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Abstract

Extrasolar planet searches have found a statistically significant number of systems with

gas-giant planets orbiting at distances closer than that of Mercury in our own solar

system. Our current understanding suggests that these planets do not form there, instead

a protoplanetary core will migrate to those positions through interactions with the the

protoplanetary disk. This study is an extension of 2-D hydrodynamic simulations of

this phenomena presented in Josef Koller’s PhD. thesis, “Potential Vorticity Evolution

in the Co-orbital Region of Embedded Protoplanets,” with the motivation to resolve

convergence issues in the plot of the azimuthally averaged potential vorticity of the

disk which strongly affect the torque evolution of the protoplanet. Higher resolution

simulations using more robust codes have shown that the vortex production does not

occur in the same location that the previous simulations suggest, and that the lack

of convergence was due to unresolved structure in the co-orbital region. There are still

other numerical concerns, but an important feature of the azimuthally averaged potential

vorticity is now understood.



1 Introduction

As of July 2004, 123 planets outside of our solar system have been discovered (The

Extrasolar Planets Encyclopedia 2004). This has sparked considerable interest in the

public and astronomers alike of the nature of these newly discovered worlds, and the

possibility of better understanding the origins of our solar system as well as the allure

of discovering earth-like planets and perhaps eventually detecting life.

The technique responsible for the success of extrasolar planet searches is the Doppler

shift method. The tug of the planet in orbit around the star causes minute changes in

the wavelength of the star’s spectral lines which are detectable from earth. Although the

Doppler shift method is particularly sensitive to finding large planets in close orbits to

the parent stars, there appears to be a statistically significant number of systems with

gas-giant planets orbiting at distances closer in than the orbit of Mercury to the sun.

(Udry et al. 2003)

Our current understanding suggests that gas-giant planets form from gravitational

accretion onto a small rocky core about ten times the mass of the earth. This proto-

planetary core is embedded in a disk of gas and dust, at distances comparable to the

orbits of Jupiter and Saturn. Thus the problem of explaining the surplus of gas-giants

in close orbits involves explaining the migration of the protoplanetary core from those

distances to the scorchingly hot orbits where planets have been found.

There has been a number of studies, both analytic and numerical to investigate the

gravitational torque on the protoplanetary core in the disk and infer the timescale of

migration. Gravitational scattering has been considered. This can can occur when an

asteroid is deflected to the outer solar system by Jupiter, for example. As a result,

Jupiter inches closer to the sun from conservation of momentum. It is thought that this

effect, or interactions with other planets is not strong enough to explain tight orbits
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Figure 1: A snapshot of a protoplanetary disk simulation from Josef Koller’s Ph.D.

Thesis. Color indicates potential vorticity, (∇×v)/Σ where v is the velocity vector and

Σ is the surface density. The planet is located at ∆r = 0, φ = 0. Vortices can be seen

that make close encounters with the planet causing rapid oscillations in torque. (Figure

courtesy of Josef Koller)

of extrasolar planets. The interactions with the disk are likely the primary cause of

migration. (Koller 2004 and references therein)

From modeling of infrared, radio and optical observations, the disk is semi-empirically

estimated to have a lifetime between 106−107 years (Hollenback et al. 2000) which places

another constraint on migration scenarios. Josef Koller’s 2004 Ph.D. thesis, “Potential

Vorticity Evolution in the Co-orbital Region of Embedded Protoplanets,” provides a

good review of the literature on protoplanetary migration. The results presented here

are an extension of that numerical work at higher resolutions motivated by some very

important convergence-related issues which strongly affect the torque on the planet.

