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Appendix A: Two-Hypothesis Competition: Simple and Variability Hypotheses 

Section 3.2 of Text 

The posterior probability evaluation metric – that the hypothesis h is the correct one, given the 

data, d – is calculated using Bayes’ Theorem: 

                  (A1) 

Under the word-independence assumption, the probability of the set d given h and y (where h = 

GUJARATI*, PENULT, or GUJARATI; and d is the set of stressed words, with y being the underlying 

unstressed forms) can be expanded as the product of the probability of each member of d given h 

and each member of y.  

      (A2) 

Since one is typically only interested in the relative value of the posterior probability, the ratio of 

posteriors for any two hypotheses can be taken to determine the winner.  Thus p(d) can be 

ignored since it appears on both sides of the ratio, giving 

    (A3) 

For a given three-syllable word, yx, there are three stress possibilities: 1-initial stress, 2-

penultimate stress, and 3-final stress.  The set of possible outputs is given by C = {1,2,3}, and the 

stress class assigned by Hi is written as a function of the input word: Hi(yx) ∈ C.  For the original 

Simple Hypothesis space, each hypothesis predicts exactly one stress position per word – that is, 

assigns all probability to one position. Thus, the probability of stress being in any given position 

c is either 0 or 1. 

€ 

p(h | d) =
p(d | h)p(h)

p(d)

€ 

p(h | d) =
p(h) p(di | h,yi )

i
∏

p(d)

€ 

p(hi | d)
p(h j | d)

=

p(hi) p(dx | hi,yx )
x
∏

p(h j ) p(dx | h j ,yx )
x
∏
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     (A4) 

The Variability versions of the Simple Hypotheses assign some small probability to other stress 

positions. From a production standpoint, the process can be conceptualized as follows. Stress 

placement is either decided via rule or at random.  The probability that the rule will be used is 

high. However, the random process will be chosen instead from time to time.  This random 

process (A, for Arbitrary) will result in exceptional stress placement 2 out of every 3 times, for 3-

syllable words, and will randomly select the same location as H 1 out of very 3 times.   

      (A5) 

For the Variability Hypotheses, the probability of stress in any of the three possible locations c is 

given as the weighted sum of the contributions from the two processes: 

𝑝(𝑐|𝐻!! ,𝑦!) = 𝑤!𝑝(𝑐|𝐻! ,𝑦!)+ 𝑤!𝑝(𝑐|𝐴,𝑦!)   (A6) 

Take 3α (= wa) to be the probability that stress will be assigned randomly (thus, each position 

has probability α of being stressed under A). This leaves 1-3α as the probability with which the 

normal stress rule is followed (= wi). The probability of stress at each possible location is given 

in (A7). In the first instance, the two processes agree in the location of stress, at ci = Hi( ). 

Otherwise, the two processes disagree, and Hi assigns zero probability to each of these locations, 

ca1, ca2 ≠ Hi( ): 

       𝑝 𝑐! 𝐻!! ,𝑦! = 1− 3𝛼 𝑝 𝑐! 𝐻! ,𝑦! + 3𝛼 𝑝 𝑐! 𝐴,𝑦! = 1− 2𝛼     (A7) 
 

𝑝 𝑐!! 𝐻!! ,𝑦! = 1− 3𝛼 𝑝 𝑐!! 𝐻! ,𝑦! + 3𝛼 𝑝 𝑐!! 𝐴,𝑦! = 𝛼          
 

𝑝 𝑐!! 𝐻!! ,𝑦! = 1− 3𝛼 𝑝 𝑐!! 𝐻! ,𝑦! + 3𝛼 𝑝 𝑐!! 𝐴,𝑦! = 𝛼     
  

 
The three scenarios can be compactly expressed by the following formula:  

€ 

p(c |Hi,yx ) =
1 c = Hi(yx )
0 otherwise
" 
# 
$ 

€ 

p(c | A,yx ) =
1
3
,∀c

€ 

yx

€ 

yx
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 Hi
α : Variability Version of Hi        (A8) 

     

According to the definition of the Variability Hypotheses in (A8), the probability assigned to any 

particular surface form is given as 1-2α if the form is consistent with the categorical version of 

the given hypothesis, and α if the form is inconsistent. Thus, it is convenient to divide the dataset 

d into two subsets: 1) the set of stressed words that are consistent with H, (e.g., di = G*(yi) : the 

stress that actually appears on word yi is the same as the stress assigned by hypothesis GUJARATI* 

to word yi) and 2) the set of stressed words that are inconsistent with H. Equation (A3) can then 

be rewritten as 

!(!|!"#$%$&'∗!)
!(!|!"#$%$&'!|!)

=
![!!!!∗ !! ] (!!!!)[!!!!∗ !! ]

![!!!! !! ] !(!!!!)[!!!! !! ]
    (A9) 

If the prior probability terms are the same (p(GUJARATI*) = p(GUJARATI)), then the ratio of 

likelihoods in (A9) is equivalent to the ratio of posteriors in (A3). 

  

Derivation of Equation (6): 

For any two hypotheses, Hi
α, Hj

α, the following variables parameters can be defined;  i = the 

number of data points consistent with Hi and inconsistent with Hj; j = the number of data points 

consistent with Hj and inconsistent with Hi; n = the number of data points consistent with both 

hypotheses; and a = the number of data points consistent with neither hypothesis.  Assuming 

uniform priors, and rewriting Equation (A9) in terms of these parameters gives 

      (A10) 

Collecting terms, 

€ 

p(c |Hi
α ,yx ) =

1− 2α c = Hi(yx )
α c ≠ Hi(yx )

% 
& 
' 

€ 

p(Hi
α | d)

p(H j
α | d)

=
α a+ j (1− 2α)i+n

α a+ i(1− 2α) j+n
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           (A11) 

           (A12) 

        (A13) 

In the special case where there is only one data point difference between i and j the competition 

reduces to  

      (A14) 

€ 

=
α jα a (1− 2α)i(1− 2α)n

α iα a (1− 2α) j (1− 2α)n

€ 

=
α j (1− 2α)i

α i(1− 2α) j

€ 

=
(1− 2α)i− j

α i− j

€ 

p(Hi
α | d)

p(H j
α | d)

=
(1−2α)
α
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Appendix B: Mixture Hypotheses 

B.1 Derivation of NO-DIFF Hypothesis: 

NO-DIFF(i/j)α is defined as the hypothesis that a given stressed surface form is as likely to have 

been generated by Hi
α as by  Hj

α. This hypothesis assigns stress by randomly selecting either Hi
α 

or  Hj
α in production. Thus, for any particular surface form there are two possible ways it might 

have been generated. Any actual utterance corresponds to a surface form and a generator pair. 

