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Abstract 

 

This paper is an analysis of the claim that a universal ban on certain (‘anti-

markedness’) grammars is necessary in order to explain their non-occurrence in 

the languages of the world.  Such a claim is based on the following assumptions: 

that phonological typology shows a highly asymmetric distribution, and that such 

a distribution cannot possibly arise ‘naturally’ – that is, without a UG-based 

restriction of the learner’s hypothesis space. Attempting to test this claim reveals 

a number of open issues in linguistic theory. In the first place, there exist critical 

aspects of synchronic theory that are not specified explicitly enough to implement 

computationally. Secondly, there remain many aspects of linguistic competence, 

language acquisition, sound change, and even typology that are still unknown. It 

is not currently possible, therefore, to reach a definitive conclusion about the 

necessity, or lack thereof, of an innate substantive grammar module. This paper 

thus serves two main functions; acting as a pointer to the areas of phonological 

theory that require further development – especially at the overlap between 

traditionally separate sub-domains; and as a template for the type of 

argumentation required to defend or attack claims about phonological universals. 

 

 

 

Keywords: Evaluation Metric; Universal Grammar; Sonority-Based Stress; 
Statistical Learning; Sound Change; Computational Models 

 

 



 4 

1 Introduction   

One of the central goals of linguistic theory is the characterization of the set of 

universal properties of human language. Because of wide-spread surface 

dissimilarities it is generally assumed that such universals are to be found in 

deep/abstract grammatical properties.  These posited universals may reside in 

domain-general aspects of human cognition: perception, memory, or learning, or 

they may reside in domain-specific linguistic structures. Language-specific 

universals may be algorithmic (e.g., a violation-minimizing function for assigning 

grammaticality judgments), or substantive (e.g., a violable constraint against 

sequential consonants). Proposed universals may be absolute, or they may be 

better characterized as tendencies or biases.  

 One way to discover universal properties of language is through logical 

inference: given what is observed to be true of natural language as a whole, what 

must be true of the universal language endowment? A unique answer proves the 

existence of one or more universals. The jumping off point for this paper comes 

from the following intuition: without a mechanism that directly limits possible 

human languages, significantly more diversity in linguistic typology would be 

observed. Another way to frame this argument is that a curb on the results of 

‘blind’ sound change is required to explain the fact that ‘unnatural’ systems do 

not proliferate (e.g., de Lacy 2006; de Lacy & Kingston 2013; Kiparsky 2006, 

2008; Moreton 2009). The necessity of Universal Grammar follows from this if 

one assumes that there is no mechanism, or set of mechanisms, that could 

indirectly shape the typology in the necessary way. In other words, the above 

argument relies on the assumption that universals cannot be emergent from the 

cycle of language change and language acquisition. I will call this the UG-

Delimited H Principle. In fact, a plausible test of this principle has yet to be 

undertaken. The present study will attempt to do exactly that.  

  In the next section a specific case study will be introduced in order to 

illustrate what is involved in testing the UG-Delimited H Principle. The focus 

will be on the conditions under which supposedly unnatural, unobserved, and, 

specifically, ‘anti-markedness’ grammars might arise.  An anti-markedness 
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grammar is one that directly contradicts a purportedly absolute implicational 

hierarchy. It will be important to keep in mind that the question about the 

emergence of such a grammar – or indeed any grammar -- is really a question 

about two events: a sound change that gives rise to a lexicon that could have been 

generated by the grammar in question, and the induction from that lexical data, on 

the part of the learner, of that specific grammar. 

 In Section 3 the behavior of a set of learners is examined; these are 

variations on a basic statistical learner operating over a series of (more inclusive) 

hypothesis spaces.  In implementing these various learners it quickly becomes 

clear that there is a basic incongruity between the conventions of theoretical 

linguistics and the products of a linguistically naive learner. That is, it is not 

possible to map the conditional probabilities assigned to various hypotheses 

directly to an unambiguous answer regarding the likelihood of an anti-markedness 

grammar. One of the reasons for this is the lack of explicitness in the definition of 

critical linguistic terms, most notably the uncertain status of the ‘lexical 

exception’; another is the incompatibility of the tools of statistical learning with 

standard linguistic assumptions (even under probabilistic formulations). 

 In order to coerce an interpretable mapping, a set of post-hoc significance 

thresholds is set in Section 5.  Via Monte Carlo simulations over lexical vowel 

frequencies the conditions under which the learner will arrive at a grammar that is 

markedness-abiding, markedness-violating, or a mixture of the two is determined 

for this set of thresholds. For a final assessment of the likelihood of each type of 

grammar, the evidence for the sound change and the typological claim are re-

evaluated in Section 6. In Section 7 the results are summarized and discussed.  

 What this paper demonstrates is that in order to even approach the goal of 

testing the UG-Delimited H Principle many and larger questions must be 

answered.  These include questions about the exact make-up of the input to the 

learner, the learner’s hypothesis space, and the precise nature of any sound 

changes that could lead to a grammar that is predicted to be impossible. In fact, 

our collective knowledge in each of these domains is far too incomplete for any 

definitive conclusions to be drawn. The results vary considerably, depending on 
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which of a large set of possible assumptions are chosen. Thus, via computational 

modeling, the actual predictions of the theories under test are shown to be 

significantly underspecified. Ultimately, the major contribution of this work lies 

in illustrating the necessity of explicitness (explicitness to the point of 

computational implementation) in linguistic theory. The paper concludes in 

Section 8, with a discussion of the ramifications more generally for formally 

testing linguistic theories. 

 

2 The Case Study 
Although the results of this work are intended as general ones, the first step will 

be to select a particular case study: a particular hypothetical phonological system, 

coupled with a particular hypothetical sound change, resulting in a particular 

hypothetical lexicon, input to a particular hypothetical learner.  For this purpose a 

scenario outlined in Kiparsky (2008) will be adopted. This scenario is argued to 

provide compelling evidence for the logical necessity of restricting the space of 

learnable grammars. 

An Indo-Aryan language spoken in India, Gujarati is chosen as a concrete 

illustration of a sonority sensitive stress system that respects the posited universal 

implicational hierarchy; stress is preferentially assigned to higher sonority over 

lower sonority vowels, such that if a given vowel is a possible stress carrier, then 

any higher sonority vowels will also be possible stress carriers (e.g., Kenstowicz 

1996).  

 According to de Lacy (2006) there are eight vowels in Gujarati, 

corresponding to three sonority tiers: low: (ə), mid: (i,e,ɛ,o,ɔ,u), and high: (a).  

The stress system is described as conforming to the following position- and 

sonority- dependent rules1.  

(1) GUJARATI: Sonority & Position –to-Stress: 
(a) stress penultimate [a] (the most sonorous vowel) 

                                                
1 The situation is possibly more complicated than this.  Doctor (2004) lists 10 basic vowels for Gujarati, 
including low-high front and back vowels.  He also reports that nasalization, breathiness and length contrast 
on a subset of these vowels.  Furthermore, Doctor cites syllable weight and morphology as factors in stress 
assignment.  For the purposes of the general argument in this paper these complications will be ignored. 
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(b) otherwise stress ante-penultimate [a] 
(c) otherwise stress final [a] 
(d) otherwise stress penultimate mid-sonority vowel (any of  

[i,e,ɛ,o,ɔ,u]) 
(e) otherwise stress ante-penultimate mid-sonority vowel 
(f) otherwise stress the penultimate position (which must be [ə], the 

lowest sonority vowel) 
 

 Sonority-sensitive stress systems in general are easily describable within a 

standard Optimality Theoretic framework that utilizes a universal sonority scale 

aligned with a foot prominence scale. Sonority is correlated with both height and 

peripherality. The expanded scale is given as: *P-foot/ə >> *P-foot/i,u >>*P-

foot/e,o >> *P-foot/ɛ,ɔ >> *P-foot/a: where *P-foot/V is interpreted as the 

dispreference for having the vowel V as the peak of the foot, that is, the stressed 

position; since the scale is expressed negatively, the lowest ranked constraint 

expresses the strongest preference for stress (see, for example, Kenstowicz 

(1996), as well as Crosswhite (2000) and Smith (2000) for related phenomena, 

and Prince and Smolensky (1993/2004) for a more general discussion of 

prominence scales, but de Lacy (2006) for an alternative approach). These types 

of stress systems are not uncommon among the world’s languages; between them 

Kenstowicz (1996) and de Lacy (2007) list at least 13 languages whose stress 

patterns they analyze as being sensitive to vowel sonority in accordance with this 

scale. Crucially, however, the reverse type of system, in which lower sonority 

vowels are the ones that attract stress, is so far unattested, and considered to be 

impossible within some theoretical frameworks (e.g., the foregoing OT account 

which disallows any re-ranking that would change the relative order of the above 

constraints). 

 The description of the stress rules of Gujarati can be characterized as the  

GUJARATI grammar.  This grammar is a combination of sonority sensitivity, 

penultimate position bias, and avoidance of final stress. The grammar that assigns 

stress strictly to penultimate word position – PENULT – is thus a subset of the 
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GUJARATI grammar. This grammar will be considered as a competitor during the 

learning task described in Section 3.1. Of primary interest is the hypothetical 

reversed sonority-to-stress grammar, GUJARATI*, and whether it is able, or likely, 

to emerge under unrestricted sound change. These three grammars will comprise 

the preliminary Simple Hypothesis space, defined in (2).   

(2) H
i
: Simple Hypothesis Space  

(a) PENULT: Stress Penultimate vowel 
(b) GUJARATI: Sonority & Position –to-Stress [see (1)] 
(c) GUJARATI*: Reversed-Sonority & Position –to-Stress [as in (1), 

but with the sonority classes reversed (i.e., /ə/ and /a/ exchanged]. 

 The learning problem is conceptualized as the choice of a winning 

grammar from this space of competitors.  Each competitor represents a hypothesis 

about the generative process underlying the set of surface forms to which the 

learner is exposed. By definition, a given learner can only learn a grammar if it 

has been included in the hypothesis space.  The UG-Delimited H Principle 

requires GUJARATI* to be excluded from this space.  This assumes that such 

‘incorrect’ hypotheses – if included – would be the clear winners under certain 

conditions of sound change, thus producing unattested and anti-markedness 

languages.   

 

2.1 Sound Change  
The specific sound change proposed in Kiparsky (2008) is one that would render 

the highest sonority vowels into the lowest sonority vowels: a > ə. If an 

unconditioned sound change such as this went to completion, the argument goes, 

the stress pattern of Gujarati would reflect a sonority dispreference. I interpret this 

argument to rely on the following chain of logic: 

(3) UG-Delimited H Principle as applied to Gujarati case study 

Since the proposed sound change is widely attested, and since sonority-
preference languages are similarly common, there is a high probability 
that the two will co-occur.  Thus, a certain number of synchronic 
languages that are the result of this historic trajectory should be 
observable. In the absence of UG the grammars of these languages 
would reflect the changed pattern, becoming sonority-dispreferring 
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grammars (GUJARATI*). Since such grammars are, in fact, unobserved 
the existence of UG is corroborated. 

In what follows each aspect of the argument in (3) will be scrutinized in detail. 

The unsupported assumption that UG is the only mechanism capable of 

performing the necessary filtering function has already been alluded to. 

Additionally, arguments based on absence from typology are problematic for a 

number of reasons.  In the first case, the fraction of documented languages is quite 

small, making it likely that a particular instance could be missing from the sample 

by accident. Nor can rarity of occurrence be distinguished from impossibility of 

occurrence for the same reason.  

 The expectation of occurrence of the given historical trajectory (sonority-

dependent stress system, affected by a > ə sound change at some point in its 

history) relies on a statistical argument. As such, it must take into account the size 

of the sample; an actual value for the estimated probability of each of the events 

must also be provided. Since the probability of the combined event is the 

multiplicand of the two probabilities (under assumptions of independence), this 

number might prove to be small enough to render it unlikely to occur in the given 

sample. In fact, the likelihood of the proposed sound change at all must also be 

called into question. 

