Why epenthesis can help us answer the question of where phonology comes from

Rebecca L. Morley
The Ohio State University

Stony Brook Workshop on Epenthesis
September 19, 2021

Why epenthesis ${ }^{1}$ can help us answer the question of where phonology ${ }^{2}$ comes from

Rebecca L. Morley
The Ohio State University

Stony Brook Workshop on Epenthesis
September 19, 2021
${ }^{1}$ There are a number of different kinds of epenthesis, and "epenthesis" means different things to different people
${ }^{2}$ Can phonology be reliably differentiated from phonetics?

Where does phonology come from?

VS.

3

- What differentiates phonetics from phonology?
- Is phonology more abstract?
- Do all phonological patterns have a phonetic source?
- Are phonological patterns merely the residue of sound change?

What is the most abstract phonological phenomenon?

EPENTHESIS!

CONSONANT EPENTHESIS
HARMONY-INCREASING
CONSONANT EPENTHESIS
not involving: w, j, h, ?, u, ४

Ajvíninka Apurucayali : (better hoown asAxininca Campa) Payne (1981)

$/ \mathrm{i} /+/ \mathrm{N} /+/ \mathrm{kim} /+/ \mathrm{i} / \rightarrow$	[inkimi]	s/he will hear	
$/ \mathrm{i} /+/ \mathrm{N} /+/ \mathrm{pija} /+/ \mathrm{i} / \rightarrow$	[impijati]	s/he will avenge	
$/ \mathrm{i} /+/ \mathrm{pija} /+/$ piro/	\rightarrow	[ipijapiro]	s/he truly avenges

5

Stage 1 : Where does Phonology come from?

Assumptions:

- Phonological forms are generated via algorithm (rules/constraints)
- Synchronic phonological algorithms derive from diachronic processes
- Diachronic processes transform phonetic algorithms to phonological algorithms

Itinerary

- Case Study: Epenthesis
- The facts of the matter: typology
- Analysis
- Getting from phonetics to phonology

- Sound change

Data vs Evidence: The Learner (diachronic)

- The synchronic grammar
- Learning/acquisition

Data vs Evidence: The Learner (synchronic)
Stage 1
Stage 2

Stage 3

Stage 4
Stage 5

- The synchronic grammar
- Representations
- Getting from phonetics to phonology
- Sound change

A Quick Note about Notation

- I will use SPE-style notation in a number of slides
- It is only that these representations are more transparent and intuitive for people
- It does not mean that I am assuming that this is what the generative grammar looks like
- In fact, all of the analysis I describe here is what must occur prior to the analysis of rule ordering or constraint interaction (what are the URs/inputs?)
- What this means is that there is typically much less attention paid to this step of analysis by theoretical phonologists
- And a glaring absence of formal machinery, or even consensus heuristics

Case Study Epenthesis

Data vs. Evidence

The Linguist

Morley, R. L. (2015). Deletion or epenthesis? On the falsifiability of phonological universals. Lingua, 154, 1-26.

Data vs. Evidence

Data vs. Evidence

The Linguist

Data	"3 year old sheepskin"	"parasitic worm"	
Acc.	[pamito]	[fisemo]	/o/
Nom.	[pami]	[fisem]	\emptyset
	/pami/	/fisem/	

Evidence

The result of phonological analysis
$\emptyset \rightarrow t / V_{-}(+) V$

Data vs. Evidence

The Linguist

Data vs. Evidence

The Linguist

Data vs. Evidence

The Linguist

Data vs. Evidence

The Linguist What happens when epenthesis isn't always "selected"?

$\emptyset \rightarrow t / V_{-}(+) V$

	"3 year old sheepskin"	"parasitic worm"	
Acc Pl.	[pamju]	[fisemu]	$/ \mathrm{u} /$
Nom. Pl.	[pamiz]	$[$ fisemz]	$/ \mathrm{z} /$
	/pami/	/fisem/	

$i \rightarrow j / _+u$

Ajyíninka Apurucayali : (better known asAxininca Campa)

