternative, we need only show that γ(R) is not a spiral, which
is immediate from ODE theory. We give only a brief outline here.

Assume that both eigenvalues have the same sign. Then, near the origin, F is C1-diffeo-
morphic to its linear part [14, Theorem, pg. 127]; in particular, F has a spiralling trajectory
around 0 if and only the same is true of its linear part. Now apply the classification of
linear fields [14, §1.5 Cases I and II].

Assume that the eigenvalues have distinct signs. By the center manifold theorem [14,
pg. 116], at least one trajectory of F has 0 as a limit point and is not a spiral. Hence, no
trajectory of F is a spiral. �

Remark. The map R2 → R2 given by

(x, y) 7→

{
(−x− 2y/ log(x2 + y2), −y + 2x/ log(x2 + y2)) , (x, y) 6= 0

0, (x, y) = 0

shows that Proposition 8 does not hold with C1 in place of C2. (Hint. Switch to polar
coordinates.)

We now proceed toward the proof of the fundamental alternative.

9. Lemma. Let I be an open subinterval of R.

(1) If F1 ◦ γ�I = 0, then γ2�I is definable.
(2) If F1◦γ�I < 0 or F1◦γ�I > 0, then γ1�I is strictly monotone and γ2◦γ−1

1 : γ1(I)→ R
is definable.

(3) If F1 ◦ γ�I is of constant sign, then γ(I) is definable.

Proof. (1). If F1 ◦ γ�I = 0, then γ′1�I = 0, so for some c ∈ R we have γ′2 = F2(c, γ2) on I.
Apply Proposition 6.
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(2). Suppose that either F1 ◦ γ�I > 0 or F1 ◦ γ�I < 0. Then γ1 is strictly monotone on
I with differentiable compositional inverse γ−1

1 : γ1(I)→ R. Put

g(x, y) =

{
F2(x, y)/F1(x, y), F1(x, y) 6= 0

0, F1(x, y) = 0.

Then (γ2 ◦ γ−1
1 )′(t) = g(t, γ2 ◦ γ−1

1 (t)) for all t ∈ I. By Proposition 6, γ2 ◦ γ−1
1 : γ1(I)→ R

is definable.
(3). This is immediate from (1) and (2). �

10. Lemma. Let J be a compact subinterval of R. Then γ(J) is definable.

Proof. Take a C1-cell decomposition of R2 compatible with F−1
1 (0). Since γ′ has no zeros

and γ(J) is compact and connected, the intersection of each cell of the decomposition with
γ(J) has only finitely many connected components. Apply Lemma 9. �

11. Lemma. Let C ⊆ R2 be a 1-dimensional C1-cell such that 0 ∈ fr(C). Then there exists
r such that one of the following holds:

(1) γr ∩ C = ∅.
(2) γr = Bδ(0) ∩ C for some δ > 0.
(3) γr ∩ C is (the range of ) a sequence (Pn)n∈N of points such that limn→+∞ Pn = 0

and γ(R) is clockwise transverse to C at each Pn.
(4) γr ∩ C is a sequence (Pn)n∈N of points such that limn→+∞ Pn = 0 and γ(R) is

counterclockwise transverse to C at each Pn.

Proof. We are done if (1) holds, so assume otherwise, i.e., γr ∩ C 6= ∅ for every r. Since
limt→+∞ γ(t) = 0, we have Bε(0) ∩ C ∩ γ(R) 6= ∅ for every ε > 0.

By curve selection, there is a definable C1 parametrization φ : (a,∞)→ R2 of C such that
limt→+∞ φ(t) = 0. By increasing a, we may assume that φ′ has no zeros and (−φ′2, φ′1)·(F ◦φ)
is of constant sign.

If (−φ′2, φ′1) · (F ◦ φ) = 0, then F is tangent to C at every point of C. Since γ(R) is
tangent to F at every point of γ(R) and F is C1, we have γr ⊆ C for every r such that
γ(r) ∈ C. Hence, (2) holds.

If (−φ′2, φ′1) · (F ◦ φ) < 0, then F is clockwise transverse to C at every point of C, so
γ(R) is clockwise transverse to C at every point of γ(R) ∩ C. Hence, (3) holds. Similarly,
(4) holds if (−φ′2, φ′1) · (F ◦ φ) > 0. �

Proof of the fundamental alternative. For (x, y) ∈ R2, put σ(x, y) = xF2(x, y) − yF1(x, y).
Note that σ is definable and the sign of σ(γ(t)) is that of the angular derivative of γ at t.

Suppose that σ ≥ 0 on some open ball B about 0. Let R be such that γR ⊆ B. Then the
function t 7→

∫ t
R
σ ◦ γ : [R,+∞)→ R is increasing, so limt→+∞

∫ t
R
σ ◦ γ exists in [0,+∞]. If

limt→+∞
∫ t
R
σ◦γ = +∞, then γ is a spiral. If limt→+∞

∫ t
R
σ◦γ ∈ R, then there exists u ∈ S1

such that limt→+∞ γ(t)/ ‖γ(t)‖ = u. By rotation, we may assume that u = (1, 0). Take
a C1-cell decomposition of R2 compatible with bd(F−1

1 (0)). Then there exists ε > 0 such
that bd(F−1

1 (0))∩Bε(0)\
(
(−∞, 0]×{0}

)
is a finite disjoint union of 1-dimensional C1-cells

C1, . . . , Cd such that for each j = 1, . . . , d, we have 0 ∈ fr(Cj) and Cj ∩ bd(Bε(0)) 6= ∅.
Fix one for the moment, say C := C1. Now,

(
(−∞, 0] × {0}

)
∪ C disconnects Bε(0), so

6



by Lemma 11 (and the intermediate value theorem), there exists r such that γr is either
contained in C or is disjoint from C. Since this is true for each Cj, F1 ◦ γ is ultimately of
constant sign. Apply Lemmas 9 and 10 to finish.

By a similar argument, we are done if σ ≤ 0 on an open ball about 0.
Finally, assume that for every ε > 0 there exist points Pε, Qε ∈ Bε(0) ∩ γ(R) such

that σ(Pε) > 0 and σ(Qε) < 0. By curve selection and cell decomposition, there exist
disjoint 1-dimensional C1-cells C,D ⊆ R2 such that {0} = fr(C) ∩ fr(D), σ�C > 0 and
σ�D < 0. Then there exists ε > 0 such that Bε(0) \ cl(C ∪ D) consists of two disjoint
connected nonempty open sets V,W such that γ is disjoint from one of V or W . The rest
of the argument is now similar to that of the case that σ is nonnegative in a neighborhood
of 0. �

We have now established Theorem 3. Reflection on the proof shows the way toward
possible extension of the trichotomy. By the fundamental alternative, the real issue is:
What can be said about an expansion (R, γr) of an o-minimal structure R on R by a
spiralling half-trajectory γr of a definable-in-R planar vector field (say, at least C1) if
(R, γr) does not define Z? In this generality, the question is quite daunting—recall that
we don’t even know how to handle (R, xa+ib) if a is irrational and b 6= 0—so for now we are
attempting to remove the assumptions on the eigenvalues in Theorem 3.
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