The joint probability of a particular surface form and a particular generating sub-grammar is, by 

definition, the probability of the generator times the probability of the surface form under the 

generator. Thus, the total probability of all events resulting in a given surface form is determined 

by the sum of the probability of events in which Hi
α was the generating grammar, and the 

probability of events in which Hj
α was the generating grammar 

 

𝑝(𝑐|𝑁𝑂_𝐷𝐼𝐹𝐹 𝑖/𝑗 ! ,𝑦!) = 𝑤!𝑝(𝑐|𝐻!! ,𝑦!)+ 𝑤!𝑝(𝑐|𝐻!! ,𝑦!)  (B1) 

 

In the case of NO-DIFF(i/j)α each sub-grammar is equally likely to be the generator, and the 

weights are both set at .5. 

 

The actual probability will vary by word type, and by location in word. Using three-syllable 

words, there are three possible stress locations, and three possible scenarios for each word: i) Hi
α 

and Hj
α both assign high probability to that location ii) one of the two assigns high probability, 

and the other assigns low probability iii) both hypotheses assign low probability.  

 
Scenario i: 

𝑝(𝑐!|𝑁𝑂_𝐷𝐼𝐹𝐹(𝑖/𝑗)!) =
1
2 1− 2𝛼 +

1
2 1− 2𝛼 = 1− 2𝛼   

  
Scenario ii: 

𝑝(𝑐!!|𝑁𝑂_𝐷𝐼𝐹𝐹(𝑖/𝑗)!) =
1
2 𝛼 +

1
2 1− 2𝛼 =

1− 𝛼
2  

 
and 
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𝑝(𝑐!!|𝑁𝑂_𝐷𝐼𝐹𝐹(𝑖/𝑗)!) =
1
2 1− 2𝛼 +

1
2 𝛼 =

1− 𝛼
2  

 
Scenario iii: 

𝑝(𝑐!!|𝑁𝑂_𝐷𝐼𝐹𝐹(𝑖/𝑗)!) =
1
2 𝛼 +

1
2 𝛼 = 𝛼

 
 
 
Assessing the descriptive power of NO-DIFF(i/j)α over a particular lexicon requires determining 

what probability NO-DIFF(i/j)α assigns to the observed surface forms. For words that are 

consistent with both Hi and Hj, NO-DIFF(i/j)α predicts the correct stress location with the highest 

probability (corresponding to Scenario i); for words that are consistent with only one of the 

Simple hypotheses, NO-DIFF(i/j)α assigns the intermediate probability under Scenario ii; and for 

words that are consistent with neither Simple hypothesis, NO-DIFF(i/j)α assigns the lowest 

probability, calculated under Scenario iii. The formula for descriptive power as a function of 

word type is given in (B2).  

  NO-DIFF(i/j)α: ‘No Difference Hypothesis’    (B2) 
 

  𝑝(𝑐|𝑁𝑂_𝐷𝐼𝐹𝐹 𝑖/𝑗 ! ,𝑦!) =
1− 2𝛼
!!!
!
𝛼

                𝑐 = 𝐻! 𝑦! = 𝐻! 𝑦!
              𝑐 = 𝐻! 𝑦!   𝑋𝑂𝑅    𝑐 = 𝐻! 𝑦!   
              𝑐 ≠ 𝐻! 𝑦!   &    𝑐 ≠ 𝐻! 𝑦!

 

 

The competition between NO-DIFF(i/j)α and Hi
α 

In Appendix A a set of parameters for a given lexicon was defined: i = the number of data points 

consistent with Hi and inconsistent with Hj; j = the number of data points consistent with Hj and 

inconsistent with Hi; n = the number of data points consistent with both hypotheses; and a = the 

number of data points consistent with neither hypothesis. Thus, following the format in (A13) 

and (A6) the ratio of descriptive power between NO-DIFF(i/j)α and Hi
α can be written in the 

following way  
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!(!|!!
!)

!(!|!"_!"##(!/!)!)
= !!!!(!!!!)!!!

!!!
!

!!!
(!!!!)!!!

     (B3) 

 

Simplifying and collecting terms, 

             (B4) 

            (B5) 

             (B6) 

For a simple winner-take-all decision metric, and under the assumption of a uniform prior, Hi
α 

wins when the ratio in (B6) is greater than 1. If i is expressed as a function of j (i = mj where m ≥ 

1), it can be determined how much more unambiguous data Hi must account for than Hj, as a 

function of α. Setting (B6) greater to 1 and taking the log of both sides yields: 

 

  (B7) 

 

  (B8) 

 

      (B9)

 

For a given α, NO-DIFF(i/j)α is rejected for values of i greater than or equal to m(α)j. See Figure 

B1 (also Figure 1 in text). In order for stress assignment probabilities to remain well-defined α 

must be less than .5. When α = 1/3 all three word positions have an equal probability of being 

stressed. This also corresponds to an m value of 1: the two hypotheses are exactly equivalent in 

their descriptiveness of the data, that is, equally bad. Each predicts stress location at chance 

€ 

=
α j (1− 2α)i+n

(1
2
)i+ j (1−α)i+ j (1− 2α)n

€ 

=
α j (1− 2α)i

(1
2
)i+ j (1−α) j (1−α)i

€ 

= 2i+ j α
1−α
$ 

% & 
' 

( ) 

j 1− 2α
1−α
$ 

% & 
' 

( ) 

i

€ 

(1+m) j log(2) + j(logα − log(1−α)) +mj(log(1− 2α) − log(1−α)) > 0

€ 

m[log(2) + log(1− 2α) − log(1−α)] > log(1−α) − logα − log2

€ 

m >
log
1−α
2α

log 2(1− 2α)
(1−α)
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levels. As α falls below 1/3, m rises rapidly. For a mid-range α value of 1/6, i must be almost 

twice j in order for Hj
α to beat the No-Difference Hypothesis.   

 

 

Fig B1 
Ratio of unambiguous data (m=i/j) as a function of α for a two-hypothesis space.  

For a given α, the No-Diff Hypothesis is rejected for points falling above the curve.  
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B.2 Derivation of MAX(i/j)α 

The Maximum Likelihood Mixture Hypothesis, MAX(i/j)α, is formulated in the same way as the 

previously derived No-Diff Hypothesis except the weights are fit from the data, and may take on 

different values, with the stipulation that wi + wj = 1.      

𝑝(𝑐|𝑀𝐴𝑋 𝑖/𝑗 ! ,𝑦!) = 𝑤!𝑝(𝑐|𝐻!! ,𝑦!)+ 𝑤!𝑝(𝑐|𝐻!! ,𝑦!)  (B10) 

P(c|Hx
α,yx) remains as defined in Equation (A8). 