The argument in (3) also relies on the assumption that, despite the fact that 

vowel qualities have changed, and thus sonority, stress location does not shift. 

Low vowels are typically produced with greater duration than high vowels, and 

the ə symbol is often assigned to the most temporally reduced vowel in the 

inventory, as such shortening tends to result in a centralized realization (Lindblom 

1963; Lehiste 1970; Kondo 1994). Tokens of /a/ that are less fully realized (e.g., 

shorter) may well merge with productions of the somewhat more centralized, 

shorter /ə/’s.  That is, such tokens will be more likely to undergo the change than 

more fully /a/-like tokens.  The phonetic realization of particular /a/’s, in turn, 

should be highly correlated with whether they are stress carriers or not (as 
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stressed vowels tend to be more fully realized and longer than their unstressed 

counterparts (Lindblom 1963). Furthermore, energy is affected by vowel length, 

and sonority is at least dependent on energy, if not equivalent to it: thus the 

(universal) implicational sonority hierarchy.  By the same token, Gordon (2006) 

finds total acoustic energy to be a fairly robust predictor of stress.   

 The point is that height, length, and sonority are not independent 

dimensions of variation.  Any /a/’s which are likely to become /ə/’s (higher, 

shorter, less sonorous), are also less likely to be stress-carriers in the first place.  

Stress, therefore, has a very high probability of shifting to a different, higher 

energy location in the word during such a vowel quality shift, or even as a 

necessary precursor to such a shift.  

 However, despite the list of questionable assumptions upon which the 

argument in (3) depends, I argue that it is worth pursuing this case study. 

Although the specific sound change proposed may be implausible there could 

exist a scenario of historic change that would produce a similar result.  

Furthermore, in any scenario of sound change, the issues that arise with respect to 

learning, and selecting a winning hypothesis from a candidate space, are the same. 

They are the same, in fact, for synchronic linguistic theory as a whole, even 

disregarding the contribution of diachronic forces. One of the issues that looms 

large is the fact that grammars cannot actually be observed. The ‘observation’ of a 

particular type of grammar relies on the assumptions of the linguist, and two 

linguists may not agree on the correct analysis of a set of data. Thus, the scenario 

in (3) will be pursued, allowing an in-depth exploration of both the learning and 

the analysis problem. Additional problematic assumptions about the typology and 

natural sound change will be left aside until the end of the paper.  

 

2.2 Word Change 

The sound change a > ə, applying equally to all words of Gujarati, transforms the 

original lexicon, L, to the hypothetical future lexicon L′, belonging to the 
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hypothetical language Gujarati′. Take the example of the word mubáɾək. In 

Gujarati′ it becomes [mubəɾ́ək] (critically, in the absence of any repair involving 

a shift in the location of stress).  This form now exhibits stress on the lowest 

(rather than the highest) sonority vowel in the word.  This form could not be 

produced by the grammar given in (1). It could, however, have been generated by 

a rule that preferentially stresses lower sonority vowels (the GUJARATI* grammar).   

 The situation, however, is more complicated than this. The stress 

placement in [mubəɾ́ək] is also consistent with a penultimate stress rule (the 

PENULT grammar). Furthermore, not all words of Gujarati will exhibit the {Mid, 

High, Low} vowel sonority profile that led to this outcome. In Table 1 the full set 

of stress types is given for three-syllable words (Gujarati word examples taken 

from de Lacy (2006) and Suthar (2003)).  L′ will consist of words with stress 

placement consistent with all of GUJARATI, GUJARATI* and PENULT (row 1); words 

consistent with both GUJARATI* and PENULT (row 2); words consistent with both 

GUJARATI and PENULT (row 3); words consistent with GUJARATI only (row 4); 

words consistent with GUJARATI* only (row 5); and words whose stress is not 

predicted by any of the three grammars (row 6). 
Table 1: All stress types for three-syllable words.  

H: hypotheses from (2) consistent with stress type in that row under L′ 
 Example 

a > ə : L > L′ 

H 

1 [ɡʰəʈáɖo]>[ɡʰəʈəɖ́o] G,G*,P 

2 [mubáɾək]>[mubəɾ́ək] G*,P 

3 [kəʈóro]>[kəʈóro] G,P 

4 [kʃétrəpʰəɭ]>[kʃétrəpʰəɭ] G 

5 [háɖohaɖ]>[həɖ́ohəɗ] G* 

6 [tábəɖtob]>[təb́əɖtob] -- 
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Table 1 illustrates that L′ will contain ambiguous and contradictory evidence for a 

learner attempting to infer a generating stress grammar. These data could be 

analyzed as the product of a GUJARATI grammar, accompanied by a set of lexical 

exceptions (rows 2, 5 and 6).  Such an analysis, in principle, poses no problem for 

current markedness theories, and argues against the UG-Delimited H  Principle. 

But equally could these data be analyzed as the product of a GUJARATI* grammar, 

accompanied by a set of lexical exceptions (rows 3, 4 and 6 this time).  Thus, in 

order to proceed, it must be possible to determine which analysis would be chosen 

by a learner (equally, which analysis is ‘better’ in terms of linguistic theory).  

 In fact, synchronic stress patterns in a number of languages (if not all) 

exhibit exceptionality, sub-regularities, and inconsistencies. Liberman & Prince 

(1977), Kager (1989), Halle & Kenstowicz (1991), and Pater (2000), among 

others, are well-established analyses which make use of complex representational 

devices in order to achieve good descriptive adequacy for natural language stress 

patterns in English and other languages. However, a description of English stress 

as quantity sensitive (closed syllables heavy), rightmost extra-metricality, right-

edge binary-foot parsing, and foot-left stress (Halle & Vergnaud (1987) cited in 

Pearl (2011)) misses a considerable amount of the data. Pearl (2011) found that a 

learning algorithm parameterized for the above dimensions failed to learn the 

“correct” stress rules of English when trained on a large corpus of transcribed 

speech.  Even the best grammar was only correct on roughly 67% of the data. 

This finding suggests that the idealized generative analysis of English stress is, in 

fact, an inaccurate or incomplete description of speakers’ competence.  At the 

very least, the cited analysis requires at least 33% of all words to be labeled as 

exceptions.  

 Criteria for designating forms as exceptional are critical to the analysis 

problem. They are  “essential for making lexical phonology work” Goldsmith 

(2002). In his terms, the question is “how much redundancy (i.e. patterning) must 

there be in the lexicon to make it “worthwhile” for the lexical phonology to set up 

a rule…?” This is the same question that must be answered in order to determine 

the outcome of learning over the forms of Gujarati′ which, in turn, will allow a 
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test of the UG-Delimited H Principle.  However, there currently exists no agreed 

upon formal definition of a grammatically exceptional item. A large part of the 

remainder of this paper will be devoted, therefore, to formulating a working 

definition, and a way to implement it. In the following section a number of current 

phonological theories will be evaluated with respect to their treatment of 

inconsistent data. The strict requirements of robust learning and a substantively 

unbiased learner will lead to the adoption of stochastic grammars. Competing 

grammars of this type will then be assessed by an evaluation metric based on the 

probability with which each grammar predicts the observed data. 

 

3 The Learner 
Consider first a parameterized learning space and a learner that sets each 

parameter to either ‘on/off’, ‘yes/no’, based on observed forms (such as the 

Trigger Learner of Gibson and Wexler (1994)). A single data point which is 

inconsistent with a given parameter setting will cause that parameter to be set to 

the opposite value.  For example, a word like [am.dá.ni] would cause the 

hypothetical parameter Weight-To-Stress to be set to NO (given that the heavy 

initial syllable is unstressed). The assumption upon which such a learner is based 

is that all data are consistent; once an unambiguous data point has been 

encountered, the grammar can be set for all time.  The Trigger Learner does not 

deal robustly with exceptions – a single data point is sufficient to cause this 

learner to categorically switch hypotheses.  Faced with a finite set of randomly 

ordered inconsistent data, this learner will switch back and forth between 

hypotheses several times, finally settling on the hypothesis that is compatible with 

the last data point observed. What this means is that all learners of a language like 

Gujarati′ are not guaranteed to converge on the same stress grammar unless they 

all encounter the data in the same order.  

 The current learning problem is one in which all Simple Hypotheses 

(including those listed in (2)) are subject to numerous exceptions.  Furthermore, 

those exceptions are not random; the stress position of most words, while 
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irregular with respect to one hypothesis, is regular with respect to another. Even 

more problematic for most learning models, most of the irregular items for a 

given hypothesis can be characterized as being in direct contradiction to that 

hypothesis.  That is, this is not a case of a rule applying or failing to apply, or of a 

set of predictable affixes which apply to disjoint sets of stems. Whatever learning 

algorithm is adopted for this problem must be able to strike a balance between 

faithfully accounting for each lexical form (descriptive adequacy), and 

generalizing enough to be able to predict stress placement for novel forms 

(explanatory adequacy). 

 The treatment of exceptions has a long history in linguistic theory. In 

Chomsky & Halle (1968) exceptions are dealt with by diacritics in the lexicon 

that either indicate the non-application of a general rule for a particular 

morpheme, or call for a different, ‘minor’ rule to be applied.  Lexical Phonology 

(Kiparsky 1982) assigns different morphemes to different levels based in part on 

the order of their affixation; rules are marked as applying at a given level or not.  

Different classes of words can also be assigned to different ‘strata’ or ‘domains’ 

in Optimality Theory.  Domain-specific constraint ranking produces the observed 

differences in the behavior of different sets of lexical items (Ito & Mester 2001).  

Also within an OT framework, certain words can be underspecified in the lexicon 

(allowing markedness constraints to determine their surface forms), whereas 

others are fully specified (and thus remain unchanged at surface, due to high-

ranking faithfulness constraints) (Inkelas, Orgun, & Zoll 1997). However, in all 

the above frameworks, what belongs to which class is determined post hoc. That 

is to say, given the data, it is possible to formulate a description that achieves 

adequacy in each given framework. It cannot be known, in principle, however, 

whether descriptive adequacy could also be achieved with a different sorting of 

items into classes.  There is, similarly, no way for the grammar to determine 

which class an item belongs to when encountering it for the first time.  

 It is not unreasonable to suppose that language learners form provisional 

hypotheses during the course of learning. The learner must be able to alter or 

revise these hypotheses as necessary, as new data are encountered. Thus, each 
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new input constitutes a decision point. The learner can decide to maintain the 

current hypothesis, alter it somewhat, or discard it altogether. The first outcome 

would occur if the phonological form was consistent with the current hypothesis; 

the second or third outcome would result if an inconsistent form was encountered. 

The problem is in determining which of outcomes 2 or 3 will prevail. The learner 

has to decide if the new inconsistent form can be marked as an exception to the 

current hypothesis, or if it requires discarding the current hypothesis in favor of 

another that achieves better descriptive adequacy. This revision could involve 

switching the marks for certain previously learned forms or, in the limit, deciding 

to store all forms in the lexicon (in the absence of a sufficiently predictable rule).  

 If full lexical specification were the inevitable outcome of learning over 

the type of contradictory data of Guajrati′ then the UG-Delimited H Principle for 

this case study could be rejected. The same would be true if learning could be 

shown to result in an opaque interaction between the sonority sensitive stress 

assignment rule and a subsequently ordered synchronic rule of vowel shift: 

/a/→[ə].  That is, certain surface [ə]’s would derive from underlying /a/’s, while 

others would be underlyingly /ə/’s. This grammar requires the learner to posit a 

vowel in underlying representation that never surfaces. Since I know of no 

obvious reason to prefer either of these two outcomes, the remainder of this paper 

will focus on the possible outcomes which could motivate Kiparsky’s argument, 

allowing the most favorable test of the UG-Delimited H Principle.   