"Non-minimal" consonant epenthesis

Seg	Language	Seg	Language
t	Ajyíninka Apurucayali, Maori, Odawa Ojibwa, French, Amharic, Plains Cree, Maru, Finnish, Korean, Kodava	j	Turkish, Uyghur, Greenlandic, various Indic languages, Arabic, Slavic, Tamil, Kodava
k	Maru,Kodava	h	Ayutla Mixtec, Chipewyan, Huariapano, Slave (Bear Lake, Hare), Tigre, Tucanoan, Yagua,Yucatec Maya, Huaripano, Onondaga
g	Mongolian; Buryat	w	Abajero Guajiro, Greenlandic, Arabic, Chamicuro, Tamil
r	English, German, Uyghur, Zaraitzu Basque, Seville Spanish, Anejom, Japanese, Southern Tati	$?$	Chadic, Cupeno, Larike, Misantla Totonac, Mohawk, Tsishaath Nootka, Hawaiian, Arabic, Selayarese, German, Ilokano, Czech, Kisar, Malay, Koryak, Indonesian, Gokana, English, Konni,Tunica, Tubatulabal, Nancowry, Tamil
n	Korean, Greek, Dutch, German dialects, Sanskrit, Murut, Tunica	x	Land Dayak
1	Bristol English, Midlands American English, Motu	\int	Basque dialects
v	Marathi	3	Cretan and Mani Greek, Basque dialects
b	Basque dialects	7	Buginese
s/z	French, Land Dayak, Dominican Spanish	N	Inuktitut, East Greenlandic, Uradhi, Kaingang

Epenthesis Typology

Working Diagnostic

Epenthesis is considered the best analysis for patterns that have

- at least 65% of possible contexts participating
- AND an absolute number of at least 5 participating morphemes.
- OR more than 10 participating morphemes

Non-Minimal Segments		Minimal Segments		Maximum number of default epenthesis languages: 9/56
Seg.	Language	Seg.	Language	
t	Cree	?	Selayarese	
t	A. Apurcali	?	Misantla Totonac	Minimum number of default epenthesis languages: 0/56
k	Waropen	j	Turkish	
g	Buryat	j	Berber	
n	Dutch			

Stage 2 : Where does Phonology come from?

Evidence for this is not great

[t] does not appear out of thin air

Data vs. Evidence

The Learner
 Diachronic

Data vs. Evidence

The Learner: Diachronic

Data vs. Evidence

The Learner: Diachronic

C1 loss
"rule inversion" Venneman (1972)

Data vs. Evidence

The Learner: Diachronic

Data vs. Evidence

The Learner: Diachronic

No consonant final stems!
"rule inversion" Venneman (1972)

Data vs. Evidence

The Learner: Diachronic

"rule inversion" Venneman (1972)

Data vs. Evidence

The Learner: Diachronic

27

Data vs. Evidence

The Learner: Diachronic

Data vs. Evidence

The Learner: Diachronic

1. Under deletion in consonant clusters C_{1} deletes (alternatively, the prefix-final consonant deletes)
2. But only a subset of C_{1} 's delete
3. Both consonant-final and vowel-final stems are present at time t_{i} (before deletion)
4. At time t_{j} (after deletion), the underlying representation of the suffix is vowel-initial, and the underlying representation of the stem is vowel-final
5. All stems end in the same consonant at time t_{i} (or generalization is required)
6. Regularization over all allomorphs that occur after vowel-final stems (reduction to -CVX)
7. Failure to generalize to consonant-final stems (retaining the -VX allomorph)
8. Regularization across all affixes, such that all affixes choose the same C in -CVX/-VX alternations

Stage 3 : Where does Phonology come from?

Evidence for this is not great

[t] does not appear out of thin air Learner's input is messy/inconsistent Rule inversion is harder than it seems

Data vs. Evidence

The Learner
 Synchronic

Morley, R. L. (2018). Is phonological consonant epenthesis possible? A series of artificial grammar learning experiments. Phonology, 35(4), 649-688.