(Josef Koller will often be abbreviated JK in this report.)
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Josef conducted “brute force” 2-D hydrodynamic simulations of a protoplanetary core

embedded in a disk to investigate the role of vortices on the torque evolution and studied

a quantity called potential vorticity to better understand the disk dynamics. Among his

results was the conclusion that the torque evolution consisted of three phases. In phase

I, the planet core experienced negative torques modulated by a period similar to the

libration period. (τlib =
√

4/27µ ∼ 40P where P is the period of the planet. This is the

same period as particles orbiting around the Lagrangian points, L4 or L5.) In phase II,

JK found that vortices appeared which periodically on their orbits make close encounters

with the planet and cause rapid fluctuating impulses of torque. In phase III the vortices

merge into one and impart stronger torque impulses at a slower period. Unfortunately,

the results of resolution tests were not conclusive that the physics of the region where

the vortices were being generated was well understood. Hui Li and I extended Josef’s

work to higher resolutions with a more robust and modern code to better understand

the region where vortices were emerging. We found that the vortices seen in JK’s thesis

were generated in regions with important underresolved fine structure, and were not seen

in higher resolution simulations. In Section 2, a more detailed description of the disk is

given, and in Section 3 potential vorticity is defined and its value to understanding the

disk dynamics is explained. In Section 4 the results from our extension of JK’s work

is presented and in Section 5 unresolved issues and future work is discussed. Section 6

restates the conclusions of our study.

2 Disk Dynamics and Features

In Fig. 2 the disk density is shown to give a more physical picture of the disk and

the protoplanet. Following the conventions of JK’s thesis, the disk can be divided into
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Figure 2: The disk density is shown with a more physically intuitive visualization than

representations like Fig. 1. (Figure courtesy of Josef Koller)

three regions: the streaming region |∆r| >
√

12rH (where rH is the Roche lobe radius,

which is the point where tidal forces are strong enough to rip apart a satellite with no

cohesion), the separatix region rH < |∆r| <
√

12rH and the horseshoe region |∆r| < rH .

The motivation for dividing the disk in this way is also apparent in the potential

vorticity (PV) which is the curl of the velocity field (always in the z direction in 2-D)

divided by the density. Potential vorticity is presented in Fig. 3 (as well as in Fig. 1 to

show the presence of vortices in JK’s study). The PV shows important features such as

the gas streaming close by the planet at φ = π. Another important feature is the spiral

shock waves caused by the planet’s motion through the disk.

Initially the disk is given a Keplerian angular velocity profile, with the radial velocity

component of the gas set to zero. The density is set so that the PV is approximately

constant over the disk. The planet’s gravitational potential, which is smoothed to pre-

vent a numerical singularity and corrected for 2-D by considering that the disk has a

4



Figure 3: A potential vorticity snapshot of the entire disk. The streaming region is

defined as |∆r| >
√

12rH , the separatix region from rH < |∆r| <
√

12rH and the

horseshoe region from |∆r| < rH .

definite scale height. The planet potential is activated over the first few orbits to prevent

the disk from being disrupted by a sudden presence of the planet.

The codes used in these simulations solve the equations of hydrodynamics:

∂Σ

∂t
+ ∇ · (Σv) = 0 Continuity Equation (mass conservation) (1)

∂Σv

∂t
+ ∇ · (Σvv) = −Σ∇Φ −∇P Momentum Equation (2)

where Σ is surface density, P is pressure, Φ is the gravitational potential from the star

and planet, and v is the velocity vector. The energy equation is not considered since it

is assumed that the disk is isothermal. This is equivalent to assuming that the radiation

from the star keeps the disk at a constant temperature and that the heating within the

disk is radiated away instantly. It is also important to note that the disk is considered

in the inviscid limit. Both the simulations in this study and in Josef’s thesis share the
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same initial conditions, assumptions and geometry; only the codes and resolutions differ.