 Since the weights for each of the sub-hypotheses are not necessarily the same, there are 

four unique scenarios to consider with respect to stress placement. The first scenario is the same 

as above: Hi
α and Hj

α both assign high probability to the same location; the second is the location 

to which Hi
α assigns high probability, but Hj

α assigns low; the third is the reverse scenario: Hj
α 

assigns high probability, but Hi
α assigns low. The fourth scenario is also as above: stress 

locations to which both hypotheses assign low probability.  

Scenario i: 
𝑝 𝑐! 𝑀𝐴𝑋 𝑖 𝑗 ! = 𝑤! 1− 2𝛼 + 𝑤! 1− 2𝛼 = 𝑤! + 𝑤! 1− 2𝛼 = 1− 2𝛼 
 
Scenario ii: 
𝑝 𝑐!! 𝑀𝐴𝑋 𝑖 𝑗 ! = 𝑤! 1− 2𝛼 + 𝑤! 𝛼 = 𝑤! + (𝑤! − 2𝑤!)𝛼   
 
Scenario iii: 
𝑝 𝑐!!! 𝑀𝐴𝑋 𝑖 𝑗 ! = 𝑤! 𝛼 + 𝑤! 1− 2𝛼 = 𝑤! + (𝑤! − 2𝑤!)𝛼 
 
Scenario iv: 
𝑝 𝑐!" 𝑀𝐴𝑋 𝑖 𝑗 ! = 𝑤! 𝛼 + 𝑤! 𝛼 = 𝑤! + 𝑤! 𝛼 = 𝛼 
 

The descriptive power of MAX(i/j)α over a particular lexicon is defined as the probability 

MAX(i/j)α assigns to the observed surface forms. For words that are consistent with both Hi and 

Hj, MAX(i/j)α predicts the correct stress location with the highest probability (corresponding to 

scenario i); for words that are consistent with only one of the Simple Hypotheses, NO-DIFF(i/j)α 

assigns the two different intermediate probabilities under scenario ii or iii; and for words that are 
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consistent with neither Simple Hypothesis, MAX(i/j)α assigns the lowest probability, calculated 

under scenario iv. The formula for descriptive power as a function of word type is given in 

(B11).  

 MAX(i/j)α: ‘Maximum Likelihood’ Hypotheses   (B11) 

 𝑝 𝑐 𝑀𝐴𝑋 𝑖 𝑗 ! ,𝑦! =

1− 2𝛼                                      𝑐 = 𝐻! 𝑦! = 𝐻! 𝑦!
𝑤! + 𝑤! − 2𝑤! 𝛼          𝑐   = 𝐻! 𝑦!   &  𝑐 ≠ 𝐻! 𝑦!
𝑤! + 𝑤! − 2𝑤! 𝛼          𝑐   = 𝐻! 𝑦!   &  𝑐 ≠ 𝐻! 𝑦!
            𝛼                                                            𝑐   ≠ 𝐻! 𝑦!   &  𝑐 ≠ 𝐻! 𝑦!

  
 

The three parameters wi, wj, and α are fit from the observed data so as to maximize the likelihood 

of the data given MAX(i/j)α. As before, i is defined as the number of data points consistent with Hi 

and inconsistent with Hj; j, as the number of data points consistent with Hj and inconsistent with 

Hi; n, as the number of data points consistent with both hypotheses, and a, as the number of data 

points consistent with neither hypothesis.  

Using Bayes' Theorem, 

p(d |MAX(i / j)α ) = (1− 2α)nα a (wi + (wj − 2wi )α)
i (wj + (wi − 2wj )α)

j  (B12) 

This probability is maximized over the data when the derivatives with respect to each free 

parameter are at zero. Define: 𝐿 ≡ 1− 2𝛼 !𝛼! 𝑤! + 𝑤! − 2𝑤! 𝛼
!(𝑤! + (𝑤! − 2𝑤!)𝛼)! 

!
!!!

𝑝 𝑑 𝑀𝐴𝑋 𝑖 𝑗 ! = ! !!!!
!!! !!!!!! !

𝐿 + !"
!!! !!!!!! !

𝐿 = 0   (B13) 

!
!!!

𝑝 𝑑 𝑀𝐴𝑋 𝑖 𝑗 ! = !"
!!! !!!!!! !

𝐿 + !(!!!!)
!!! !!!!!! !

𝐿 = 0  (B14) 

Combining (B13) and (B14), 

!(!!!!)
(!!!(!!!!!!)!)

+ !!
(!!!(!!!!!!)!)

= !"
(!!!(!!!!!!)!)

+ !(!!!!)
(!!!(!!!!!!)!)

  (B15) 
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!(!!!!)
(!!!(!!!!!!)!)

= !(!!!!)
(!!!(!!!!!!)!)

    (B16) 

𝑖 𝑤! + 𝑤! − 2𝑤! 𝛼 = 𝑗(𝑤! + (𝑤! − 2𝑤!)𝛼)   (B17) 

𝑖𝑤!𝛼 + 1− 2𝛼 𝑖𝑤! = 𝑗𝑤!𝛼 + 1− 2𝛼 𝑗𝑤!    (B18) 

With the condition wi + wj = 1 the weight values can be written as    

wj =
j − 2α j − iα
i− 2αi− jα
"

#
$

%

&
'wi =1−wi      (B19) 

wi =
1

1+ j − 2α j − iα
i− 2αi− jα

=
i− 2αi− jα

i−3αi−3α j + j
   (B20) 

Using only the descriptive power metric, p(d|h), GUJARATI*α cannot do better than 

MAX(G*/G)α. The Mixture Grammar always sets its parameters so as to maximize the likelihood 

of the training data, and it has more parameters than GUJARATI*α. Therefore, the best GUJARATI*α 

can do is tie, when wi = 1 and wj = 0.  

  



 12 

Appendix C: Optimal Bayes Classification 

 

In winner-take-all evaluation, a single hypothesis wins the competition; stress assignment is then 

determined solely by that hypothesis.  By contrast, the Optimal Bayes Learner determines stress 

assignment by taking a weighted sum of the predictions of all hypotheses in the original space 

(see, e.g., Mitchell 1997).  The weight for a given hypothesis is set to the posterior probability of 

the hypothesis, given the previously encountered data; thus, the hypotheses are essentially ranked 

by how plausible they are as generators of the data. For a novel three-syllable word, yx, each 

possible stress position is assigned a probability via this weighted sum, as in (C1), where l ∈ 

{1,2,3}. 