 A stochastic grammar that can update its weights allows for a stress rule 

that can change as it receives new input.  Such a grammar can decide how to 

classify new words based on the forms it already knows. The highest probability 

stress location will be the one that accords with the majority pattern, but stress 

will be assigned according to minority patterns with non-zero probability; and 

even stress locations that are incompatible with all the patterns in the data will 

have some probability of being stressed in order to account for the possibility of 

true exceptions.  
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 There exist frameworks in linguistics designed to express variability or 

gradience in acceptability which allow for fully productive grammars in this way. 

In Stochastic OT constraints are given a continuously-valued weight that can be 

perturbed during evaluation. This effectively allows constraints to switch places 

in the ranking order (Boersma 1998; see Zuraw (2010) for an application to what 

she calls “patterned exceptionality”).  Another class of phonological learning 

models selects grammars that are mixtures of multiple rules, constraints, or entire 

grammars that act on the same forms.  The Minimal Generalization learner of 

Albright and Hayes (2003), for example, constructs rules iteratively over its 

training set, compiling a collection of context-dependent transformation rules 

ranging from the very specific (applicable to a single word), to the completely 

general (applicable to all words).  Critically, rules of all levels of specificity and 

consistency are retained in the learning space, with reliability as a weighting 

factor. Within a constraint-based framework, the Maximum Entropy learner of 

Hayes and Wilson (2008) does something similar, discovering weighted 

phonotactic constraints from its input data and keeping track of a large number of 

correlations of various strengths over various units. Both models produce 

probability distributions over a set of possible outputs. The variational model 

proposed by Yang (1999, 2000) is one in which probabilities are assigned to 

grammars, and competence is modeled by a weighted distribution of multiple 

grammars, in the same way that the Expectation Maximizing learner of Jarosz 

(2006) stores probabilities, each associated with a complete constraint ranking 

and lexicon set.   

 For the purposes of this paper, it is desirable to adopt the most general 

learner, leaning as little as possible towards any particular theoretical position, 

and thus assuming no pre-existing set of properties or biases.  Four types of 

general learner will be considered. These are differentiated on one dimension by 

representational complexity, and on a second dimension, by productivity. 

‘Exceptions’ and ‘Variability’ hypotheses are Simple Hypotheses that allow for 

inconsistent data. In the former case, certain words are marked underlyingly as 

exceptions. However, this is a static class, and does not affect stress assignment to 
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novel forms. In contrast, the ‘Variability’ hypotheses allow for the Simple 

Grammar to fail to apply with a certain probability to each new word.  

 ‘Partitions’ and ‘Mixtures’ are the complex counterparts of ‘Exception’ 

and ‘Variability’ hypotheses, respectively. Complex is used here in a specific 

sense to denote the fact that Complex Grammars are made up of multiple Simple 

Grammars. Under a ‘Partition’ hypothesis each of these sub-grammars applies to 

a set of pre-specified forms. Whereas in ‘Mixtures’ the generating sub-grammar is 

selected stochastically for a given token.  

 These general learners encompass more specific theories. This can be seen 

in Table 2, where the foregoing linguistic frameworks have been sorted into 

equivalence classes. As stated above, ‘static’ hypotheses that limit exceptions to 

those known beforehand are not sufficient to model the learning problem, and 

thus neither Exception nor Partition Grammars will be considered further. In other 

words, despite the other ways in which these theories may differ from one 

another, all those listed in the corresponding cells are eliminated for the same 

reason of non-generality. In section 3.2 the fully general stochastic Variability and 

Mixture Hypotheses will be implemented in a computational framework that 

allows for the grammars to be tested against each other as the ‘best’ generator of 

the observed data. 
Table 2. 4-way hypothesis space distinction by complexity, then productivity. The ‘Equivalence Class’ 

column lists the linguistic theories with the corresponding degree of productivity and complexity. 

 Hypothesis Lexical Items Novel Items Equivalence 
Class 

Unpatterned Exceptions 
‘Exceptions’ Simple Grammar Marked 

exceptions 
Simple Grammar Chomsky & 

Halle (1968) 
Inkelas, Orgun 
& Zoll (1997) 

‘Variability’ Simple Grammar 
+ Random Term 

Random 
application 
parameter 

Hi applies with 
probability 1- α; 

random output with 
probability α 

 

Patterned Exceptions 
‘Partition’ Collection of 

Simple 
Grammars 

Marked as 
taking 

Grammar n 

Majority grammar (?) Kiparsky(1982) 
Ito & Mester 

(2001) 
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‘Mixture’ 
 

Collection of 
weighted Simple 
Grammars/rules/

constraints 

Weights of 
each 

grammar/rule/
constraint 

Hi
α  applies with 

probability wi 
Boersma (1998) 

Zuraw(2010) 
Yang(1999) 
Jarosz(2006) 

Set of possible outputs 
with associated  

probabilities 

Albright & 
Hayes (2003) 

Hayes & 
Wilson (2008) 

 

3.1 Bayesian Inference 

The learner’s objective is to determine the grammar of stress assignment in 

Gujarati′ based on observation of a set of stressed lexical items, here labeled as L′. 

The learner is assumed to have knowledge of the phonological form of each word, 

to perceive the location of stress unambiguously, and to be aware of the relative 

sonority of the vowels in their inventory.  Crucially, however, this learner has no 

preset parameters, no knowledge of relative markedness, and no UG-based prior 

preference for certain grammars. The learning task is conceptualized as a 

competition between various stress-assigning hypotheses. Each hypothesis is 

assigned a score based on how well it individually accounts for L′. The winner is 

determined based on this score. Of particular interest is the grammar that 

represents an anti-markedness outcome. If this grammar can be shown to win then 

part of the argument in (3) for the UG-Delimited H Principle is supported. The 

next step, therefore, is to decide on the score that will be used to determine the 

winning grammar. 

 Numerous evaluation metrics are possible for calculating this score. Under 

the most stringent requirements for descriptive adequacy, the winning hypothesis 

must correctly predict all words. Explanatory adequacy is only considered for the 

set of hypotheses that pass this first criterion (see Chomsky 1965; Chomsky & 

Halle 1968). In practice, however, this is too stringent a requirement, especially in 

the present case where each Simple Hypothesis fails to correctly predict stress in a 

non-trivial number of words. Instead, each hypothesis can be given one score for 

its ‘degree of descriptive power’, and another for its ‘degree of explanatory 

power’.  
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 It turns out that a general-purpose algorithm for combining these two 

scores is readily available. The two linguistically-based measures map relatively 

transparently to a widely used mathematical framework for learning: Bayesian 

inference (e.g., Kemp, Perfors & Tenenbaum 2007; Tenenbaum et al. 2006; Xu & 

Tenenbaum 2007; Chater et al. 2006; Kording & Wolpert 2006; Gopnik et al. 

2004; Kersten & Yuille 2003; Tenenbaum & Griffiths 2001).  Under this 

mapping, descriptive power is defined as the probability with which a given 

hypothesis predicts the observed set of data [p(h|d)]; explanatory power as the 

probability of the hypothesis itself [p(h)]. The evaluation metric multiplies the 

two quantities in the following expression that derives from basic principles of 

probability theory. This relationship is known as Bayes’ Theorem, and is given in 

(4).  

€ 

p(h | d) =
p(d | h)p(h)

p(d)
            (4) 

 The resulting score is defined as the probability with which the data 

predict each hypothesis. One way to determine the winning hypothesis is to 

simply calculate the ratio of p(h|d) for each pair of hypotheses. This method also 

eliminates the necessity of determining p(d); as it is constant across the hypothesis 

space, it cancels out in the ratio2.  

 For the problem at hand the members of d are stress assignments 

corresponding to each of the words of the lexicon L′. The conditional probability 

of a particular stress assignment for a given word, di, under hypothesis h, is more 

properly written as p(di|h,yi), where stress assignment (as can be seen from Table 

1) depends on the particular word type yi (or underlying, unstressed form). As is 

usual, it will be assumed that the conditional probability of each surface stressed 

form is independent of any other.  The probability of the set d given h and y can 

then be expanded as the product of the probability of each stressed surface form, 

given a particular grammar. 

  

                                                
2 This ratio score is also known as the Likelihood Ratio test, a statistical tool for determining which model 
provides a better fit of the data (e.g., Neyman & Pearson 1933). 
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3.2 The Hypothesis Space 

The proper characterization of the hypothesis space is arguably the most complex 

problem that will be encountered in this paper.  Therefore this section is rather 

long and mathematically intensive. In order to make the argumentation as clear as 

possible most of the derivations are confined to Appendices A and B. 

Additionally, implementation will be broken up into several stages in order to 

gain a sense of the behavior of the learning function.  At each stage the current 

hypothesis space will be assessed as to whether or not it exhibits appropriate 

behavior with respect to the language learning task.  

 What will be shown in this section is that grammars that treat exceptional 

stress placement as a random function (Variability Grammars) offer little 

improvement in descriptive power over Simple categorical grammars (such as 

those in (2)).  Grammars that determine stress placement via a random (weighted) 

selection of generating hypothesis (Mixture Grammars), on the other hand, can 

achieve much better descriptive power.  In fact, as long as the weights can be fit 

from the data, Mixture Grammars are guaranteed to equal or exceed the 

descriptive power of any Variability or Simple Grammar.  If the winner depends 

only on descriptive power, then Mixture Grammars will win.   

 Mixture Grammars are capable of fitting the data more closely than the 

other two types of grammar, and, concomitantly, they are more complex. To 

complete the analysis, the effect of this increased complexity will be calculated by 

assigning an explanatory power score to these hypotheses. Explanatory power 

will be calculated based on complexity, or hypothesis length.  The higher the 

complexity – longer the description length – , the less explanatory power. As this 

calculation depends on the amount of data being learned, this will lead directly to 

consideration of the lexicon itself in Section 5.2.  

 There is no principled reason to assume that no new forms encountered by 

a speaker/learner will be exceptional. Therefore all hypotheses must be able to 

handle such forms.  Effectively, what this means is that each hypothesis must 

predict the occurrence of such forms with non-zero probability. In terms of 

production, such hypotheses will assign different stresses with differing 
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probabilities. This will allow them to closer approximate the actual distribution. 

These requirements are exactly what motivated the introduction of ‘Variability’ 

and ‘Mixture’ hypotheses in Table 2. Instantiations specific to the current case 

study are given in (5). These Variability Hypotheses are the counterparts of the 

Simple Hypotheses in (2). Variability Hypotheses are predicated on the 

assumption that there is a single majority rule of stress assignment, but that there 

exists a non-zero probability that stress might be assigned by some other rule.  In 

this case, the ‘exceptional rule’ is taken to be random assignment of stress. 