3 Potential Vorticity (PV)

Potential Vorticity is considered an important diagnostic for investigations of disk dy-

namics because in an inviscid disk it should be conserved in areas without shocks. This

result is derived by first taking the curl of the momentum equation (Eq. (2)). It is

perhaps useful to first restate the momentum equation,

∂v

∂t
+ (v · ∇)v = − 1

Σ
∇P −∇Φ (3)

and taking the curl becomes,

∂ω

∂t
−∇× (v × ω) =

∇Σ ×∇P

Σ2
(4)

where the vorticity is defined ω = ∇ × v and the gravitational term has dropped out

since ∇× (∇Φ) = 0. The source term on the right hand side of Eq. (4) is normally zero

except in a shock where pressure and density gradients will be misaligned. When this

source term is zero the gas is referred to as having a barotropic equation of state. It is

also worth noting that the mathematics and concepts behind Eq. (4) are applicable to

flux freezing in magnetohydrodynamics, and the Biermann Battery (discussed in Orban

2004).

In barotropic conditions the vorticity equation can be manipulated to become,

∂ω

∂t
+ (v · ∇)ω − (ω · ∇)v + ω(∇ · v) = 0 (5)

while the continuity equation (Eq. 1) can be rewritten as

∂Σ

∂t
+ Σ · (∇ · v) + v · ∇Σ = 0. (6)

Except near shocks or compression ∇·v, is usually zero. (The minimum of ∇·v at each

radius was actually used to find the site of the shock in the next section. Physically this
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is the site of maximum compression. The assumption that ∇ · v = 0 is equivalent to

assuming that the gas is incompressible.) Substituting ∇ · v = 0 into Eqs (5) and (6),

and acknowledging that in 2-D the vorticity only has a z component, can be used to

simplify those equations:

∂ω

∂t
+ (v · ∇)ω = 0 (7)

∂Σ

∂t
+ v · ∇Σ = 0 (8)

using (w · ∇)v = 0 from the 2-D restriction. The vorticity, ω, can now essentially be

treated as a scalar, and by dividing Eq. (7) by Σ, and multiplying Eq. (8) by ω/Σ2,

setting them equal to each other (they are both equal to zero after all) and doing some

manipulation the following equation can be obtained,

∂

∂t
(
ω

Σ
) + ∇ · (ω

Σ
v) = 0 (9)

which bears striking resemblance to the continuity equation. Essentially, the quantity

ω/Σ is conserved a similar way that mass is conserved if there are no shocks around.

In Josef Koller’s thesis a more detailed derivation is given that even lifts the ∇ · v = 0

restriction, but has the same qualitative conclusion.

With this knowledge it is useful to glance back at Figs. 1 and 3 and note that

if vortices are present they will have constant constant PV except in periodic passes

through the shock. Also notice that most of the PV is generated in the spiral shock

waves. An azimuthal average of the PV across the disk as shown in Fig. 4 is also

useful. It confirms that the spiral shocks deposit potential vorticity in the streaming

regions, but also shows that the vortices emerge from regions where the azimuthally

averaged PV has a valley. Though more quantitative treatment is given in the next

section, the most troubling result from JK’s thesis was the lack of convergence of these

valleys. High resolution simulations presented in the next section have shown that the
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Figure 4: Azimuthally averaged potential vorticity for 200x800, 300x1200, and 400x1600

resolutions from Josef Koller’s thesis work. The vortices seen in Fig. 1 originate in the

valleys near ∆r = ±2rH . The lack of convergence of the valleys is concerning for

understanding the physics of this region. (Figure courtesy of Josef Koller)

valley disappears, and has also brought to light the reasons for this effect, which is due

to the convergence of some of the finer structure of the shock.

It is important to mention here that vorticity and potential vorticity are difficult

quantities. Vorticity itself is calculated from derivatives of the velocity field which creates

error through the nature of finite differencing and by dividing vorticity with a density

field as shown in Fig. 5. Even two smooth vorticity and density distributions can create

what appear to be oscillations in PV. We do not find that these sorts of issues to detract

from the results presented here, or cast doubt on the accuracy of the codes, but it is

frustrating that quantities as valuable as vorticity and PV suffer from these numerical

effects.
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Figure 5: The vorticity, density and potential vorticity profiles through a shock at

constant radius (∆r = −2.5rH) is shown. The smooth vorticity and density profiles do

not create a smooth potential vorticity profile.