  

                       (C1) 

To see how this decision metric changes the previous results, the same exercise can be performed 

here as was done in the derivation of Equation (6), but with a three-, rather than a two-, 

hypothesis space: {Hi, Hj, Hk}. 

    (C2) 

 

If Hi has only a single data point advantage over both Hj and Hk (i-j = i-k = 1), then Equation 

(A14) can be used to write  

 and     (C3) 

Substituting  into (C2) gives 

           (C4)
 

    

 

  

€ 

p(cl | d,yx ) = p(cl
Hs

∑ |Hs ,yx )p(Hs | d)

€ 

p(cl | d,yx ) = p(cl |Hi

α ,yx )p(Hi

α | d) + p(cl |H j

α ,yx )p(H j

α | d)

€ 

+p(cl |Hk

α ,yx)p(Hk

α | d)

€ 

p(Hi
α | d)

p(H j
α | d)

=
(1−2α)
α

€ 

p(Hi
α | d)

p(Hk
α | d)

=
(1−2α)
α

€ 

p(Hi
α | d)

€ 

p(cl | d,y) = p(cl |Hi

α ,yx )p(Hi

α | d) + p(cl |H j

α ,yx )
α

1− 2α
$ 

% 
& 

' 

( 
) p(Hi

α | d)

€ 

+p(cl |Hk

α ,yx)
α

1− 2α
$ 

% 
& 

' 

( 
) p(Hi

α | d)
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The area where using Optimal Bayes will make a difference to the calculation is for the 

following kinds of words: ones where Hj and Hk agree on stress assignment, but disagree with the 

dominant hypothesis Hi. An example of this type of word comes from row 3 of Table 1 (e.g., 

/kəʈoro/, where Hj
α =  GUJARATIα, and Hk

α = PENULTα. Both assign the highest probability to the 

second position – the penultimate syllable, which also contains the highest sonority vowel). For 

words of this type the probability of stress in initial position is given as: 

          (C5) 

And the probability of stress in second position is given as: 

         (C6) 

Comparing the probability of stress in first versus second position,  

      (C7) 

Factoring out the  term and simplifying gives 

     (C8) 

Collecting terms, 

       (C9) 

       (C10) 

The behavior of this ratio in the region where α ≤ .33 is plotted in Figure C1.  

€ 

p(c1 | d,yx ) = (1− 2α)P(Hi
α | d) +α

α
1− 2α

P(Hi
α | d) +α

α
1− 2α

P(Hi
α | d)

€ 

p(c2 | d,yx ) = (α)P(Hi
α | d) + (1− 2α) α

1− 2α
P(Hi

α | d) + (1− 2α) α
1− 2α

P(Hi
α | d)

€ 

p(c1 | d,yx )
p(c2 | d,yx )

=
(1− 2α)p(Hi

α | d) +α
α

1− 2α
p(Hi

α | d) +α
α

1− 2α
p(Hi

α | d)

(α)p(Hi
α | d) + (1− 2α) α

1− 2α
p(Hi

α | d) + (1− 2α) α
1− 2α

p(Hi
α | d)

€ 

p(Hi
α | d)

€ 

p(c1 | d,yx )
p(c2 | d,yx )

=

(1− 2α)2

(1− 2α)
+α

α
1− 2α

+α
α

1− 2α
3α

€ 

p(c1 | d,yx )
p(c2 | d,yx )

=
(1− 2α)2 + 2α 2

3α(1− 2α)

€ 

p(c1 | d,yx )
p(c2 | d,yx )

=
6α 2 − 4α +1
3α(1− 2α)
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 In Optimal Bayes, the less dominant hypotheses can, in a sense, collude to move stress to 

their mutually preferred location. This effect will be strongest when the dominant hypothesis is 

only slightly better than its competitors (1 data point), and the competitors agree on their stress 

prediction (e.g., penultimate position).  Thus, the formula above illustrates the largest effect size 

that can be expected.  

 

Figure C1 
Classification probability ratio:  as a function of α, for the three-hypothesis case, with i-j = i-k = 1. Stress in c2 position 

is slightly preferred over c1 for values of α ≥ .25 (indicated by dashed line).  

 

The gang-up phenomenon, where Hj and Hk agree with each other in opposition to Hi, can be seen 

to have an appreciable effect in the region .25 < α < .33.  In this region the two stress positions 

have roughly equal probabilities. However, recall that α is the probability assigned to each of 

two exceptional stress positions.  An α of .25 means that there is only a 50% chance of stress 

being assigned by rule. For a still high exception rate of 25% (an α of .125), c1 is more than 

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
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!

p(
c 1

|d
,y

) /
 p

(c
2|d
,y
)

!

€ 

p(c1 | d,y)
p(c2 | d,y)



 15 

twice as likely as c2, and this discrepancy only increases as α decreases. Thus, it can be seen that 

using the Optimal Bayes Classifier has relatively little effect on the outcome. 
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Appendix D: Derivation of Information Theoretic Prior 

The total description length for a string (or set of data) d and a particular hypothesis H is given 

by the following general formula for two-part coding (Rissanen 1989). 

     (D1) 

The relation of (D1) to Bayes’ Theorem becomes clear when using the transformation from 

probability to optimal code length given by 

       (D2) 

Intuitively, Equation (D2) calls for assigning shorter length codes to higher probability symbols 

x. On average, this will minimize the code length for a string, d, of symbols drawn from 

distribution P(x). For a binary alphabet, the logarithm is taken to be base 2. Re-writing Bayes’ 

Theorem in the following way, , taking the negative logarithm, and 

applying Equation (D1), returns Equation (D2).   The close relationship between the two 

formalisms lends itself to the mapping of prior probability to hypothesis complexity, or coding 

length: the more bits it takes to spell out a given hypothesis, the lower its prior probability (and 

the lower its explanatory power). Under this transformation, L(H) corresponds to –log2 p(H) 

which means that p(H) corresponds to 2-L(H). 

 In the absence of any hypothesis, or stress generating rule, a certain number of bits per 

word will have to be used to indicate stress location.  The coding length of the data will go up.  

With a hypothesis this cost per word is avoided, because there is a function that can be applied to 

the underlying form to determine stress placement.  The tradeoff is that the hypothesis itself must 

be described so that the stress location can be computed. A cost is incurred dependent on how 

many bits it takes to completely specify the hypothesis. In what follows the coding costs for the 

hypotheses GUJARATI*α and MAX(G*/G)α will be determined. Translated to prior probabilities 

€ 

L(d,H) = L(d |H) + L(H)

€ 

L(x) = −logP(x)

€ 

p(H,d) = p(d |H)p(H)
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(the explanatory power term), these values will be combined with the previously calculated 

likelihood ratio to determine the conditions under which the anti-markedness grammar defeats 

the Mixture Grammar using the Bayesian evaluation metric.  