(5) Hα: Variability Hypothesis Space 
(a) PENULTα: Stress Penultimate vowel, but with probability α of 
 stress in each of other two possible locations 
(b) GUJARATIα: Sonority & Position –to-Stress, but with probability α 
 of stress in each of other two possible locations 
(c) GUJARATI*α: Reversed-Sonority & Position –to-Stress, but with 

probability α of stress in each of other two possible locations 
 The calculation of descriptive power for the hypotheses in (5) will depend 

strongly on the value chosen for α. However, it can be shown that the choice of 

winning hypothesis does not depend on the total amount of data, or the number of 

exceptions to the dominant hypothesis3. The only other number that affects the 

ratio score is the difference in number of exceptions between the competitor 

hypotheses. To illustrate this dependence, the problem is simplified somewhat to 

consider only two competitor grammars: GUJARATI*α and GUJARATIα. For 

convenience a single α value will be used for both hypotheses. In the special case 

where the difference in number of exceptions between the two hypotheses is a 

single word (the difference in number of words belonging to (Rows 3 & 4) versus 

(Rows 2 & 5) of Table 1), the ratio score reduces to: 

 

                                                
3 To improve learning of difficult-to-set parameters Pearl (2011), and Pearl and Weinberg (2007), have 
proposed consideration of unambiguous data only.  The repercussions of allowing different types of 
ambiguous data into the learner’s input is also examined in Pearl and Lidz (2009). This approach is, 
unfortunately, unproductive in the current case. Typically, Bayesian learning research focuses on the 
subset/superset problem.  Does the learner choose the most specific hypothesis that fits their training data, or 
the most general, or something in between? Such a learner is only given data that are equally consistent with 
more than one grammar. With data that are consistent with mutually exclusive grammars, excluding 
ambiguous data makes no difference. 
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€ 

p(Gujarati*α | d)
p(Gujaratiα | d)

=
(1− 2α)
α

      (6) 

 

See Appendix A for the full derivation of Equation (6). As α gets smaller, this 

ratio gets larger – meaning that the less likely exceptions are, the more a single 

one counts against a given hypothesis. For an α in the middle of the range (=1/6), 

a GUJARATI*α with one fewer exception than GUJARATIα is the winner by a factor 

of 4. The ratio also grows exponentially by the difference in exceptions between 

the two hypotheses.  Although inconsistent forms are now allowed, these 

exceptional data are so dispreferred by the Variability Hypotheses (assigned such 

a low probability) that the hypothesis with the fewest observed inconsistencies 

will always emerge as the winner – by an apparently insurmountable margin4.   

 In fact, analogously with Simple Hypotheses, failure of descriptive 

adequacy still comes down to a single word – one treated as an exception by one 

hypothesis, but as non-exceptional by the other. This could be an acceptable result 

under the following two conditions: exceptions are truly random, and all possible 

competitors have been included in the hypothesis space.  However, neither of 

these conditions is met. What the Variability Hypotheses ignore is the fact that 

exceptional stress placement is not completely arbitrary.  Mixture Hypotheses 

allow the grammar to capture the patterning of the exceptional-stress words. 

(7) H
1jk
α: Mixture Hypothesis Space 

Stress is assigned by Hi
α, with probability wi ; by Hj

α, with probability wj; 

or by Hk
α with probability wk 

Using Variability Hypotheses as the component hypotheses allows Mixture 

Grammars to remain robust in the face of forms that are exceptions to all sub-

hypotheses, while capturing the fact that certain forms are entirely consistent with 

one (and only one) of the component hypotheses. The Mixture Hypotheses 

defined in (7) assign stress based on the stochastic selection of one of the simple 

                                                
4 This is true even for a different classification technique known as Optimal Bayes, which retains all 
hypotheses, assigning them weights determined by how well they predict a set of training data.  See 
Appendix C for details.  



 23 

sub-hypotheses. This means that identical inputs will not always be stressed 

identically.  On average, the likelihood of a given stress location is given by the 

probability of that location receiving stress under all component sub-hypotheses. 

Effectively, a set of candidate outputs with associated weights are generated for 

each input. Such weights can be interpreted as degree of well-formedness, and/or 

taken to correspond to variable stress placement. Thus, any candidate output with 

non-zero probability can be taken as a possible production of the speaker 

possessing a Mixture Grammar. Whether such variability applies at the lexical 

level or the word-type level depends on whether one assumes that learners learn a 

single ‘correct’ stress location for a subset of items or not.  

 In what follows certain types of Mixture Grammars will be selected for 

comparison in order to illustrate how their inclusion drastically changes the 

learning results. What will be found is that every time the complexity of a 

hypothesis is increased in order to increase its descriptive power it becomes the 

new winner. This is because there is currently nothing that penalizes complexity 

in hypotheses. Excluding Mixture grammars altogether from the candidate space 

is one way to accomplish this.  Functionally, this amounts to assigning an 

explanatory power score of zero – such hypotheses are not considered to be valid 

linguistic hypotheses. This is a possible position to hold, but it must be justified 

on independent grounds, and it must be formally expressible. In general, linguistic 

theory must decide the appropriate criterion level for explanatory adequacy.  This 

will be discussed in Section 5.1. 

 If Mixture Grammars are, in fact, excluded from the hypothesis space then 

the learner must pick a single Simple generating grammar. Under this scenario, 

the grammar with the fewest exceptions will always be selected.  It doesn’t matter 

if over half the data are exceptions for that grammar, as long as there are more 

exceptions for every other Simple Grammar.  In the case where two grammars 

have exactly the same number of exceptions there will be a tie.  But once one 

grammar gains even a single word advantage the second grammar is effectively 

discarded; it is unproductive, and plays no role in determining stress for novel 

words.  There is no way to express the fact that two grammars have 
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approximately the same number of exceptions and should both be retained as 

generators of stressed forms. Mixture Grammars are capable of expressing this 

scenario, as well as any other distribution of component grammars. 

 The Mixture Grammar that expresses a tie between the two contradictory 

grammars is defined as an equal mix of GUJARATI and GUJARATI*. This grammar 

will be referred to as NO-DIFF(G*/G)α,  the ‘no difference’ hypothesis. A tie 

means that it is as likely for any given lexical form to have stress consistent with 

GUJARATI as with GUJARATI*. In terms of production, it is equally likely that stress 

will be assigned by the GUJARATI  grammar or by the GUJARATI* grammar. It is 

straightforward to write down the mathematical expression for the probability that 

NO-DIFF(G*/G)α assigns to any stress location for a given word type. All possible 

stress locations within a given 3-syllable word type fall under one of three cases: 

i) GUJARATI*α and GUJARATI α  both assign high probability to that location ii) one 

of the two assigns high probability, and the other assigns low probability, to that 

location iii) both hypotheses assign low probability to that location.   

 For example, take the 3-syllable word /ʃəririk/. Stress on the first syllable 

corresponds to Scenario ii: GUJARATI*α assigns high probability to this stress 

location, but GUJARATIα assigns low probability; stress on the second syllable also 

corresponds to Scenario ii: this time GUJARATI*α assigns low probability to the 

stress location, and GUJARATIα assigns high probability. Stress on the third syllable 

corresponds to Scenario iii: neither hypothesis assigns high probability to this 

stress location. For the word /əwːənə/̃, by comparison, stress on the first and third 

syllable both fall under Scenario iii, while stress on the second syllable 

corresponds to Scenario i: both hypotheses assign high probability to this stress 

location. See Appendix B.1 for the mathematical formalism. 

 In a hypothesis space that contains only GUJARATI*α and GUJARATIα, a 

difference of even a single ‘exception’ between the two grammars produces an 

overwhelming winner. For a three-member hypothesis space that includes NO-

DIFF(G*/G)α this outcome changes. Now, for the Simple Variability hypothesis 

GUJARATI*α  to win it must do “significantly” better than GUJARATIα; it must do 
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better than the hypothesis that assigns output probabilities as though GUJARATI* 

and GUJARATI  are equally good at describing the data. When the ratio of  

descriptive power for the two hypotheses is equal to one, GUJARATI*α and NO-

DIFF(G*/G)α tie (continuing to assume, for the moment, that all hypotheses have 

identical explanatory power). The set of parameter values for which this ratio is 

greater than 1 are those under which GUJARATI*α wins.   

 Let the variable m represent the ratio of the parameters i and j, where i is 

defined as the number of forms that are exceptions for GUJARATIα, but not for 

GUJARATI*α, and j is defined as the number of forms that are exceptions for 

GUJARATI*α, but not for GUJARATIα (in Table 1, i  is given by the total number of 

words belonging to Rows 3 & 4; j by the number belonging to Rows 2 & 5). For 

values of i/j  falling above the curve in Figure 1, GUJARATI*α is the winner in the 

hypothesis space containing GUJARATI*α, GUJARATIα, and NO-DIFF(G*/G)α. See 

Appendix B.1 for the derivation of this function.  

 An α value of 1/3 (dashed line in Figure 1) means that word stress is 

assigned completely by chance. A more plausible α value is perhaps half of that. 

For values of α less than 1/6, Figure 1 shows that the anti-markedness grammar 

(GUJARATI*α) can only win if i is more than twice as big as j. The same criterion 

holds, of course, for GUJARATIα: j must be more than twice as big as i in order for 

it to defeat NO-DIFF(G*/G). 
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Fig 1 

Ratio of unambiguous data (m=i/j) as a function of α for a two-hypothesis space.  
For a given α, the No-Diff Hypothesis is rejected for points falling above the curve.  

 

 Thus, with a broader consideration of the hypothesis space, the pure anti-

markedness grammar (or any other Simple Grammar) is no longer very likely to 

emerge as the winner.  In fact, in can be shown that there is a particular type of 

mixture grammar that will always win any competition with GUJARATI*α. Rather 

than assigning equal weights to its component grammars, this hypothesis assigns 

weights based on the proportions of each stress type observed in the data5. This is 

similar to the way responsibility for a given output would be apportioned to a set 

of weighted constraints in a probabilistic OT framework (see, e.g., Goldwater & 

Johnson 2003; Boersma & Hayes 2001).  

 Setting the weights such that the Mixture Grammar fits the known data as 

closely as possible results in the class of what will be called ‘Maximum 

                                                
5 This formalization differs from the Optimal Bayes classifier in that the weights, in that framework, are 
specified by the posteriors, which are calculated individually for each hypothesis, with no reference to the 
rest of the space, or the sense of a partition of responsibility based on how often hypotheses agree. That is to 
say, in the Bayes’ Optimal mixture, the weight of H reflects how well H all by itself can explain the data. The 
Mixture hypothesis effectively counts the successful predictions of all hypotheses without penalizing a given 
component hypothesis for getting forms wrong. 
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Likelihood’ grammars6. MAX(G*/G)α is defined analogously with NO-

DIFF(G*/G)α, with the difference being that the weights on the sub-hypotheses are 

free to vary. Since the weights are no longer guaranteed to be equal, there are 

four, rather than three, relevant stress scenarios to be considered.  However, it can 

be readily seen that substituting .5 for both weight values reduces MAX(G*/G)α to 

NO-DIFF(G*/G)α (see the derivation provided in Appendix B.2). 

 The Maximum Likelihood Grammar has a higher descriptive power score 

than any other hypothesis considered so far7.  In fact, under the assumption of 

uniform explanatory power, GUJARATI*α cannot do better than MAX(G*/G)α.  This 

is because MAX(G*/G)α always sets its weights so as to maximize descriptive 

power over the training data, and has more degrees of freedom, and thus more 

flexibility in doing so. GUJARATI*α is actually a special case of MAX(G*/G)α, and 

the two hypotheses are identical when there are no unambiguous data in support 

of GUJARATIα. Therefore, the best outcome for the anti-markedness grammar is a 

tie (see Appendix B.2).    

