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1 Introduction and Objectives

In a scientific computing course at the University of Illinois (U-C) myself and another

undergraduate student created a serial implementation of a Local Lax-Friedrichs (LLF)

scheme for simulating hydrodynamic systems in 2-D. After quantitative testing of the

code it was further developed to include the self gravity of the fluid. My familiarity with

this previous project and the relevancy of hydrodynamic simulations to my research

interests made continuing the development of this code a very attractive and attainable

goal for this project. Unfortunately the pure hydrodynamic (i.e. no gravity) code

proved complex enough to make developing the parallel implementation of self-gravity

too ambitious for this project. Thus my objectives are somewhat revised.

The primary objective for this project is to create a parallel implementation of a 2-D

LLF code using basic MPI commands. Secondarily, optimizations can be considered in

attempts to improve the code’s performance.

2 Motivation

Hydrodynamics is quite simply the physics of fluids. From supernovae,to hurricanes,

to blood vessels, and jet engines, our understanding of these and other phenomena all

rest on our foundational knowledge of hydrodynamics. The two most basic equations of

hydrodynamics are mass conservation (Eq. 1), perhaps better known as the continuity

equation, and momentum conservation (Eq. 2).

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂ρv

∂t
+ ∇ · (ρvv) = −∇P (2)

where ρ is the density, v is the velocity vector field and P is the pressure.
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Insight can be gained from analytic consideration of these equations but in many

cases of interest the initial conditions (ex. for a jet engine) may be too irregular or

asymmetric to solve “by hand”. Difficult-to-model turbulence may also be a concern.

With this in mind, it is not hard to see the potential of computers and fast hy-

drodynamic algorithms to contribute to our scientific understanding and our pursuit

of engineering goals. The challenge is that these problems tend to be very computa-

tionally intensive. The relevant partial differential equations may be quite complicated

and three-dimensional simulations have memory requirements that naturally scale as n3.

(The code and all of the simulations presented here are all two-dimensional as to avoid

this trend.) Parallel computing is the obvious route to open up otherwise intractable

hydrodynamic problems to investigation.

3 Methodology

Equations (1) and (2), along with an isothermal equation of state P = c2

s
ρ where cs is

the sound speed, were used as the relevant dynamical equations in these simulations.

The local Lax-Friedrichs scheme is a finite-differencing approach to numerically solving

these equations which updates each cell based on the cell values and slopes around it.

With an isothermal equation of state there remains only three variables to be solved, ρ,

vx, and vy where vx and vy are the velocities in the x and y directions. At each step

these variables are updated as “fluxes” in the form ρ, ρvx, and ρvy with the following

equations,

un+1 = un − ∆t

∆x
(Fj+1/2 − Fj−1/2) (3)

Fj+1/2 =
1

2
(F (u+

j+1/2
) + F (u−

j+1/2
) − vmax(u

+

j+1/2
− u−

j+1/2
)) (4)
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u+

j+1/2
= uj+1 − sj+1

∆x

2
(5)

u−

j+1/2
= uj + sj

∆x

2
(6)

where vmax is the max velocity in the domain and sj, sj+1 are the slopes in the variable

u at those points, and ∆x is the distance between cells.

The parallel code uses this algorithm and employs checkerboard partitioning to divide

the domain across the processors. This approach requires four communication steps to

preclude each timestep so that the edges of each processor’s domain can be exchanged

with its neighbors.

Figure 1: Communication patterns in parallel implementation. Note that the boundary

conditions here are repeating or “wrap around” and that the symmetry of these phases

require that p = 42, 62, 82....
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4 Measurements

The most critical test of the parallel code involves propagating a cosine wave through

the domain. Both the serial and parallel code should have O(N −1 ) convergence to the

analytic solution for the propagating wave. Figure 2 confirms this prediction.
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Figure 2: A convergence test comparing the serial algorithm with the parallel code

running on 16 processors. Both lines show O(N −1 ) convergence (log-log slope of -1).

All numerical experiments in this report were performed on the Itanium 64 cluster at

OSC.

As a more qualitiative test a gaussian density spike can be simulated in serial and

parallel and compared. Figure 3 presents the cross sections from the serial and parallel

code operating at the same total resolution.

In terms of performance, Table 1 summarizes the job completion time for 16, 36, and

64 processors with job sizes growing in proportion to the availible processors. The serial

completion time, Ts, was inferred from a definite N 2.7 trend in the completion time at

lower N . Since the serial domain has N 2 elements, this is a very reasonable result since
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Figure 3: A radial cross section through a propagating explosion. The serial data is at

the same resolution as the parallel data. See powerpoint for surface plot.

a Ts scaling of at least N 2 is to be expected.

Table 1. Completion times for p = 16, 36, and 64

Processors N Median time (s) Max time (s) Ts (s) Ts/p

16 800 17.6 18.54 689 43.06

36 1200 28.0 32.8 2059 57.2

64 1600 36.5 67.68 4478 69.9

Striped partitioning was considered as a potential optimization. The advantage of

this would be to reduce four communications per timestep down to two. This places

more of the “burden” of communication on the bandwidth-associated transfer time and

improves the latency by a factor of two. Simple analytic estimates of this improvement,

however, showed that the advantage is gained only for small problem sizes (N ∼ 100)

and only when using a few processors. The memory scaling was also poorer. For these

reasons this optimization scheme was abandoned.
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5 Conclusions

On the one hand Fig. 2 is very encouraging since it affirms that the parallel code

does have the expected convergence. And additionally, the more qualitiative explosion

test appears accurate, but table 1 shows a rather troubling superlinear speedup. Upon

further investigation it was learned that the convergence, although near-perfect for 16

processors, contrary to expectations the same is not true of 64 processors.

The best explanation is that something is lowering the precision of the exchanges for

p > 16. The effect is such that though each processor is successfully communicating with

the others, the accuracy only increases as if just processor were working in isolation. In

other words, there is a point where adding processors and correspondingly increasing

the problem size does not increase the overall precision of the calculation.

The primary evidence for this is in the parallel completion time, which can only be

explained by analogy to the serial algorithm working on an N/
√

p · N/
√

p domain. Ts

was measured to be Ts = 10−5N−2.7 so the “isolation problem” would involve completion

times of order Ti = 10−5(N/
√

p)2.7. For 64 processors and the associated problem size

in the table Ti evaluates to 16.322 seconds. The measured completion time Tp is 36.5

seconds, which is much faster than the theoretical minimum of 69.9 seconds.

Though this failure is disappointing, the success of the 16-processor convergence

affirms that the code is potentially accurate enough to do science, albeit restricted to

that many processors. This project has been my first exposure to MPI programming,

and has involved writing by far the largest code I’ve ever written. To know that it is

scientifically viable in some way and to have some understanding of what prevents the

code from reaching higher accuracy is enormously satisfying. This project represents a

huge leap in my programming skills relative to the beginning of the quarter.
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