 To begin, consider the way in which the categorical hypothesis GUJARATI* assigns stress.  

The grammar can be conceptualized as a decision tree over underlying forms something like that 

depicted in Figure D11.  In order to be able to specify the correct stress for any three-syllable 

word the GUJARATI* hypothesis must allow for at least five consecutive determinations: 1) if the 

word contains /ə/ in penultimate position, then it will assign stress to that position; if not, 2) if 

the word has a /ə/ in initial position, then it will assign stress to that position; if not, 3) if the 

word has /ə/ in final position, then it will assign stress to that position; if not, 4) if the word has a 

mid-sonority vowel in penultimate position, then it will assign stress to that position; if not, 5) if 

the word has a mid-sonority vowel in initial position then it will assign stress to that position; if 

not, the word will be assigned penultimate stress (final stress is only allowed for the lowest 

sonority vowels in complementarity with the GUJARATI grammar in (1)).  

                                                
1 In keeping with Kiparsky’s conjecture, I have been assuming that GUJARATI* represents a true reversed-sonority hierarchy 
language.  This entails that the grammar will treat the highest sonority vowels (/a/) as dispreferred stress carriers, even though the 
inventory of Gujarati′ actually contains no /a/’s, and thus no evidence to the learner regarding their behavior. 



 18 

 

Figure D1 
 GUJARATI* Hypothesis represented as a decision tree based on vowel type and position 

 

The decision tree (T) in Fig. D1 requires a minimum number of bits to describe, which can be 

estimated using the binary coding scheme given in Rissanen (1989: section 7.2). 

     (D3) 

Equation (D3) provides a measure of how much the grammar expressed by T compresses its 

input – or how many classes it must keep track of to produce the correct output.  This is a 

function of kT, the number of internal nodes of the tree, and mT, the number of leaf nodes.   For 

the GUJARATI* grammar, kT = 5 (corresponding to the relevant questions about vowel identity 

depicted in Figure D1), and mT = 6 (corresponding to the possible stress decisions resulting from 

the answers to each of those questions). 

 The Variability version of GUJARATI* additionally requires the estimation of one 

parameter: α.  In general, for a hypothesis consisting of a set of q free parameters (θ), L(H) must 
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include the cost of estimating those parameters, as well as the length needed to encode the 

precision of each parameter. Asymptotically, for long strings of training data (large N; 

d={yi,…yN}) where precision can be ignored, the optimal code length for the maximum likelihood 

estimated parameters ( ) approaches Equation (D4) (Rissanen 1989: section 3.1).   

       (D4) 

Combining the length terms for the tree structure (T) and the estimated parameters (θ) gives:   

  (D5) 

MAX(G*/G)α requires estimation of two parameters: wG* and α (since wG = 1- wG*, it does not 

have to be separately estimated from the data). The formulation in (B10) requires grammars for 

both GUJARATI* and GUJARATI, and a decision node connecting the two trees.  The total coding 

length of MAX(G*/G)α is thus given by    

    (D6) 

Converting Equations (D5) and (D6) via Equation (D2) determines the ratio of prior probabilities 

for GUJARATI*α and MAX(G*/G)α:   

!(!"#$%$&'∗!)
!(!"# !∗ ! !)

= 𝜅 𝑁      (D7) 

where κ = 2800 . The ratio of the prior probabilities depends on the length of the string, or the 

total amount of data to be transmitted.  In order to see how factoring in prior probabilities 

influences the outcome of learning a particular lexicon that is to be learned will have to be 

specified. 
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Appendix E: 2-syllable word types 
 
Section 4 of Text 
 

Table E1. Full set of all possible two-syllable word types for stress. Final column gives number of types and hypotheses with 
which the data are consistent. G* (GUJARATI*), G (GUJARATI), P (PENULT). Forms consistent with none of the three hypotheses are 
denoted A (Arbitrary) (M is shorthand for any of the mid-sonority vowel class {i,e,ɛ,o,ɔ,u}). For two-syllable words, there are 

82, or 64 types. 
 Case 

Gujarati  
Vowel-
Template 

Example 
L > L′ 

# types 
H 

1 (ə,a) [pəɡár]>[pəɡəŕ] 1 
A 

2 (M,a) [ʃikár]>[ʃikəŕ] 6 
G* 

3 (M,ə) [díwəs]>[díwəs] 6 
G, P 

4 (a,a) [ráɟa]>[rəɟ́ə] 51 
G, G*,P 

(a,ə) [ɡádʒər]>[ɡəd́ʒər] 
(a,M) [pʰájdo]>[pʲəj́do] 
(ə,ə) [bəḱbək]>[bəḱbək] 
(ə,M) [məśo]>[məśo] 
(M,M) [lékʰe]>[lékʰe] 
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Appendix F: Competition between GUJARATI*α and MAX(G*/G)α for L′U 

Section 4 of Text 

Calculating the posterior probability ratio between GUJARATI*α and MAX(G*/G)α will first require 

setting the following parameters: α for GUJARATI*α, and α, wG*, and wG for MAX(G*/G)α.  By 

definition, the second set of parameters will be set by maximum likelihood estimation. So as to 

give GUJARATI*α the best chance of winning the same method will be used to estimate its free 

parameter α. 

 Under L′U for three-syllable words the proportions from Table 3 are used. To better 

approximate an adult-sized lexicon, the numbers are scaled up by a factor of 13, resulting in a 

total lexicon size of 6,656 words.  To simplify the calculations a two-hypothesis competition will 

be used – excluding PENULT from consideration for the time being. This yields the following 

parameter values: N = 6,656, a = 273, i = 1716, j = 1560, n = 3107, G* = i+n = 4823. 
 