4 Primary Results

The high resolution simulations present two main puzzles: in the azimuthally averaged

PV plot (shown in Fig. 6) the valleys completely disappear, and in Fig. 7, a snapshot

of PV at the same time, a distinct “finger” of PV extends from the spiral shock wave

at ∆r = ±3rH into the separatix region. This feature does not appear in Figs 1 and 4

which are from JK’s thesis work.

A few important questions can be asked about this feature: Is it a shock? If so, how

strong is it and where does it start? And since PV is conserved why doesn’t the finger

heavily pollute the separatix region with PV?

To answer any of these questions a reliable way to locate the shock position and finger

must be found. In JK’s thesis the maximum density at each radius was used to do this,

but at higher resolutions the minimum of ∇·v, in other words the maximum compression,

was found to locate the shock and finger more accurately than the maximum density.

Figure 9 contrasts the shock positions as determined by these methods. It is apparent

that ∇ · v is a better indicator for |∆r| < 3rH. The max density method is strongly

affected by the overdensity of material held in the planet’s gravitational potential.
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Figure 6: The azimuthally averaged potential vorticity for 200x800 (red), 400x160 (blue),

and 800x3200 (green) resolutions is shown for one side of the planet after 100 orbits.

Figure 7: A potential vorticity snapshot of the disk including velocity vectors for the

800x3200 run after 100 orbits.
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Figure 8: One the left the shock positions determined by ∇ · v and maximum density

near the planet are indicated with potential vorticity in the background. The shock

position determined by the max density goes through the center of the planet, while the

∇ · v tracks the finger rather well. The right side shows a snapshot of ∇ · v in the same

region.

With the spiral shock wave and finger position determined, the relative speed of the

incident gas on this boundary can be determined. If this relative speed exceeds the

sound speed, which is constant across the disk, then a shock is present. A plot of the

perpendicular Mach number, M⊥, verses radius is shown in Fig. 9. From this plot it is

learned that M⊥ stays below 1.5 so it is not an extremely strong shock, and that the

shock starts possibly as close as −1.5rH . The scatter of ∇ · v in Fig. 8 casts doubt on

the precise distance where the shock starts, but it is still apparent that the fingers of

PV are in shocked regions.

This result makes the question of why the finger does not pollute the separatix region

more perplexing since a shock is present so PV is being generated there. A plot of the

streamlines is very illuminating to this issue. Figure 10 shows the streamlines near the

planet. The planet’s gravity attracts the gas and deflects it closer to the planet, but it

returns to essentially the same orbit after the encounter. Streamlines that are deflected
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Figure 9: The perpendicular Mach number for the incident gas on the shock boundary

determined with ∇·v. The gas becomes supersonic near −1.5rH , so the finger is definitely

in a shocked area.

through the finger clearly return to the streaming region where the high PV is seen.

Potential vorticity is not deposited in the separatix region.

The vorticity jump across a shock can be calculated with a very useful result from

Kevlahan (1997),

∆ω = − δ2

1 + δ

∂v⊥
∂τ

(10)

where δ = Σ2/Σ1 − 1, and Σ2 corresponds to the density in the post shock region,

while Σ1 corresponds to the pre-shock region. The ∂v⊥/∂τ term the derivative of the

perpendicular component of the wind tangential to the shock. Since Σ2/Σ1 = M2

⊥
,

Eq. (10) can be rewritten,

∆ω = −(M2

⊥
− 1)2

M2

⊥

∂v⊥
∂τ

(11)

This equation can be used to better understand the azimuthally averaged PV plot in

Fig. 7. The flat profile for ∆r > −2rH can be explained since even if the shock starts
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Figure 10: Streamlines are shown in green over the PV for an 800x3200 run. The

streamlines show that the gravitational potential of the planet bends the path of the gas

streaming past the planet, but after the encounter the gas returns to roughly its original

radius. This explains why the finger does not severely pollute the separatix region with

PV.