 However, GUJARATI*α can be given a chance of winning if MAX(G*/G)α is 

handicapped in some way.  Informally, MAX(G*/G)α and GUJARATI*α can be seen 

to differ in a basic way related to the number of parameters and rules they must 

each keep track of.  Ignoring this difference implies that the two hypotheses are a 

priori equivalently acceptable to the learner as candidate grammars.  If, instead, 

the learner has some bias towards the less complex, or shorter hypothesis, this can 

                                                
6 In machine learning terms, such grammars over-fit the data.  That is, they do not allow for the possibility of 
noise in the signal, and thus have the potential to do poorly with novel data when those are different in any 
way from the training data.  Throughout the paper it has been assumed that all data are part of the signal, and 
thus should be learned veridically. However, one can think of words that do not conform to a majority 
grammar as a type of ‘noise’ that obscures the general pattern.  The problem in doing so is the exact same 
problem encountered when trying to explicitly formulate linguistic descriptions, or to define a learning 
mechanism that will produce a consistent and plausible result.  There is no way to decide a priori – in the 
absence of UG – what constitutes ‘noise’, and what ‘signal’.  The MAX class of hypotheses can be 
handicapped to prevent over-fitting, but within the Bayesian framework, and with the extreme probability 
distributions, that handicap would have to be very large.  See the remainder of the discussion on information 
theoretic priors in Appendix D. 
7 Of course, one can do still better if the ‘maximum likelihood’ hypotheses are tailored to individual word 
types.  This is because the stress distribution varies for different vowel combinations.   The best one can do is 
conditioning on individual words, that is, straighforward memorization, which will result in zero error over 
the observed data. However, this strategy leaves the learner without any explicit mechanism for deciding 
stress placement for novel words – without a true grammar.  Therefore, this possibility will be excluded from 
further consideration.  
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be reflected in the explanatory power term.  This bias can be formally defined 

using the information-theoretic notion of coding cost.  Within this framework, the 

ratio of explanatory power for the two hypotheses is estimated by the following 

equation (see Appendix D for the derivation). 

p(GUJARATI *α )
p(MAX(G* /G)α )

=κ N      (8) 

In Equation (8), κ is a constant on the order of 103, reflecting the greater 

complexity of the Mixture Hypothesis. This ratio depends on the total amount of 

data, N, as does the ratio of the descriptive power.  In order to determine under 

exactly what conditions GUJARATI*α will beat MAX(G*/G)α it will be necessary to 

specify a particular lexicon that is to be learned.  

 

4 The Lexicon 
Table 1 provides the set of word types that are relevant to the analysis; what it 

does not provide are the relative proportions of those types.  The outcome of 

learning, however, depends very strongly on the actual proportions in the original 

lexicon. To achieve a general result, several possible lexicons will be considered 

in section 5.2. For now, however, a single member of that set will be chosen in 

order to clearly illustrate the behavior of the learning algorithm.  That lexicon is 

the one in which all word types occur in equal proportions: the uniform lexicon: 

(LU > ) L′U.  

 Maintaining the assumption that consonants are irrelevant to stress 

placement, each word of LU  can be represented as a sequence of vowels. 

Furthermore, since there are only three sonority classes, those representations can 

be further reduced to a sequence from the set {ə, a, and M}, where M is any of the 

vowels {i,e,ɛ,o,ɔ,u}. Restricting the analysis to three-syllable words for 

simplicity generates 83, or 512 distinct types (from an eight vowel inventory).  

Table 3 is an expansion of Table 1, providing the total number of word types for 

each stress scenario. The ‘Case’ column of Table 3 contains the exhaustive list of 
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sonority profiles. The ‘# Types’ column contains the count of words with a given 

sonority profile, but a unique sequence of vowels. The set of sonority profiles is 

divided up into six classes of words, determined by which Simple Hypotheses 

those forms are consistent with with respect to stress placement (see Appendix E 

for the analogous table for two-syllable words). 

 
Table 3. Full set of all possible three-syllable word types with respect to stress.  Final column 
gives number of types and hypotheses with which the data are consistent. G* (GUJARATI*), G 
(GUJARATI), P (PENULT). Forms consistent with none of the three hypotheses are denoted A 

(Arbitrary) (M is shorthand for any of the mid-sonority vowel class {i,e,ɛ,o,ɔ,u}). 
 Case 

Gujarati  
Vowel-
Template 

Example 
L > L′ 

# types 
H 

1 (ə,ə,a) [pəkʃəpát]>[pəkʃəpət́] 21 
A 

(ə,M,a) [pəɾikʃá]>[pəɾikʃə]́ 
(a,ə,M) [tábəɖtob]>[təb́əɖtob] 
(M,ə,a) [uccʰəvás]>[eccʰəvəś] 
(a,ə,a) [ɟáɟərman]>[ɟəɟ́ərmən] 
(a,ə,ə) [páʈnəɡər]>[pəʈ́nəɡər] 

2 (M,M,a) [hoʃijáɾ]>[hoʃijəɾ́] 84 
G* 

(a,M,M) [ʃáririk]>[ʃəŕirik] 
(a,M,a) [háɖohaɖ]>[həɖ́ohəɗ] 
(a,M,ə) [pʰa ̃śiɡər]>[pʰə̃śiɡər] 

3 (M,a,a) [durácar]>[durəćər] 48 
G*,P 

(M,a,ə) [mubáɾək]>[mubəɾ́ək] 
(M,a,M) [betáɭis]>[betəɭ́is] 

4 (M,M,ə) [tʃumːótəɾ]>[tʃumːótəɾ] 78 
G,P 

(ə,M,ə) [vəríʃʈʰə]>[vəríʃʈʰə] 
(ə,M,M) [kəʈóro]>[kəʈóro] 

5 (M,ə,M) [kójəldi]>[kójəldi] 42 
G 

(M,ə,ə) [kʃétrəpʰəɭ]>[kʃétrəpʰəɭ] 
6 (a,a,a) [awːánã]>[əwːəńə]̃ 239 

G,G*,P 
(a,a,M) [amdáni]>[əmdəńi] 
(ə,a,a) [resádar]>[resəd́ər] 
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(ə,a,ə) [səpʰácət]>[səpʰəćət] 
(ə,a,M) [ɡʰəʈáɖo]>[ɡʰəʈəɖ́o] 
(ə,ə,ə) [əkbəńdʰə]>[əkbəńdʰə] 
(ə,ə,M) [cəkcəḱit]>[cəkcəḱit] 
(M,M,M) [iʈʰʈʰóter]>[iʈʰʈʰóter] 

 (a,a,ə) [ɟʰaɡmáɡəʈ]>[ɟʰəɡ́məɡ́əʈ] 
 

As illustrated previously, the word [mubáɾək] in Gujarati becomes [mubəɾ́ək] 

in Gujarati′, providing equal evidence for GUJARATI* and PENULT. Its three vowels 

are (u,a,ə), which corresponds to the stress template (M,a,ə). The hypothetical 

Gujarati word [mebáɾək] has a different set of vowels, but is also a member of 

that stress template, meaning stress will occur in the same location – the 

penultimate /a/, becoming a penultimate /ə/ in Gujarati′. The hypothetical words 

[bumáɾət] and [sebáɾəm] also belong to this set – changes to the consonants in a 

word will not affect stress placement. The same is true for words sharing the 

vowel template (M,a,M), such as the word [betáɭis], also in Row 3. In total there 

are 48 3-syllable word types (allowing for all values of M) that are ambiguous 

with respect to their generating grammar in exactly this way.  

  The Uniform Lexicon is defined as maintaining the ratio of types from 

Table 2 within an adult-size vocabulary of unique words. Scaling the 512 word 

types by a factor of 13 yields a reasonably sized lexicon of 6,656 words. This 

lexicon is used to calculate the winner of the competition between GUJARATI α, 

GUJARATI*α, and MAX(G*/G)α (momentarily excluding PENULT for the sake of 

simplicity). This lexicon and hypothesis space is defined by the following 

parameter values: the number of words consistent with both hypotheses, n = 3107; 

the number of words consistent with neither hypothesis,  a = 273; the number of 

words consistent with only GUJARATI*, i = 1716; the number of words consistent 

with only GUJARATI, j = 1560. α and w are set to the maximum likelihood 

estimates over the Uniform Lexicon. The information-theoretic explanatory 
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power ratio given in (8) – with an N of 6,656 –, boosts the combined ratio score 

for GUJARATI*α  by about 5 orders of magnitude. However, the descriptive power 

ratio is so skewed to MAX(G*/G)α under L′U (on the order of 10726!) that this makes 

effectively no difference (compare the maximum descriptive power of 

MAX(G*/G)α in Fig. F1 to the descriptive power of GUJARATI*: 𝛼!!!∗(1− 2𝛼)!∗, 

for α ≈.138,  in Appendix F). The result can be conceptualized, paralleling earlier 

discussion, as a significance level.  It can be shown that, in order to reject a 

Mixture Hypothesis where both sonority hierarchies are maintained, GUJARATI* 

must account for about twenty times more unambiguous data than GUJARATI.   

 

5 Likely Input and a Reasonable Learner 

This paper began with categorical hypotheses that tolerated no exceptions (see 

(2)). These were quickly seen to be inadequate for fully capturing naturalistic 

language data.  Once variable hypotheses were allowed into consideration, 

however, there was no obvious reason for limiting their capacity to reflect the 

underlying distribution.  The Mixture Grammar with weights fit to maximize 

descriptive power over L′ was seen to win under a large range of possible values 

for i/j in L′. This grammar is exceptionless in the sense that all forms contribute to 

the final weighting of its component hypotheses8. 

 The overwhelming advantage to the Maximum Likelihood Mixture 

hypothesis is a result of the simple statistical learning architecture represented by 

the Bayesian learner. However, with an evaluation metric that also factors in 

explanatory power, there still exists a narrow range of values for which the 

Simple Variability Grammar can win the competition. It is straightforward to 

construct such a scenario. Start with a 6,656 word lexicon in which 3122 words (i) 

are consistent with only GUJARATI*, 3107 (n) are ambiguous (consistent with both 

GUJARATI* and GUJARATI), and 273 (a) are consistent with neither hypothesis.  For 

                                                
8 In fact, there are no exceptions unless they are exceptions for both grammars.  These are the datapoints 
designated ‘(A)rbitrary’ stress in Table 3 (row 1). One can determine the maximum allowable number of 
these exceptions that can be tolerated and still allow this particular Mixture Grammar to win; the calculation, 
however, would involve consideration of additional hypotheses and is not as directly relevant to the 
discussion as are datapoints which are exceptional under only one of the two component grammars of the 
Mixture. 
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this set of parameter values, the absolute maximum allowable value for j is 154; 

Thus, the simple Variability hypothesis GUJARATI* results when there are fewer 

than 155 forms (j) that are consistent only with GUJARATI (exceptions to 

GUJARATI*) (and for the given values of N, n, i, and a). Once j reaches 155, 

however, words that were formerly ‘exceptions’ become regular outputs of the 

GUJARATI α sub-grammar contained within the winning Mixture Grammar. For the 

case of the uniform lexicon  L′U , j is much larger than 155, and the Mixture 

Grammar is the clear winner, specifically, the Mixture Grammar that assigns 

stress according to GUJARATI α approximately 47.5% of the time; and, according to 

GUJARATI*α approximately 52.5% of the time (see Appendix F).  

 It was necessary to explore the hypothesis space in this manner because it 

was not clear at the start of this simulation what the outcome of learning would 

be. In the absence of principled reasons (independent from the theory under test) 

for restricting the learner’s hypothesis space, to do so is to prejudice the outcome. 

Equally dangerous, such a move makes the learning problem appear less complex 

than it actually is.  Whereas the foregoing discussion has hopefully brought ought 

the true complexity of the problem. 

 It was necessary to tackle this difficult problem in order to answer our 

original question: given a well-behaved stress system and a sound change of a 

certain type, what kind of stress system results? If it can be shown that an anti-

markedness grammar is the inevitable result (stress on lower sonority vowels in 

preference to higher) then there must be some other mechanism to prevent it (and 

all other anti-markedness grammars that could result from similar historical 

trajectories). This extra mechanism is required under the assumption that such 

grammars are entirely non-existent in languages of the word. If both things are 

true, the UG-Delimited H Principle is supported. Alternatively, if anti-

markedness grammars do not inevitably result from learning, then it cannot be 

argued that some other mechanism is required, and the UG-Delimited H 

Principle is not supported.  

 Despite the fact that the chain of reasoning above is relatively easy to 

state, and logically consistent, there is more than one problem with testing it 
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explicitly, several of which have already been discussed. An additional problem 

that surfaces at this point in the analysis is that ‘anti-markedness grammar’ is not 

strictly enough defined. It seems to be assumed that the grammars in question are 

deterministic, categorical, and exceptionless. But the actual data over which the 

grammar must be learned do not support hypotheses of that kind. The preceding 

section demonstrates that Simple Variability Hypotheses should rarely prevail 

(requiring a narrow range of lexical conditions). However, the theoretically 

dispreferred GUJARATI* comprises a subset of the winning Mixture Grammar. 