 

Derivation of Maximum Likelihood α under GUJARATI*α: 

From Bayes' Theorem (A1), and the definition of Variability Hypotheses in (A8), the likelihood 

of the data under GUJARATI*α is given by    

p(d |GUJARATI *α ) = α
N−G* (1− 2α)G

*

p(d)
    (F1) 

Defining 

€ 

L = α N −G* (1− 2α)G
*

p(d), and taking the derivative with respect to α gives
  

 

∂
∂α

p(d |GUJARATI *α ) = N −G*

α
L − 2G*

1− 2α
L    (F2) 

The value of α that maximizes the probability of the hypothesis given the observed data occurs 

when the formula in (F2) is equal to zero,  
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N −G*

α
=
2G*

1− 2α
     (F3) 

N −G* − 2Nα = 0      (F4) 

 α =
N −G*

2N
      (F5) 

 
Derivation of Maximum Likelihood α under MAX(G*/G)α : 

The likelihood of d under MAX(G*/G)α is given above in (B12), and reproduced in (F6) 

 

𝑝(𝑑|𝑀𝐴𝑋 𝐺∗ 𝐺 ! = 1− 2𝛼 !𝛼!(𝑤!∗ + (𝑤! − 2𝑤!∗)𝛼)!(𝑤! + (𝑤!∗ − 2𝑤!)𝛼)! (F6) 

 

As before, in order to find the maximum likelihood estimate for α, take the partial derivative of 

(F6) with respect to α and set it to zero. (F6) is maximized, under L′U, and using the maximum 

likelihood formulae for wG* and wG in B19 and B20, for an α of approximately .026. This is 

found by plotting the log likelihood in Figure (F1). The curve reaches its maximum at the 

intersection of the dotted line. This point also corresponds to the maximum likelihood weights 

wG* = 52.5%, and wG = 47.5%. 
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Fig. F1 
Log(p(d|MAX(G*/G)) as a function of α. This curve is maximized at the intersection of the dashed lines. 

 

2-Hypothesis Competition  

The ratio of posterior probabilities for the competing hypotheses is given by: 

  (F7)
 

The likelihoods and posteriors will be very small, so logarithms are used to avoid precision loss. 
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Plugging in the Information Theoretic prior from (D7) gives 

€ 

log
p(GUJARATI*α | d)
p(MAX(G* /G)α | d)
# 

$ 
% 

& 

' 
( = log 2800 N[ ] + log(p(d |GUJARATI*α )) − log(p(d |MAX(G* /G)α ))

 

(F9)
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For GUJARATI*α under L′U  (Eq F5) 

𝛼 =
𝑁 − 𝐺∗

2𝑁 ≅ .138 

when N = 6,656, and G* = 4823. 

log[p(d |GUJARATI *α )]= log[(α )1813(1− 2α )4823]≅ −2253.1  

The log-likelihood of the data given MAX(G*/G)α can be read off of Fig (F1), giving: 

log p(GUJARATI *α | d)
p(MAX(G* /G)α | d)
!

"
#

$

%
&= 5.4− 2253.1+1526.7 ≅ −721 

The log of the posterior ratio is much less than zero, which means that the ratio of the posteriors 

is much less than 1, and MAX(G*/G)α is still the winner even with the bias towards GUJARATI*α 

from the information theoretic prior. While the description-length prior does shift the outcome of 

the competition by a few orders of magnitude (2.2×105), the discrepancy of descriptive power 

between the two different hypotheses is so large that the overall result is largely unaffected.  In 

order to balance out the lower probability GUJARATI*α assigns to the data, the ratio of the priors 

would have to be on the order of 10726!  The difference in complexity, or description length, 

between the two hypotheses, as can be seen, doesn’t come anywhere close to this value2.  

 Another way to think about Equation (F9) is in terms of competition thresholds.  For the 

Simple anti-markedness grammar to defeat the Mixed Grammar hypothesis the posterior 

probability ratio must be greater than 1 (and thus, the log posterior probability must be greater 

than 0).  Under L′U this clearly does not occur.  

                                                
2 There is at least one caveat related to the calculation of this information-theoretic prior; the value may depend on the particular 
coding scheme used.  In practice, a code length exactly equal to the negative log of the probability of a particular symbol may be 
unattainable, and the relationship in Equation (D2) becomes an approximation which may be better in some cases than others.  
Due to this limitation, it is not clear how much the exact magnitude of a result obtained with this method can be relied upon (for a 
brief discussion of this issue see, for example, Brent (1999)).  However, it can be seen that, due to the extremely large numbers 
involved, small adjustments are unlikely to significantly affect the result. 
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 To determine the lexical conditions which are favorable to the anti-markedness grammar 

the values of the parameters j and i can be varied. To simplify things keep n, N and a constant – 

which will also keep the prior probability ratio constant. For the pure anti-markedness grammar 

to win under the Bayesian evaluation metric i must be significantly greater than j. Beginning 

with the numbers for L′U and systematically decreasing j, while increasing i by the same amount 

(δ), the exact location at which the posterior probability crosses the zero point can be 

determined. This occurs at δ =1406: i = 3122, and j = 154.  This is a data ratio of roughly 20. In 

order to reject a Mixture Hypothesis where both sonority hierarchies are maintained, GUJARATI* 

must account for about twenty times more unambiguous data than GUJARATI3.   

                                                
3 An alternative to this approach is to imagine all grammars as potential mixtures, and to stipulate a prior probability distribution 
over the possible weight values.  Each grammar in this view is equally complex, but certain weight combinations may be more 
likely than others (such as the ‘simple’ 0/100% distribution over weights).  Conceptually this seems at least as reasonable as the 
current approach.  One is still left, however, with the problem of determining the prior probability distribution over the weights.  
In order to assess the outcome of learning in the absence of any influence of UG, this needs to be done in a manner which is 
independent of the linguistic problem at hand. 
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Appendix G: Lexicons 

Section 5.2 of Text 

G.1 Sampling 

For Section 5.2 a set of lexicons was created by repeatedly sampling (with replacement) from the 

full set of word types in Tables 3 and E1 at several different rates. Word type here is defined by 

the unique sequence of vowels within the word. This sampling allows for a kind of tuning of 

non-uniformity over lexicons. The lexicons are the product of the set of sampled vowel 

sequences which are randomly assigned consonants to become unique words.  However, the 

more undersampled the space of possible vowel sequences is, the more non-uniform the lexicon 

is likely to become in sonority space. All else being equal, this should occur symmetrically, such 

that lexicons are equally likely to skew in any direction. Thus, a set of 1000 such randomly 

generated lexicons will have a broader distribution, in any given parameter space, the lower the 

sampling rate. 

 First, the total number of 3-syllable and 2-syllable words for each lexicon was fixed at 

3,072, and 3,840, respectively (these numbers derive from scaling terms applied to the total 

number of 512 unique 3-syllable word types, and the 64 unique 2-syllable word types such that a 

roughly equal number of 3- and 2- syllable words result within a reasonably sized vocabulary). 

