Towards A Domain-General Theory of Phonological Contrast

Rebecca L. Morley
The Ohio State University

November 19, 2020 Cornell Ithaca, NY (Virtually)

1

1

Phonological Theory

3

Contrast The Classical Mode	ıl:	
Words	Phonemes	Features
"bit" vs. "bead" N	/t/ vs /d/	+coronal +obstruent -sonorant -voice +coronal +obstruent -sonorant +voice
"spit" vs. "sbit" 	Lack of contrast	

Diagnostics of Contrast

Allophony

What is the underlying contrastive feature?

• /b/→[p]/#__

pat/bat:

/p/ has longer VOT than /b/, word-initially

rapid/rabid:

/p/ has longer closure duration than /b/, poststress, word medially

tap/tab:

Vowel preceding /b/ is longer than vowel preceding /p/, in coda position

/b/ ≠ [b]

 $/\chi/ \neq [b]$

Paradox 1:
phonetic symbol system
is identical to
phonological symbol system

7

7

Cues that could be exploited by listeners Word-Final stops: · duration of voicing Continuous "trade offs" · intensity of voicing Aspiration .../acoustic/articulatory/phonetic/ phonological/... • F0 contour · length of vowel formant transitions with respect to steady state duration But why does allophony occur in the first place? F1 offset frequency Paradox 2: · speed of jaw lowering Contrast should prevent allophony! jaw offset position Fitch 1981; Crowther & Mann 1992; Van Summers 1987 cf. Bailey & Summerfield 1980

Important Implications: [wake up here]

- Categorical perception does not entail a *necessarily* contrastive feature, only a possible one (when all other information is absent). See Trading Relations.
- There is a very large number of possible allophonic rules (at least on the acoustic side).
- Allophonic rules imply normalization
- The relationship between underspecification and variation implies an inverse relationship between contrast and allophony
- Specification is likely to be continuous, and not necessarily parsimonious [this is an empirical question]

13

13

Sound Change

14

The Actuation Paradox

Paradox 3

A direct result of the normalization assumption

Normalization: No Change

Lack of Normalization: Change

In collusion with the discrete sequencing assumption k+æ+t

15

15

The Actuation Paradox

Allophonic Vowel Nasalization Rule [synchronic]:

$$V \rightarrow \tilde{V} / N$$

Loss of coda nasals [diachronic]:

$$N > \emptyset / _$$
.

Paradox 3: loss of allophonic context should lead to loss of allophone

Loss of allophonic rule/predictability [synchronic]

Minimal Pair Test /V/ vs. $/\tilde{V}/$

16

Models of Sound Change

Phonetically ambiguous/outlier tokens are discarded

• As a result of competing contrastive categories

(Blevins & Wedel 2009; Wedel 2006, 2007; Tupper 2014)

• In speech mode, but not non-speech mode (Garrett & Johnson 2013)

Sometimes you normalize Sometimes you don't

- For some (neurotypical) individuals, but not others (Yu 2013)
- Except when misparsing occurs

(Kirby 2014)

17

17

Important Implications: [wake up here]

- Speech perception must involve:
 - mapping acoustic input to articulatory categories (targets)
 - Segmentation of ambiguous input
- · Lack of normalization implies lack of allophony
- Unless allophony is an emergent property of articulation
- Incremental change is possible with distributions of stored, unnormalized acoustic tokens (exemplars)

24

Speech Processing

25

Is Normalization Required?

1. Longer vowel creates expectation for following voiced (rather than voiceless) stop: ου (·))

Sounds like "coat"

Sounds like "code"

2. Nasalized vowel spliced into non-nasal syllable sounds more like lower vowel (higher F1): Krakow et al 1988

 $s\tilde{\epsilon}$ nd - \Re + $/\epsilon/$

3. Expected degree (and direction) of place-of-articulation assimilation facilitates word recognition: Gow and McMurray 2007

gzin bin , gzin dəg

>> gɪi n dəg ˌ gɪi n bin

Is Normalization Required?

- Trading Relations/Categorical Perception/(In)Variance Problem
- Expectation/Compensation/Prediction
 - No acoustic cues are absolute
 - · Classification depends strongly on other cues present, context
 - Previous input, current context, current knowledge generate predictions about upcoming material
 - listeners are highly sensitive to correlations among acoustic cues

28

Is Normalization Required?

Rather than matching abstract acoustic symbols,

speech perception can be described as choosing the optimal phonological parse, based on:

- All available contextual information
- Self-consistency

Local Optimum

- Relative feature values
- In most cases, from a small candidate set (~ 2 words)
- In most cases, involving local comparisons within a 2-3 segment window

33

33

The Model (implementation is crucial)

- Synchronic variation is the result of normal speech processing
- Sound change is present in synchronic variation
 - allophony of continuously fluctuating degree
- Allophones are emergent from the interaction of
 - articulatory specification
 - · gestural coordination
 - acoustic specification

44

The Model

• Speaker/Listeners store:

acoustic targets

check/constrain output

articulatory targets

for production to be possible

unnormalized acoustic experiences

short-term adaptation/accomodation

incremental sound change

45

45

The Model

• Speaker/Listeners store acoustic targets, articulatory targets, and unnormalized acoustic experiences

Short-term adaptation/accommodation

Incremental sound change

 Degree of specification for each acoustic feature depends on its informativity wrt the contrast

Phonological Specification

46

 $[w_1, w_2, w_3, w_4, w_{5,...}]$

The Model

Perception

 Acoustic input is evaluated by simulation, using underlying articulatory categories

Local context sensitivity — Parsing window

Avoids normalization

 Best overall acoustic similarity determines category membership

Avoids normalization

47

47

The Model

Perception

- Acoustic input is evaluated by simulation, using underlying articulatory categories
- Best overall acoustic similarity determines category membership
- Targets are directly affected by changes to the distribution of stored acoustic exemplars

Incremental sound change

Avoids actuation paradox

48

The Model

Production

 Articulatory targets are perturbed by: production error and gestural overlap of adjacent units

 Ultimate acoustic realization is constrained by degree of specification of each individual feature

Emergent Allophony

 $[w_1, w_2, w_3, w_4, w_5,...]$

49

Thank You!

50