Quite likely, this Mixture Grammar would also be banned by proponents of the 

UG-Delimited H Principle. The fact that it is the clear winner under the 

foregoing analysis, however, does not necessarily provide support for that 

principle. Our question has not yet been answered – once again, there are 

additional nuances of the problem to take into account.  

 Before the typological status of Mixture Grammars is taken up in sections 

6 and 7, a new set of results will be derived from a more sophisticated model. 

Alternatives to the threshold level derived in section 4 that may have more 

psychological validity will be considered. The effect of lexicon on outcome will 

be modeled in section 5.2 over a wide range of possible lexicons. In section 6 

results will be derived from treating the probability of the sound change as a 

function of lexical contrast. Finally, the phonetic component of the problem will 

be re-visited. 

 In the first place, it is not clear that the Bayesian significance threshold is 

the correct one for language learners. Despite the fact that much about the 

language acquisition problem is unknown, there may be some consensus about the 

range of possible outcomes, and the general conditions under which they come 

about. For example, a regular pattern with a large number of instances, and a 

small number of exceptions relative to those instances, might be expected to 

induce a Simple Hypothesis outcome. This implies that there are a certain number 

of forms that are tolerated as true exceptions. It might also be reasonable to expect 

that the type of ‘exception’ would influence the outcome. ‘Patterned exceptions’ 

(see Zuraw 2010) might inhibit the adoption of a single ‘default’ rule, whereas 
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truly random exceptions might promote it (as has been proposed in the evolution 

of creoles from pidgin precursors (Singleton,1989; Ross & Newport 1996; 

Senghas & Coppola 2001; Hudson Kam & Newport 2005).  

 Yang (2005) has a proposal for calculating the cross-over point from 

detailed sub-patterns to default rule – what he calls the Tolerance Level.  His 

metric for complexity is expressed in terms of processing time, rather than 

description length.  In his formulation the speaker must check each word to see if 

it falls into any known class of exceptions before applying the productive rule as 

default.  The point at which there is no longer any time savings associated with 

having a general rule is the point at which generalization fails.  He estimates the 

largest allowable number of exceptions as 

€ 

N
lnN

, where N is the size of the 

dataset9. For any lexicon of size 6,656 this metric tolerates 756 exceptions. 

Subtracting the contribution of a type words gives a maximum j value of 483.  

 Yang’s metric provides an alternative to Bayes for calculating a 

significance threshold. Furthermore, both metrics can be implemented in more 

than one way. One can count the number of exceptions as the total number of 

words whose stress is not predicted by the dominant grammar, or as a ratio of 

words that are consistent with the dominant grammar versus the secondary 

grammar (G*/G), or as a ratio of only the unambiguous data (i/j). For total 

numbers, Yang’s metric tolerates about 3 times as many exceptions as the 

Bayesian learner.  For the ratio of consistent data, the Bayesian learner requires 

GUJARATI* to account for about 2 times as much data as GUJARATI, whereas 

Yang’s metric requires 1.6 times as much. For the unambiguous data ratio, the 

Bayesian learner’s threshold ratio is a factor of 20, while Yang’s morphological 

learner requires about 6 times as much data for GUJARATI* to win.  

 
                                                
9 Yang (2005) is explicitly concerned with determining whether morphological patterns can be said to have 
default rules. He considers rules like “add –d to make the English past tense”. These rules are assumed to 
have a constant processing time. Rules are not evaluated against each other with respect to explanatory or 
descriptive power.  The only competition is for default status; this is achieved when one rule class is 
significantly larger than all other classes combined. Yang distinguishes between productive and default rules.  
There may be a number of productive irregular rules which are not defaults. If there are enough regular forms 
as compared to irregulars, then a default rule can be defined.  If not, then essentially all words are irregulars; 
either the past tense form of each word must be memorized, or the irregular rule class to which it belongs. 
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5.1 A Reasonable Learner 

Clearly the final results of the learning competition will depend on exactly how 

the test statistic is calculated, as well as where the significance level is set. At the 

moment, I am aware of no empirical findings that can be used to validate one 

choice over another.  However, a favorable test of the UG-Delimited H Principle 

can still be conducted, given our present state of knowledge.  To do so, this 

section will adopt a range of threshold values much lower than that given by the 

Bayesian Learner or even Yang’s Tolerance Level. Doing so allows the outcome 

of learning to result in a simple Variability grammar for a broader range of data10. 

This gives both the anti-markedness, as well as the markedness-abiding, grammar 

the best chance of winning. This is also more in accord with the intuitions that led 

to the formulation of the UG-Delimited H Principle in the first place, as well as 

the description of present-day Gujarati as the grammar GUJARATI,  ignoring 

possible exceptions or sub-patterns. 

 It should be made clear both that the chosen levels are completely 

arbitrary, and that they are no more arbitrary than any other level that could be 

chosen. Probability theory provides a principled way to set such a threshold. But 

that is not a guarantee that human learners set their thresholds in the same way. 

Nor is it known exactly how ambiguous data figures into the grammar selection 

process. In general, language learning algorithms that deal with gradient 

phenomena often contain implicit thresholds for categorical behavior (see, e.g., 

Pearl (2011), Hayes & Wilson (2008)). Here the levels will be explicitly chosen 

as a set of relatively permissive criteria for adoption of a Simple Hypothesis. 

 The measure for which these levels are set is taken to be a simple ratio, 

dubbed the Proportion-Based Evaluation Metric to distinguish it from the 

Bayesian evaluation metric employed throughout sections 3 and 4. The 

hypothetical learner may select a grammar that closely matches the input data via 

the combination of multiple grammars, but they may also sacrifice a certain 

amount of descriptive power in order to select a single hypothesis corresponding 

                                                
10 Analogously, one could fix a given prior probability distribution – select a given ‘over-hypothesis’ based 
on the expected linguistic outcome (see, e.g., Kemp, Perfors & Tenenbaum 2007).  
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to a Simple Grammar (a default). The latter outcome will obtain under conditions 

in which a threshold ratio of data coverage is reached. Including ambiguous data 

in the calculation will act to decrease sensitivity to very small differences, 

therefore the ratio of the total amount of data consistent with each hypothesis will 

be used.    

 Consider the following “statistical significance” threshold values.  In order 

to defeat the Mixture Hypothesis, the total amount of data that is consistent with 

GUJARATI* must be, say, from 1.25 to 5 times as large as the amount of GUJARATI-

consistent data.  By the same token, GUJARATI*-consistent data should also be 

from 1.25 to 5 times as large as the amount of PENULT-consistent data. Under the 

Uniform Lexicon (L′U), the relaxed thresholds do not affect the results. The 

numbers from section 4 for three-syllable words give values for G*/P of 

4823/4745 = 1.02, and G*/G of 4823/4667 = 1.03.  None of the thresholds in the 

range (1.25, 5) is met, and the Mixture Grammar is still the winner.  

However, looking back at Table 3, it is easy to imagine a case in which the 

relevant ratios could reach criterion.  Suppose Gujarati had a lexicon, for 

whatever fortuitous reasons, in which there were no words that consisted of the 

sonority profile (M, M, ə).  Taking this even further, if all lexical types in Gujarati′ 

that exhibit the GUJARATI pattern in Table 3 had never existed (Rows 4-6), then 

the data would skew towards the GUJARATI* hypothesis.  Of course, the reverse 

scenario is just as imaginable.  The question now becomes: under what lexical 

conditions will the ‘reasonable’ thresholds be met, such that the anti-markedness 

GUJARATI* hypothesis dominates, and how likely are those lexical conditions to 

arise? 

 

5.2 Likely Input 

Up to this point only a single possible lexicon has been considered in any detail 

(and, in fact, a single lexicon comprised of only three-syllable words).  This was 

done partially for ease of exposition, but also to avoid the additional modeling 

assumptions that would have to be made about lexical distributions.  It is now 

clear, however, that the exact make-up of the lexicon will strongly affect the 
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outcome of learning.  Therefore, the space of lexicons as a function of word-type 

distribution will now be systematically explored. To isolate the effect of vowel 

frequency on the outcome of learning, other simplifying assumptions will be 

maintained, namely the assumptions regarding segmental independence within 

words, and across words of varying length (i.e., possible phonotactic or prosodic 

constraints on words will be ignored).  

 Counting by possible word types, the data in Gujarati′ are almost equally 

split in support of GUJARATI* versus GUJARATI. However, the more non-uniform a 

lexicon is with respect to the actual number of words that fall into each row of 

Table 3, the more likely that a default grammar (of one type of the other) will 

result. Accordingly, the space of word-types was sampled to varying extents to 

create a distribution of lexicons that spanned a range of distances from the 

Uniform Lexicon. 

 Each such lexicon consists of a total of 6,912 words of which roughly half 

are 3-syllable words (3072), and half, 2-syllable words (3840)11. How much each 

lexicon departed from uniformity with respect to the rows of Table 3 (along any 

of the 6 dimensions) is given as a ‘Degree’ of biasing away from uniformity.  

There are four such degrees: Degree 1 corresponding to the most uniform vowel 

distributions; Degree 4 to the least. Monte Carlo simulations were run for 1000 

lexicons at each of these four degrees (the details of the sampling method are 

given in Appendix G.1). One important characteristic of the method is that the 

resulting vowel distributions are not directly controlled. 

 For comparison, an additional 1000 lexicons were generated in a different 

way, setting the vowel distributions to a specific function. This final set of 

lexicons was given Zipfian distributions over the inventory of vowels 

{a,i,e,ɛ,o,ɔ,u,ə}. Each of the 1000 lexicons reflected such a distribution, the only 

differences being which vowels occupied which rank order in frequency of 

occurrence.  See Appendix G.1 for details. 

                                                
11 This is a fairly arbitrary ratio, set to reflect the distribution found in the online British English corpus 
CELEX (1993), as it was readily available at the time of writing. 
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  In Figure 2, each lexicon is represented by two numbers; the y-axis 

represents the threshold parameter G*/P, and the x-axis represents the threshold 

parameter G*/G. Each set of lexicons is represented by a different color. From 

Figure 2 it can be determined how many simple anti-markedness grammars are 

predicted to win, for any given lexicon distribution. The four proposed 

significance thresholds are plotted as solid black boxes.  Points interior to each of 

the boxes correspond to lexicons in which GUJARATI* accounts for 2.5, 1.7, and 

1.25 times the amount of data as each competitor hypothesis (from smallest to 

largest box). All other points represent either Mixture outcomes (area centered 

around (1,1) in Fig. 2), or outcomes in which GUJARATI α or PENULT α is the 

winner. The exact weighting values for each predicted Mixture Grammar winner 

depend on the particular lexicon.  
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Figure 2 

Monte Carlo Simulations of 1000 Lexicons generated at each of 4 degrees of random sampling.  Degree of 
sampling corresponds to likelihood of departure from a uniform vowel distribution; higher numbers equate 

with higher skewing.  Also displayed is a set of lexicons generated with a randomly assigned Zipfian 
distribution over the vowels (see text). Each lexicon consisted of 6072 words of which roughly half were 3-

syllable words (3072), and half, 2-syllable words (3840). The axes are the ratios G*/G and G*/P, 
respectively, which are defined as threshold variables. The area within each solid-lined black box represents 
the lexicon space in which the GUJARATI*α hypothesis is chosen: the threshold significance value is reached. 

The three different boxes correspond to three different possible threshold values: levels where GUJARATI* 
covers 2.5, 1.7, and 1.25 times as much data as each of its competitor hypotheses (GUJARATI and PENULT). 