Data vs. Evidence

The Learner: Synchronic

Generalization across all vowel-initial suffixes
Generalization across all vowel-final stems
Generalization across all consonant-final stems
No generalization between C and V final stems

Experiments

Training		Test	
(0) ['Jatu]	© ['satuwək]	© ['daxum]	? ??
			${ }^{\lambda} \lambda$
© ['hædi]	@['hædijok]	(0) ['ribæz]	Q ??
	$\begin{aligned} & 4 \\ & \Delta \end{aligned}$	$\pi 0^{0}$	$\pi \pi_{\pi}^{\pi}$

Data vs. Evidence

The Learner: Synchronic
Consonant-Final Test Items

1. Impoverished stimuli:

Data vs. Evidence

The Learner: Synchronic

1. Impoverished stimuli:

Data vs. Evidence

The Learner: Synchronic

1. Impoverished stimuli:

Data vs. Evidence

The Learner: Synchronic

- Novel stem type inflected according to input allomorph distribution (regardless of predictability)
- Familiar stem types show errors across C/V boundary
- The more allomorphs, the higher the error rate
- Frequency matching

37

Data vs. Evidence

The Learner: Synchronic

- Novel stem type inflected according to input allomorph distribution (regardless of predictability)
- Familiar stem types show errors across C/V boundary
- The more allomorphs, the higher the error rate
- Frequency matching
- Phonetic and phonological interpretations (\sim equally) available

High-frequency allomorph
 ['skibe] ['skibejak]

Stage 4 : Where does Phonology come from?

A completely unexpected result...

Stage 5 : Where does Phonology come from?

Assumptions:

- phonological categories are composed of phonetic representations
- Changes in phonetic representations produce changes in phonological representations
- Speech perception is inherently abstract: segmentation and categorization
- Speech perception is inherently ambiguous
- Changes in individual parses produce changes in the make-up of phonological categories

Case Study
 Vowel
 Nasalization

Morley, R.L. Sound Structure and Sound Change: A Modeling Approach. Conceptual Foundations of Language Science Monograph Series. Language Science Press (2019)

The Actuation Paradox

Solving the paradox in the diachronic domain requires changes to our usual assumptions about synchronic representations

The usual assumptions

- Categories have a single realization (or all realizations are identical)
- There exists a process that generates predictable elements at the phone level
- Only unpredictable material is stored
- Words are generated by concatenating phonemes
- Rules are applied to phonemelevel representations of words prior to production

The usual assumptions

- Perception tokens are identical to production tokens
- Inputs are normalized to recover underlying representations

The usual assumptions

- Perception tokens are identical to production tokens
- Allophonic rules affect only one of the two segments involved

Representational Assumptions

- Categories have a single realization (or all realizations are identical)
- There exists a process that generates predictable elements at the phone level
- Only unpredictable material is stored
- Words are generated by concatenating phonemes
- Rules are applied to phonemelevel representations of words prior to production
- Perception tokens are identical to production tokens
- Inputs are normalized to recover underlying representations
- Allophonic rules affect only one of the two segments involved

Representational Assumptions

2. Categories have a single realization for all realizations areidenticaly

- There exists a process that generates predictable elements at the phone level
- Only unpredictable materialis stored

- Words are generated by

 eoncatenating phonemes- Rules are applied to phonemelevel representations of words prior to production
- Perception tokens are
identical to production tokens
- Inputs are normalized to recover underlying representations
- Allophonic rules affectonly one of the wosments involved

Where do allophones come from?

Neither input nor output actually consists of abstract, discrete units V, N

Perception \Leftrightarrow Production

Synchrony \Leftrightarrow Diachrony

Synchronic/Diachronic

$$
\text { LIFl } V \rightarrow \tilde{V} / _N
$$

stored gestural overlap

Synchrony \Leftrightarrow Diachrony

Synchronic/Diachronic

[目/V/

stored gestural overlap

Default gestural overlap
52

Stage 6 : Where does Phonology come from?

Assumptions:

- Words are generated by executing articulatory plans
- Word recognition can occur prior to phoneme identification
- Acoustic word tokens are stored without normalization
- Inferred articulatory tokens are also stored
- Listener picks best hypothesis available regarding articulatory targets

Thank you!

Paul Smolensky, Ariel Goldberg, Matt Goldrick, Peter Culicover, Colin Wilson, Jennifer Culbertson
Bridget Smith, Bjoern Koehnlein, Nohyong Kim
Emily Clem, MarDez Desmond, Christina Heaton, Lark Hovey, Dahee Kim, Karen Kuhn, Sara Pennington, Joseph Conley, Evan Nelson, Hannah Young, Jessica Jelinger, and Allie Baker

If any of this looks interesting, I'm always looking for good graduate students!