The probability over word types was uniformly distributed. For each lexicon, a certain degree of 

sampling was specified. This Degree indicated how many different word types would be used in 

the make-up of that lexicon. In the case of under-sampling, some word types were guaranteed to 

be excluded.  This could also happen with full sampling and over-sampling, as the sampling was 

done with replacement. 4 different degrees of sampling were selected, with each percentage of 

types a factor of 10 smaller than the Degree below it. Degree 1 sampled three-syllable word 
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types at 600%, and 2-syllable word types at 6000%. These numbers map directly to the 

3,072:3,840 word lexicon. Degree 2 under-sampled 3-syllable word types at 60%, but still over-

sampled 2-syllable word types at 600%. Degree 3 under-sampled each at 6%: 60%. The final 

degree, Degree 4, under-sampled at .06%:.6%. In the case where under-sampling occurred, the 

number of types were duplicated as necessary to produce the total number of required unique 

words.  For example, the Degree 3 lexicon contained at most 31 out of a possible 512 3-syllable 

word types, and 38 out of a possible 64 2-syllable word types.  For the full-sized lexicon these 

projected to the fixed 3,072, and 3,840 words, respectively. Thus there was considerable 

duplication in the represented types, and, correspondingly, duplication in the sonority profiles of 

the words in Degree 3 lexicons.  More fully sampled lexicons can be expected to demonstrate 

greater variety of types, and thus represent more fully the various sonority profiles illustrated in 

Tables 3 and E1.  

 Although the degree of under-sampling gives a measure of how skewed the type 

distributions can be expected to be for a given lexicon, it doesn’t specify the exact nature of that 

distribution.  For example, one lexicon generated with Degree 4 of under-sampling displays the 

following normalized vowel frequency distribution: a 33%, i 22%, e 16%, ə 16%, ɔ 5%, u 5%, 

ɛ 0%, o 0%. Identical with respect to degree of sampling, but very different with respect to stress 

distribution over words, is a lexicon with the following vowel frequencies (where only the vowel 

identities at each frequency level have changed) u 33%, ɛ 22%, i 16%, o 16%, ə 5%, e 0%, a 

0%. Which particular vowels appear with any particular frequency is determined by random 

selection, and differs for each of the lexicons generated.  

 The method described above also does not control the way in which the lexicons are non-
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uniform, only the degree to which they are. Although natural language lexical distributions are 

far from being universally and comprehensively characterized, it has been observed that a 

number of linguistic units tend to show a specific kind of non-uniform distribution. This 

distribution is one in which the highest frequency items are observed (in, e.g., a text sample) 

significantly more often than the next most frequent, and the largest number of different types is 

found at the lowest rate of occurrence.  This kind of distribution has been noted for word and 

morpheme token frequencies, word lengths, and syllable counts.  It has also been suggested for 

the distribution of phonetic or phonological units, in accordance with principles of articulatory 

markedness (Zipf 1949).  Generally speaking, a distribution in which the absolute frequency of 

occurrence depends on the relative frequency of occurrence is known as a Zipfian distribution4. 

A particular instantiation of a Zipfian distribution (the standard harmonic) is characterized by the 

following formula 

€ 

f ∝ 1
r

       (G1) 

which describes a dependency in which the frequency of a type (f) is proportional to its rank 

frequency (r).  In terms of the types of interest, namely vowels, this means that the second most 

frequent vowel will occur half as often as the most frequent vowel; the third most frequent vowel 

will occur one third as often, and so on.   

 Although the current sample of lexicons contains distributions that are at least as non-

uniform as the Zipfian – for a given measure of non-uniformity – there are not necessarily any 

that are non-uniform in exactly the same way.  Accordingly, a fifth set of 1000 lexicons was 

generated.  Each lexicon of this new set was Zipfian in the distribution of its vowels.  Sampling 

occurred over vowels themselves rather than sequences of vowels, but random selection 
                                                
4 Thanks to an anonymous reviewer for suggesting consideration of this type of vowel distribution. 



 29 

determined precisely which vowels corresponded to which frequency rank for each lexicon.  

 

G.2 Homophony avoidant sound change 

It should be noted that the competition GUJARATI* faces from GUJARATI is due to the existence of 

a residue of natural patterns in the post-sound change language: a certain proportion of forms 

whose surface [ə]’s were historically /ə/’s, rather than deriving from /a/’s. Consider the three-

syllable words classified in Table 3, reproduced here as Table G1 for ease of reference. The 

residual natural pattern is contained in rows 4 and 5, whereas the decisive anti-markedness 

patterns are evident in rows 2 and 3.  The difference between the rates of occurrence of these 

groups can be roughly characterized as the difference between the rates of occurrence of /a/ and 

/ə/ in Gujarati.  If the frequency of /ə/ is appreciably lower than /a/, then the frequency of words 

in rows 4 and 5, all else being equal, is analogously less than the frequency of words in rows 2 

and 3.   

Table G1. Full set of all possible three-syllable word types for stress.  Final column gives number of types and 
hypotheses with which the data are consistent. G* (GUJARATI*), G (GUJARATI), P (PENULT). Forms consistent with 
none of the three hypotheses are denoted A (M is shorthand for any of the mid-sonority vowel class {i,e,ɛ,o,ɔ,u}). 

 Case 
Gujarati  
Vowel-
Template 

Example 
L > L′ 

# types 
H 

1 (ə,ə,a) [pəkʃəpát]>[pəkʃəpət́] 21 
A 

(ə,M,a) [pəɾikʃá]>[pəɾikʃə]́ 
(a,ə,M) [tábəɖtob]>[təb́əɖtob] 
(M,ə,a) [uccʰəvás]>[eccʰəvəś] 
(a,ə,a) [ɟáɟərman]>[ɟəɟ́ərmən] 
(a,ə,ə) [páʈnəɡər]>[pəʈ́nəɡər] 

2 (M,M,a) [hoʃijáɾ]>[hoʃijəɾ́] 84 
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(a,M,M) [ʃáririk]>[ʃəŕirik] G* 

(a,M,a) [háɖohaɖ]>[həɖ́ohəɗ] 
(a,M,ə) [pʰa ̃śiɡər]>[pʰə̃śiɡər] 

3 (M,a,a) [durácar]>[durəćər] 48 
G*,P 

(M,a,ə) [mubáɾək]>[mubəɾ́ək] 
(M,a,M) [betáɭis]>[betəɭ́is] 

4 (M,M,ə) [tʃumːótəɾ]>[tʃumːótəɾ] 78 
G,P 

(ə,M,ə) [vəríʃʈʰə]>[vəríʃʈʰə] 
(ə,M,M) [kəʈóro]>[kəʈóro] 

5 (M,ə,M) [kójəldi]>[kójəldi] 42 
G 

(M,ə,ə) [kʃétrəpʰəɭ]>[kʃétrəpʰəɭ] 
6 (a,a,a) [awːánã]>[əwːəńə]̃ 239 

G,G*,P 
(a,a,M) [amdáni]>[əmdəńi] 
(ə,a,a) [resádar]>[resəd́ər] 
(ə,a,ə) [səpʰácət]>[səpʰəćət] 
(ə,a,M) [ɡʰəʈáɖo]>[ɡʰəʈəɖ́o] 
(ə,ə,ə) [əkbəńdʰə]>[əkbəńdʰə] 
(ə,ə,M) [cəkcəḱit]>[cəkcəḱit] 
(M,M,M) [iʈʰʈʰóter]>[iʈʰʈʰóter] 