 

 These simulations reveal two things:  1) under assumptions of random 

sampling and reasonable decision thresholds, lexicons that support a GUJARATI*α 
hypothesis are quite uncommon.  But, 2) they are not impossible. Table 4 gives 

probability estimates based on the number of lexicons out of 1000 at each Degree 

that fall above each of the given thresholds. With the least stringent threshold 

(GUJARATI* consistent with only 1.25 times as much data as either GUJARATI or 

PENULT), and the highest Degree of non-uniformity, over 11% of the lexicons are 

estimated to lead a learner to adopt GUJARATI*α. At any lesser Degree, or more 

stringent evidence ratio threshold, this estimate drops below 4%.  

Table 4. Estimated percentage of anti-markedness outcome for Proportion-Based Evaluation 
learner, under 5 different sampling rates, for four different threshold values (G*/G, G*/P). 

Calculated from 1000 Monte Carlo simulations. 
Vowel 

Distribution 
Percentage of lexicons 
with G*/G & G*/P  > 

5 2.5 1.7 1.25 
 Degree 4 0 0 3.5% 11.5% 

Zipfian 0 0 0 9.4% 
Degree 3 0 0 0 0 
Degree 2 0 0 0 0 
Degree 1 0 0 0 0 

 If vowels have Zipfian distributions, and human learners have a 

significance threshold greater than 1.25, the probability of an anti-markedness 

grammar arising from the proposed sound change is very small: less than 1 in 

1000.  For the 1.25 threshold, such default grammars are predicted at a rate of 

9.4%. All other Zipfian Lexicons (black dots) result in Mixture Grammars. 

Lexicons that fall within the area bounded by (1,1.25) on the x-axis, and (1, 1.25) 

on the y-axis are Mixture Grammars with a slightly higher weighting for the 

GUJARATI*α sub-grammar with respect to the GUJARATI α and PENULT α sub-
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grammars. Lexicons that fall within the area bounded by (.8,1) on the x-axis are 

Mixture Grammars with a slightly higher weighting for GUJARATI α with respect to 

GUJARATI*α; those that also fall within the range (.8,1) on the y-axis have slightly 

higher weightings for PENULT α than GUJARATI*α.  Lexicons that fall below .8 on 

both axes are Mixture Grammars of PENULT α and GUJARATI α only, some with 

higher weighting for PENULT α than GUJARATI α, and some with the opposite 

relative weighting. There are no lexicons for which either GUJARATI α or PENULT α 

is the Simple default; thus such default grammars are predicted to occur less than 

1 time out of a 1000, for any significance threshold. 

 

6 Interpretation of Results 

The above results rely on a number of assumptions, one of which is that all 

lexicons are equally likely to undergo the change a > ə. However, there are 

reasons to think that the a > ə  sound change might be more likely under certain 

conditions than others. Neutralizing sound change can be considered undesirable 

to the extent that it creates communicative ambiguity.  The degree of potential 

ambiguity can be approximated by the number of homophones created by the loss 

of the contrast. This, in turn, can be estimated by the number of words containing 

the pre-merged segments. The expectation is thus that lexicons containing fewer 

words, with fewer /ə/’s, would be more likely to undergo the neutralizing sound 

change than lexicons with high occurrence of /ə/. A subset of this class of 

lexicons are ones in which Gujarati has no /ə/’s at all: the No-Contrast Lexicon: 

LNC. Lʹ′NC is missing the types of words that provide unambiguous support for 

GUJARATI : Row 5 of Table 2, reproduced below in (9) for reference. Thus, this 

scenario also provides the most favorable conditions for GUJARATI*α, and an upper 

bound on the likelihood of a GUJARATI*α outcome.   
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(9) 

5 (M,ə,M) [kójəldi]>[kójəldi] 42 

G 
(M,ə,ə) [kʃétrəpʰəɭ]>[kʃétrəpʰəɭ] 

 

Simulations of the No-Contrast condition do result in a relatively high rate of 

GUJARATI*α outcome, at 29.5%  – but only at the lowest threshold level (see 

Appendix G.2). However, the Mixture grammar GUJARATI*/ PENULT  is more than 

twice as likely (70.5%). Despite the fact that there are exceptions to the 

penultimate stress rule in L′NC, there is still not enough of a difference between the 

descriptive power of the two hypotheses to rule out the Mixture grammar.  This 

result reveals a heretofore unexamined property of the Variability Hypothesis 

Space. Allotting a certain amount of probability mass to possible exceptions has 

the consequence of downgrading the advantage of an exceptionless grammar. In 

traditional phonological analysis a single data point that can decide between two 

grammars also satisfies the criterion for doing so. The burden of proof is now 

higher, since such critical forms can now be treated as allowable ‘exceptions’.     

 This result holds in the other direction as well. It has been the assumption 

from the beginning of the paper that GUJARATI, as defined in (2), is the correct 

grammar for the Gujarati language. However, the Proportion-Based Evaluation 

Metric will only come out in favor of GUJARATI α under certain lexical conditions. 

Under others, the GUJARATI/PENULT Mixture grammar is predicted to be the 

winner. Under LNC (prior to sound change) and the 1.25 threshold, GUJARATI α  

wins 28.9% of the simulations, while GUJARATI/PENULT is the result in the 

remaining 71.1% of cases.  

 The relatively low rate of the GUJARATI grammar may be a theoretically 

dispreferred result, but it cannot be assumed to be incorrect. This result is the 

direct outgrowth of modifying the model of linguistic competence in order to deal 

with exceptions at all. The data themselves are ambiguous with respect to the 

generating grammar because the status of any given form is ambiguous as to 
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whether it is an allowable exception to Hi, or the deciding piece of evidence in 

favor of Hj.    
 In fact, in the No-Contrast condition, a given form may be ambiguous with 

respect to whether it is an exception to PENULT α, evidence for GUJARATI*α, or 

evidence for a simpler hypothesis, namely, ‘Always Stress ə’. The original 

hypothesis space was chosen with GUJARATI*α as the competitor of interest 

because the question as first posed had to do with the emergence of a fully 

generative reversed sonority-to-stress grammar. However, data that are consistent 

with this abstract hypothesis are also consistent with a more concrete hypothesis 

that refers to vowel identity. It is important to note that there are only two 

expressed sonority categories in L′NC: {M,ə}.  What this means for the analysis is 

that a grammar that instantiates the rule ‘Stress ə’ has the same descriptive 

adequacy as the GUJARATI*α grammar. The likelihood of selecting the true anti-

markedness grammar is lower than that of learning the ‘Stress ə’ rule from an 

information theoretic perspective, as it involves a more complex representation: 

multiple categories corresponding to sonority-tier membership and the relations 

between them. Since the coverage ratio is exactly the same for these two 

hypotheses the simpler one must win.   

 This type of competitor is not specific to the sonority-to-stress case study 

but must be considered for any hypothesis describing a harmonic scale. That is, if 

prior (possibly innate) knowledge of the scale is not assumed, then it is not 

guaranteed that learners will be able to infer the entire range from exposure to 

only a small subset of its members. Thus, for example, a pattern in which /k/ 

palatalized before /e/ but not before /i/ could be the result of a ‘Reversed 

Palatalization’ grammar, but also of the simpler ‘Palatalize Before e’ grammar12. 

                                                
12 Wilson (2006) has, in fact, experimentally demonstrated an implicational bias for palatalizing before /i/ 
after being exposed to a palatalization alternation before /e/.  This suggests that learners may well infer an 
entire harmonic scale from limited instances. However, it has not been demonstrated that such a bias is 
necessary for learning, which is the argument examined in this paper. 
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While the ‘Stress ə’/‘Palatalize Before e’ grammar can be considered a partial 

anti-markedness grammar, it does not make theoretically undesirable predictions 

to the extent that the full anti-markedness grammar does. The true reversed scale 

calls for avoiding the placement of stress on the /a/ in a newly encountered word, 

for example, precisely because of the high sonority of that vowel (or failing to 

palatalize before a newly encountered /ɪ/ vowel, precisely because of the more 

front/high qualities of that vowel). 

 In either case, however, there is a more basic problem with determining 

results under L′NC. In a synchronic grammar that lacks a contrast between /a/ and 

/ə/, it is unlikely that any ‘unnatural’ grammar would be observable. Without the 

possibility of ambiguity, the surface realization of the /ə/ vowel will be freer to 

vary between phonetically longer tokens (in stressed position) which are more /a/-

like, and phonetically shorter tokens.  These phonetic context effects are likely to 

restore the markedness-abiding sonority-stress relation (Colarusso 1988; Choi 

1992; Kondo 1994; Van Bergen 1994)13.  

 The upshot of the preceding discussion is that the No-Contrast condition 

may not, in fact, provide the most favorable conditions for a GUJARATI*α outcome. 

Even though the conflicting forms that favor GUJARATI α are removed, so is an 

entire level of the sonority hierarchy. The latter is arguably necessary for learning 

a sonority-based grammar, as well as for maintaining a distinction between 

stressed /ə/ and unstressed /a/.  GUJARATI*α may well never occur under those 
                                                
13 This observation returns full circle to the originally proposed sound change. The scenario was described at 
the outset of this paper in the following way: a completely exceptionless, completely context-free sound 
change in which surface [a]’s become realized as surface [ə]’s, under which stress placement does not 
change.  In fact, it is not clear how likely are internally motivated language changes of a completely general 
nature.  Arguably more likely is that such changes would depend heavily on context.  A large body of work 
within the frequentist and exemplar-based frameworks presents a strong case for non-uniform sound change, 
with factors such as word frequency, phonetic conditioning, and morphological decomposability influencing 
when and whether certain segments will shift (Phillips 1984; Bybee 2001, 2006; Pierrehumbert 2001; Hay et 
al. 2003).  As alluded to at the very beginning of this paper, any /a/’s which are likely to become /ə/’s 
(higher, shorter, less sonorous), are also less likely to be stress-carriers in the first place.  Stress, therefore, 
has a very high probability of shifting to a different, higher energy location in the word during such a vowel 
quality shift, or even as a necessary precursor to such a shift. 
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conditions. If L′NC is the lexicon class under which the a > ə  sound change is 

most likely to occur, then the likelihood of GUJARATI*α is actually reduced over-

all.   

In section 5 GUJARATI* α was estimated to result in from 0 to 11.5% of 

Gujarati-type languages that had undergone the sound change (the vast majority 

of which exhibited a contrast between the two vowels prior to the merger). The 

actual predicted rate of occurrence of GUJARATI*α, however, depends additionally 

on the probability of the lexicons themselves, as well as the probability of each 

lexicon to undergo the sound change. That is, there is an 11.5% chance that a 

particular set of lexicons will reflect a generative grammar of the type 

GUJARATI*α. But there is also some probability associated with the actual 

attestation of those lexicons (as opposed to other possible ones), and an additional 

probability associated with those lexicons undergoing the sound change (as 

opposed to failing to undergo, or undergoing some other sound changes instead, 

or in addition). For example, if all generated lexicons are equally likely and 

exhaust the space of possible types, and if a’s are uniformly predicted to shift to 

ə’s in 10% of all languages with any contrast between the two, then 1.2% of 

historic Gujarti-like languages should be expected to convert to synchronic 

GUJARATI*α languages. This rate is low enough that it may be plausible that such 

languages exist but are missing from the limited typological sample currently 

available to us. 