13



Figure 11: Potential vorticity snapshots of the planet region for 200x800, 400x1600, and

800x3200 resolutions after 100 orbits. Notice that the large blue negative PV regions

near the planet in 200x800 grow smaller with increasing resolution. This effect is the

key to explaining the lack of convergence of the azimuthal average PV from simulations

in Josef Koller’s thesis work such as Fig. 4.

as close as −1.5rH the streamlines will carry PV further away, and closer in to the

planet there is no shock, so there should not be a vorticity jump. The ∂v⊥/∂τ term is

proportional to the vorticity jump and can be determined from the plot of M⊥ verses

∆r in Fig. 9 and compared to Fig. 6. The peak in Fig. 9 at ∆r = −5rH lines up with

the zero crossing in Fig. 6, and a large negative slope around −4rH matches up with the

peak in Fig. 6. These points seem to be well understood in the azimuthally averaged

PV. This correspondence was also noticed in JK’s thesis.

Comparing Fig. 6 to Fig. 4 taken from JK’s thesis, the 200x800 and 400x1600 runs

in Fig. 6 show similar features as those in JK’s simulations, but in the 800x3200 run

the valley has disappeared. The finger is present near the same position where valleys

appear in the lower resolution runs. Snapshots of the PV near the planet are presented

for different resolutions in Fig. 12. As the resolution increases, the structure becomes

more defined, but it is also apparent that the “blue area” behind the finger grows

smaller with increased resolution, and is quite large in the 200x800 run. This effect is
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responsible for the convergence in Figs. 4, and 6. Since the blue area is large in the

200x800 resolution shown in Fig. 11, this creates a corresponding dip in the azimuthally

averaged PV. In 400x1600 the blue has shrunk, but is still significant enough to cause

a noticeable dip, and in 800x3200 it has nearly disappeared. This result is also seen by

averaging the PV only over the azimuth in the vicinity of the planet. Essentially the

same profile is seen, but is shifted closer to the planet because of gravity. There are

no other sources of PV in the separatix region, so the profile is largely the same shape

through the rest of the disk.

The disappearance of the valley at high resolutions implies that the vortices seen

in JK’s simulations were generated in areas suffering from now understood numerical

effects. This has important ramifications for the torque on the protoplanet which is

thought to be primarily caused by interactions with these vortices. It remains to be

seen if the high resolution simulations presented here carried out to longer times would

eventually create similar behavior in the torque evolution since it is expected that vortices

will be generated from the other peaks and valleys of the azimuthally averaged PV, but

after a longer time.

5 Unresolved Issues and Further Work

With the capabilities of the codes used in this research combined with the insight gained

from analytic expressions such as Eqs. (9) and (11), many other explorations of disk

physics with embedded protoplanets can be accomplished. In JK’s thesis, multiplanet

simulations were investigated as well as the effect of varying a variety of disk constants

such as sound speed, and the mass ratio of the planet to the star (which was always

taken to be 10−4 in this study).
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Josef mentioned that lifting the requirement that the planet be fixed at a certain

radius allowing it to actually migrate may find more complicated interactions between

the planet and the disk. The torque evolution could be also investigated at higher

resolutions as mentioned in the previous section.

In this study the sound speed was set to 0.065 which is large enough to prevent

the spiral shock wave from originating near the planet so that the focus remains on

understanding the shock wave itself rather than the interactions between the shock

wave and the planet’s roche lobe region. A wider range of sound speeds were considered

in JK’s thesis. There is no lack of interesting ideas for future studies.

Despite this optimism there are still some unresolved numerical issues. The most

concerning is the growth rate of the Azimuthally averaged PV. Figure 12 plots the PV

growth of the peak of the azimuthally averaged PV plot as time evolves. The slope

continues to rise for higher resolutions instead of converging. This problem was already

apparent in Figs. 4 and 6.