 (a,a,ə) [ɟʰaɡmáɡəʈ]>[ɟʰəɡ́məɡ́əʈ] 
 

The repercussions of a large difference in relative frequency between /ə/ and /a/ can be seen in 

Table G2.  Here, three representative lexicons from each type of sampling are selected: one that 

results in a Mixture outcome, one that results in a GUJARATI* outcome, and one that results in a 

GUJARATI outcome.  As Table G2 shows, the latter two types of lexicon only occur with Degree 4 

and Zipfian lexicons, even for the lowest threshold values. However, for each of the instances 

that produce the GUJARATI* outcome /a/ is considerably more frequent than /ə/, whereas in the 

Mixture outcomes, the two vowels are much closer together in frequency.   
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Table G2. Normalized Frequencies (Rounded)/Rank Order Frequency 
Grammar 
Type 

Lexicon 
Type 

ə a e ɛ i ɔ  o u 

M
IX

TU
RE

 1 .12/2 .12/2 .12/2 .12/2 .12/2 .12/2 .12/2 .13/1 
2 .12/2 .11/3 .13/1 .11/3 .13/1 .11/3 .12/2 .13/1 
3 .11/5 .09/6 .14/2 .12/4 .15/1 .13/3 .11/5 .13/3 
4 .06/3 .11/2 .11/2 .22/1 .11/2 .11/2 .22/1 .06/3 
z 0.07/5 0.09/4 0.05/7 0.36/1 0.12/3 0.04/8 0.18/2 0.06/6 

G
U

JA
RA

TI
* 1 -- -- -- -- -- -- -- -- 

2 -- -- -- -- -- -- -- -- 
3 -- -- -- -- -- -- -- -- 
4 .16/3 .33/1 .16/3 0/6 .22/2 .05/4 0/6 .05/4 
z 0.06/6 0.36/1 0.04/8 0.07/5 0.18/2 0.12/3 0.09/4 0.05/7 

G
U

JA
RA

TI
 1 -- -- -- -- -- -- -- -- 

2 -- -- -- -- -- -- -- -- 
3 -- -- -- -- -- -- -- -- 
4 .28/1 .11/3 .17/2 .17/2 0/5 .17/2 .06/4 .06/4 
z 0.36/1 0.06/6 0.04/8 0.12/3 0.05/7 0.07/5 0.09/4 0.18/2 

 

 If lexicons in which /a/ was appreciably more frequent than /ə/ were themselves more 

likely to occur, then the random sampling assumption of the previous section would not hold, 

and the estimate for the expected numbers of GUJARATI* grammars would go up.  I can think of 

no reason why this should be true, however.  On the other hand, if the sound change a > ə were 

more likely to apply to lexicons in which /a/ was appreciably more frequent than /ə/ then the 

expected GUJARATI* numbers could also go up.  It is that scenario that is now examined. 

 There is a long-standing intuition in the field that sound changes are more likely to occur 

if they do not neutralize contrasts (Martinet 1955)5. Contrast is achieved by mapping different 

sounds to different meanings. And while this is not always a one to one mapping, the hypothesis 

is that the communicative need to reduce ambiguity limits the amount of homophony in any 

given language.  One way this limit can be maintained is by disallowing sound changes that 

would increase homophony.  When an inventory that contains both /ə/ and /a/ is reduced to 

                                                
5 Thanks to Adam Albright for bringing this to my attention. 
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one that contains only /ə/, a contrast has been removed.  Words that differed depending on 

whether they contained /ə/ or /a/ are now phonologically identical. However, if the original 

inventory contained few /ə/’s (low token frequency), the amount of neutralization this sound 

change would introduce is minimal. 

Like many of the linguistic ideas already examined, the intuition about homophony 

avoidance is hard to implement. The exact role that homophony avoidance plays in historic 

change is not known, or how the allowable level of ambiguity should be measured, or how to use 

such a measure (see Surendran and Niyogi (2006) for a discussion of these questions). However, 

it seems safe to assume that a language with no prior contrast between /ə/ and /a/ would be 

unaffected by functional pressures against neutralization. The No-Contrast language will 

therefore provide a benchmark as potentially the most likely language to undergo the sound 

change, as well as the language with the least residual data compatible only with GUJARATI (i.e. 

none).  

 For No-Contrast Lexicons, LNC, all data in Gujarati′ are consistent with the GUJARATI* 

hypothesis; GUJARATI* is the clear winner in a simple categorical framework. But, as argued 

previously, such a learner is incapable of coping robustly with conflicting data. Allowing for 

exceptions, with Variability grammars allowed into consideration, PENULTα remains a 

competitor. In this scenario (7 historic vowels, rather than 8), all 343 types of 3-syllable words 

are stressed consistently with the GUJARATI* hypothesis, while 265 are also consistent with 

PENULT.  2-syllable words provide somewhat less of an advantage to the anti-markedness 

grammar with only 3 word types that are consistent with GUJARATI* alone, at a ratio of 49 to 46. 
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 To approximate an upper bound on the probability of a pure GUJARATI* outcome further 

simulations were run. This time only the Zipfian distribution was used, and 1000 lexicons were 

generated using the 7-vowel inventory, for both 2- and 3- syllable words. Doing so resulted in a 

29.5% rate for the reversed sonority-to-stress grammar at the lowest threshold level (1.25).  In 

the other 70.5% of cases GUJARATI* fails to exceed the minimum threshold level of descriptive 

advantage over PENULT, leading to a Mixture Grammar outcome. Note that this does not take into 

account the fact that PENULT is a simpler hypothesis than GUJARATI* in information theoretic 

terms. The upshot being, that even with a non-neutralizing sound change, the anti-markedness 

outcome is not a clear and compelling winner.   

 This result cuts in the other direction as well. That is, GUJARATI faces the same 

competition from PENULT under both pre-sound change conditions, as well as natural sound 

change conditions (row 6 of Table 5). Simulations run under LNC (prior to sound change) result in 

a default GUJARATI  grammar 28.9% of the time under the 1.25 proportion threshold; the Mixture 

GUJARATI/PENULT results in the remaining 71.1% of cases. The outcome will be similar for the 

full 8-vowel inventory. Because there is such a large proportion of word types with penultimate 

stress – consistent with both hypotheses – there is typically not enough evidence to reject PENULT 

outright.  As before, a GUJARATI default only emerges when GUJARATI captures significantly 

more data than PENULT alone. 

 

 