 What remains to be accounted for is the overwhelmingly predicted 

Mixture Grammar, GUJARATI*/GUJARATI. However, the interpretation of this result 

still rests on whether or not the Mixture Grammar that includes the anti-

markedness grammar has the same status as the Simple anti-markedness 

grammar.  Whether or not the Mixture is conspicuously absent from the typology 

should be an empirical question, but it requires consensus on what constitutes 

evidence for the existence of such a grammar. The lexicon would have to contain 

a minimum number of words whose stress was consistent with GUJARATI* only, 

and a minimum number of words whose stress was consistent with GUJARATI 
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only. That is fairly straightforward. But the full details of the lexicon are not 

always available from descriptive grammars. Forms that are not consistent with a 

Simple Hypothesis may be pre-judged as exceptions; in such cases they are 

unlikely to be individually listed, and are often not mentioned at all. Given a 

possible bias on the part of the analyst in favor of the markedness-abiding 

grammar, it may be the case that potential Mixture Grammars have been 

systematically mis-classified or ignored. 

 

7 Summary & Discussion  
A number of issues have been raised in the preceding analysis. Not all have clear 

solutions. This is simply a reflection of our very imperfect knowledge in almost 

every sub-domain of linguistics. It is important to realize that this work has not 

introduced unnecessary complexity. Rather, it has drawn the curtain back from 

the complexity that already exists – and underlies every theoretical claim about 

linguistic universals. Once this fact has been absorbed, it becomes clear that 

‘intuitive’ predictions, on both sides of the debate, as plausible as they may seem 

at first glance, are massively inadequate. 
 This paper is not an attempt to answer long-standing and difficult 

questions about learning, linguistic competence, or sound change.  The goal is the 

more modest, although still foundational, one of pointing out where gaps in our 

current theories exist, especially at the intersections of historically separate 

subfields. Computational modeling forces a degree of explicitness in formulating 

theoretical questions that is difficult, if not impossible, to adequately anticipate. In 

fact, it must be concluded that a definitive test of the UG-Delimited H Principle 

can only be made once sufficiently worked out theories of language acquisition 

and sound change are available. In the absence of such theories there are no iron-

clad conclusions to be drawn. However, this does not mean that no conclusions 

whatsoever can be drawn.   

 Computational simulations allow for sampling of the space of possible 

learners and lexicons. The results provide a sense of which constellation of 

parameters will lead to which outcomes. Both necessary and sufficient conditions 
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can also be determined conditionally. That is, if (x and y) then (w or z).  For 

example, if anti-markedness grammars are allowed into the learner’s hypothesis 

space, and vowels are uniformly distributed in the input data, then the anti-

markedness grammar is the hands-down winner. But if Mixture Grammars are 

allowed into the hypothesis space, with a winner-take-all Bayesian learning 

algorithm and an Information Theoretic prior, then the anti-markedness grammar 

can only rarely win.  

 Table 5 is a summary of the different learning scenarios that have been 

considered in this paper. For each row, ‘Mixture Grammar’ is a stand-in for the 

class of Mixture Grammars containing as sub-grammars the Simple Variability 

grammars listed in the corresponding ‘Hypothesis Space’ column. Any particular 

Mixture Grammar winner will have a unique set of weights associated with those 

sub-grammars. The first two rows of Table 5 illustrate the Bayesian learning 

results over the Uniform Lexicon; row 1: without including Mixture Grammars; 

row 2: allowing Mixture Grammars into the hypothesis space.  The remaining 

rows are results derived from the Proportion-Based Evaluation Metric. Rows 3 

and 4 each test the results of different lexical conditions.  In row 3 the Uniform 

Lexicon is replaced with a set of lexicons in which the frequencies of the 8 

vowels follow a Zipfian distribution. In row 4, /ə/ has been eliminated from the 

inventory, resulting in the set of No-Contrast Lexicons. In row 5 the hypothesis 

space is expanded once more to include the ‘Stress ə’ hypothesis. And in row 6, 

the sound change is modified to better reflect phonetic naturalness. 

Table 5: Summary of learning results under varying hypothesis spaces, learners, lexicons, and types of sound 
change. For the Proportion-Based Evaluation Metric, the numbers correspond to the simulation results plotted 

in Fig. 2, specifically, the black dots corresponding to the Zipfian vowel distributions. 
 Sound 

Change 
Lexicon Hypothesis 

Space 
Evaluation 

Metric 
Winner 

1 a > ə LU GUJARATI*α 

GUJARATIα 

PENULTα 

Bayesian GUJARATI*α 

100% 
 

2 a > ə LU GUJARATI*α 

GUJARATIα 

PENULTα 

MAX(G*/G)α 

Bayesian MAX(G*/G)α 

100% 
 

3 a > ə Zipfian 
vowel 

GUJARATI*α 

GUJARATI α 
Proportion-

Based  
GUJARATI*α 

9.4% 
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distribution PENULT α 

MIXTURE 
[1.25 level] MIXTURE 

90.6% 
4 a > ə LNC 

(Zipfian) 
GUJARATI*α 

GUJARATI α 

PENULT α 

MIXTURE 

Proportion-
Based  

[1.25 level] 

GUJARATI*α 
29.5% 

MIXTURE 
70.5% 

5 a > ə LNC  
(Zipfian) 

GUJARATI*α 

GUJARATI α 

PENULT α 

MIXTURE 
STRESS ə 

Proportion-
Based  

[1.25 level] 

STRESS-ə 
29.5% 

MIXTURE 
70.5% 

 
6 a>ə 

ˈa>ˈa 

LNC  
(Zipfian) 

GUJARATI*α 

GUJARATI α 

PENULT α 

MIXTURE 
 

Proportion-
Based  

[1.25 level] 

GUJARATI α 
28.9% 

MIXTURE 
71.1% 

 

 The results of rows 1 and 4 only obtain due to the exclusion of certain 

hypotheses from the space. In row 1, GUJARATI*α only wins because it does not 

have to compete against a Mixture Hypothesis.  And in row 4, GUJARATI*α only 

wins because it does not have to compete with the ‘Stress ə’ hypothesis. Rows 3, 

5, and 6, (bolded rows) represent the most informative solutions under differing 

models of sound change. If the sound change is independent of word and vowel 

inventories, then the results in row 3 hold (Fig. 2).  However, an arguably better 

model is one in which the sound change applies with the highest likelihood to 

lexicons with few or no prior /ə/’s, providing the results in row 5. An even better 

model, however, is one in which the sound change is significantly revised.   

In row 6, it is only the unstressed /a/’s that shift to /ə/’s – or, equivalently, 

all /a/’s shift, with a subsequent shift of stressed /ə/’s back to /a/’s.  This scenario 

results in almost a complete return to the pre-change lexicon – the only difference 

being that there are no longer any unstressed surface /a/’s. Unstressed /a/’s only 

appeared in words with multiple /a/’s prior to sound change, so this class of words 

is relatively small in any case.  The outcome in row 6 is reversion to a 

markedness-abiding grammar, offering no support for the UG-Delimited H 

Principle. The model predicts, however, a preponderance of GUJARATI/PENULT 
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Mixture Grammars, an outcome which is difficult to disprove, requiring detailed 

typological work.  

 

8 Conclusion  

The problem of rules that apply within restricted domains has been a topic of 

much study (see, e.g., Selkirk 1980; Nespor & Vogel 1986; McCarthy & Prince 

1995; Inkelas, Orgun & Zoll 1997; Inkelas 1998; Lubowicz 2002). The enterprise 

has typically focused on finding an analysis that eliminates the need for 

exceptions, or at least minimizes them to the degree possible. But what if more 

than a mere handful of words diverge from a dominant pattern?  What if there are 

subsets of data that belong to directly contradictory grammars, rather than opaque 

patterns in which a rule over- or under- applies? If there is no clear, or optimal, 

way for a learner to pick a single grammar, what does that mean for questions 

about linguistic universals? 

 As can be seen from Table 5, Mixture Grammars comprise the vast 

majority of simulation outcomes. As formally defined, Mixture Grammars contain 

at least two independent grammars.  In many of the cases that have been 

investigated those grammars consist of both the universally preferred type: 

GUJARATI α, and the theoretically banned type: GUJARATI*α. Thus, the Mixture 

Grammar outcome should be excluded from the hypothesis space, according to 

the UG-Delimited H Principle.  This step is only justified, however, if the 

presence of those grammars leads to inaccurate typological predictions. As far as I 

know, it is not currently possible to verify this. The typological facts are simply 

not clearly enough established. This is true even for the pure anti-markedness 

grammars14, and it is even more true for potential Mixture-Grammar languages.  

For example, who is to say that systems that have been analyzed as exhibiting a 

high degree of lexical exceptionality, or gone largely unanalyzed due to what is 

                                                
14 There is some evidence for a collection of languages that do seem to violate universal markedness 
implications: Arrernte (codas preferred over onsets) (Breen & Pensalfini 1999); Sea Dayak (nasalized vowels 
allowed in nasal but not oral contexts) (Court 1970); Eastern Pomo (neutralization to aspirated (rather than 
plain voiceless) stop in coda position (McLendon 1975); Buryat (epenthesis of /g/, rather than /t/) (Poppe 
1960), etc.  
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perceived as patternless behavior, might not belong to this set?15 

 Some may have the intuition that exceptionless grammars should never be 

defeated by Mixture Grammars. In which case, the current model will need to be 

modified in some way.  However, the point must be made once more that we 

simply don’t know.  Typological evidence in its current state does not determine 

the form the hypothesis space should take; statistical learning tools are not 

guaranteed to provide psychologically appropriate significance levels; and it is not 

always possible to satisfy linguistic intuitions in a way that is completely self-

consistent, and not ad hoc.  

 In attempting to determine the distribution of theoretically predicted 

grammars, we have come up against several general questions in linguistics which 

remain unresolved, such as whether probabilistic rule (or constraint) selection is 

the right model of linguistic knowledge; what statistical significance level (if any) 

is used by language learners; how strong homophony avoidance is as a force in 

sound change; etc. It has also been necessary to devise some way of dealing with 

issues which have been largely unexplored, at least from a formal perspective, 

such as the proper treatment of contradictory data.  Once phonetics are 

incorporated into the model things change considerably; a reversed sonority-to-

stress grammar becomes rather implausible – at least under the type of sound 

change proposed. Perhaps phonetic forces will cause anti-markedness languages 

to instantaneously revert to a natural (markedness-abiding) state.  Or perhaps 

there is a brief moment in time when such pathological grammars can be 

observed.   

  This paper has focused on one particular type of system: a Gujarati-like 

language, under a context-free vowel shift, and the effect on a sonority-sensitive 

stress system.  It is certainly possible that one could find a better scenario to argue 

for the necessity of the UG-Delimited H Principle.  However, this case study 
                                                
15 In fact, the situation is more uncertain even than this. It has been estimated that only about 10% of 
currently spoken languages have been adequately documented; furthermore the 5,000-8,000 currently spoken 
languages must be considered a sample of possible human languages, both past and future.  Given what is 
known about language families and historical changes, the number of languages that have ever existed can be 
estimated at about half a million, leaving us with typological knowledge of .02% of possible linguistic 
diversity (Evans & Levinson 2009).  If this is even close to correct, strong claims about attested phonological 
patterns become extremely problematic. 
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illustrates a number of properties that are general to the study of linguistic 

systems.  Among the most notable of these is the ability of sound change to leave 

a system in an intermediate state without a majority rule. In order for any 

proposed scenario to be compelling it must provide a model of the language 

learner that is capable of dealing with such data. Without explicitly specifying this 

learner one runs the risk of assuming properties which are mutually incompatible, 

inconsistent with empirical data, or even inconsistent with one’s theoretical 

position.  

 It is far from a foregone conclusion that there is a single, unique 

mechanism that is necessary to account for the observed typology. Principles of 

phonetics may be enough to shape the distribution of phonological grammars to 

the degree that we observe. Principles of learning, or principles of word formation 

may also function in a similar way. Thus, the burden of proof rests with those 

who wish to argue for the necessity of UG in limiting the learner’s hypothesis 

space in particular ways. It is my hope that this paper may serve as a general 

guide as to what that burden entails, and to what foundational issues must be 

resolved within linguistic theory in order to reach a final conclusion. 
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