The simulations presented here use a total variational diminishing code (TVD) de-

veloped by Shengtai Li at Los Alamos National Laboratory. The simulations in JK’s

thesis used a highly optimized hybrid Lax-Wendroff/Lax-Friedrich code. A classic test

of hydrodynamics codes is its ability to capture shocks. The two can be compared by

viewing the vorticity profile at constant radius across a shock in the protoplanet setup.

This is shown in Fig. 13 for the TVD code and a pure Lax-Wendroff code. It is obvious

that TVD does a much better job at capturing the shock.

Another concerning numerical issue is PV generation from the planet itself. The

planet’s presence is only communicated to the disk by its gravitational potential which

should not introduce PV since ∇×(∇Φ) = 0, but in Fig. 14, an early PV snapshot (after

20 orbits), it is obvious that PV is being generated there. The azimuthally averaged PV
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Figure 12: The growth rate of the peak of the azimuthally averaged potential vorticity.

The y-axis unit is the difference in potential vorticity from the value at 20 orbits. Circles

mark the measurements from the 200x800 simulations, diamonds for 400x1600, and

pluses for 800x3200.

Figure 13: The vorticity profile across a shock in the protoplanet setup at constant

radius. The left plot shows the output from the TVD code, and the right plot shows

output from a pure Lax-Wendroff method. The Lax-Wendroff method suffers from severe

oscillations.

17



Figure 14: The potential vorticity from the 800x3200 run after 20 orbits is shown. High

potential vorticity is seen near the planet, and streaming away from it, indicating that

potential vorticity is being generated there- a purely numerical effect.

does appear to be very sensitive to this effect, but nonetheless special treatments of the

gravitational potential may be able to prevent it.

6 Conclusions

Further investigations of disk dynamics with an embedded protoplanet have been con-

ducted to address convergence issues in the simulations in Josef Koller’s PhD. thesis.

More modern and robust codes were used at high resolutions to show that the lack

of convergence is due to unresolved structures in the co-orbital region. At the highest

resolution the “valley” in the azimuthally averaged potential vorticity where vortices

previously emerged has disappeared. This discovery has important consequences for the

torque evolution of the protoplanet since close interactions with vortices would cause

large impulses of torque. Some numerical issues still exist such as the convergence of
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the growth rate of potential vorticity and generation of potential vorticity at the planet,

but the mystery of the convergence issues in Josef Koller’s PhD. thesis has been solved.

Much thanks goes to my adviser, Hui Li, for his mentoring and patience and to the

T-6 group at Los Alamos National Laboratory for supporting me.
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7 Appendix A

All of the analysis presented in this report was done in MATLAB. A number of scripts

have been developed and are accessible as world readable from the home directory of

corban in T-6 and T-7. Until December 2004 the scripts are also posted to the web at

netfiles.uiuc.edu/corban/www/Orban scripts.tar. They are designed to create

plots from the ASCII data output of the protoplanet simulations and are fairly well

commented. Scripts rather than functions are used so that the matrices that are loaded

globally and can be accessed by the user after the script is run.

Script Name Description

planet2.m The swiss army knife of scripts. Can create 21 different plots from the

data. Ex: Fig. 2, 6, 7, 14. Consider planet2 lean.m for large data sets.

growth res.m Used in conjunction with growth.m to create plots of the growth rate

of the potential vorticity. Ex: Fig. 12.

snapshots PV.m Used to create a collage of snapshots of the potential vorticity at

different resolutions and times. The HTML file, collage.html, is a

convenient display of the output of this plot (which are jpeg images).

Ex: Fig. 12

vorticity quant 2x8.m, These scripts create M⊥ vs r plots for different resolutions, such as

vorticity quant 4x16.m, Fig. 9. There is not a general code for the three resolutions since

vorticity quant 8x32.m the polynomial fit often needs to be checked by the user. An

uncertain shock position close to the planet can lead to strange

results. Use snapshots Merp.m with collage Mperp.html to make this

plot for a variety of resolutions and times automatically.
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