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Abstract



1 Introduction

Understanding galactic magnetic fields is one of the most interesting theoretical and

observational challenges in modern astrophysics. Radio astronomy has revealed a fas-

cinating variety of strengths and distributions in the magnetic field structures of other

galaxies (Beck 2000). The magnetic field of our galaxy can be mapped with other meth-

ods, revealing complicated magnetic loops, small scale structure, and reversals on large

scales (Binney and Merrifield 1998). Magnetic fields are also a relevant parameter in

star formation.

Observations of spiral galaxies, which have magnetic field strengths ranging from

5− 15 µGauss, can be explained with the αω dynamo model. It suggests that presently

observed magnetic fields are the result of the amplification of large scale toroidal and

poloidial modes of the magnetic field over time. Turbulence combined with the differen-

tial rotation of the galaxy stretches flux lines causing this amplification (Widrow 2002,

Orban poster presentation 2004). However, the αω dynamo only explains the mechanism

for amplification. It does not explain the origin of the field which is amplified. Thus a

“seed” field to the dynamo must be explained.

A variety of candidates for this seed field have been proposed. Cosmological magnetic

fields from phase transitions in the early universe have been considered, but observations

of the cosmic microwave background are not sensitive enough to place tight limits on the

magnetic field contributions of such exotic mechanisms. Ejection of magnetic flux by jets

from super-massive black holes in active galactic nuclei (AGN) are strong candidates for

the seed field, but so far only order-of-magnitude estimates have been made. (Widrow

2002)

The Biermann battery is also a strong candidate for the seed field. This effect

generates magnetic fields when shocks in the gas cause the ions and electrons in the
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plasma to separate, generating currents and hence magnetic fields (Biermann 1950).

This model is particularly attractive since the seed field in the protogalaxy is generated

from simple plasma physics alone, rather than by complex interactions with a jet from

an AGN or an external field.

Simulations of the Biermann battery in protogalaxies have indicated that the battery

is viable as a candidate for the seed field but more physics needs to be taken into

account, and higher resolution achieved (Davies and Widrow 2000), (Ricker, Widrow and

Dodelson 2001). Advances in numerical methods, such as adaptive mesh refinement, and

advances in computing power have allowed the physics of protogalaxies to be simulated

more precisely. We present results from FLASH, an astrophysical code maintained and

developed by the University of Chicago, used to simulate a protogalaxy and estimate

the magnitude of the Biermann battery.

2 Procedure

A simple numerical model was evolved using FLASH to simulate the gravitational col-

lapse of a protogalaxy. The protogalaxy is treated as a prolate or oblate spheroid of gas

(ellipticity = 0.6) with primordial H and He abundances and a dark matter halo. It is

placed in an expanding universe with cosmological parameters, h = 0.7, Ωm = 0.3, ΩΛ

= 0.7. A visualization of the prolate spheroid is shown in Fig. 1.

The gas is initialized on a Cartesian grid with values of density, temperature and

velocity associated with each cell. The gas density distribution through the spheroid

is initially uniform. The dark matter halo is simulated with millions of particles that

interact gravitationally with the gas and with each other with no collisions. Values of

position and velocity are stored for each one. They are also initialized with a uniform
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Figure 1: A visualization of the initial prolate spheroidal gas distribution in the pro-

togalactic collapse simulation. The spheroid has an ellipticity of 0.6 with the longer

dimension along the z-axis.

density distribution. The particles were evolved with a cosmological leapfrog integra-

tion scheme (Ricker et. al. 2004 in preparation) which treats the particle kinematics in

co-moving coordinates. The multipole poisson solver was used to determine the grav-

itational potential at each step. This solver is useful for spherical or nearly spherical

problems.

The mass per particle varies with the mass of the protogalaxy (an independent vari-

able) and the total number of particles which is limited by practical considerations of

computer memory. In our simulations the practical limit to the number of particles is

on the order of millions, which corresponds to a particle mass of order 1040 g. Leading

theories and observations seem to support the idea that dark matter is composed of

some sort of gravitationally interacting fundamental particle. Despite the many orders

of magnitude difference that likely exists between the mass of the simulated particles and

the much smaller mass of the dark matter particles, the approximation can be thought
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of as a Monte Carlo integration of the actual distribution of the dark matter particles.

The details of individual particle trajectories are unimportant for the problem at hand.

The gas is evolved using the Piecewise-Parabolic-Method (PPM) which is known to

accurately handle shocks (Colella and Woodward 1984). This is an important concern

since the Biermann battery generates magnetic fields in shocks. Taking advantage of

similarities between the equations of magnetohydrodynamics and hydrodynamics (dis-

cussed in Davies and Widrow (2000) and Orban preliminary summer report (2004)) the

magnetic field can be inferred from the gas dynamics for weak magnetic fields when

the magnetic field pressure is overwhelmed by the gas pressure. In those cases a simple

relation between the magnetic field and the curl of the velocity field, also referred to as

the vorticity is found,

B = αω (1)

ω ≡ ∇× v (2)

where α is a constant ω is the vorticity, and v the velocity field. The vorticity of the

gas is calculated from the numerical curl of v using centered differencing,

ω =
(vx(i + 1, j) − vx(i − 1, j))

2∆x
+

(vy(i, j + 1) − vy(i, j − 1))

2∆y
. (3)

The remaining details of the gridding, parallelization, and code structure are taken

care of with FLASH. PARAMESH, an adaptive mesh refinement package, is utilized by

FLASH to organize the computational domain in such a way that the resolution scales

to interesting areas of the simulation. Figure 2 is provided as an example of FLASH

output highlighting this feature.
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Figure 2: A bow shock simulation with FLASH. Overlaid blocks reveal how the resolution

varies in the simulation.

3 Analysis of a 2-D Bow Shock

With the goal of testing the accuracy of vorticity generation, a simple 2-D bowshock

simulation was simulated with Mach 3 wind incident on a reflecting step. The bow shock

that develops can be compared to analytic solutions. Figure 3 shows a density plot of

the bow shock after the shock front has stabilized for the highest resolution run. A test

particle is shown to illustrate deflection through the shock.

The data presented here are conclusions from runs at four different levels of refine-

ment. The effective resolution is the equivalent uniform-mesh resolution achieved by the

the adaptive mesh refinement.
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Figure 3: A density plot of a 2-D bow shock simulation. Mach 3 wind is incident on

a reflecting step for the highest level of refinement simulated. A particle trajectory is

shown to illustrate deflection.

Table 1. The effective resolution for each run.

xcells ycells

lrefine = 2 240 144

lrefine = 3 480 288

lrefine = 4 960 576

lrefine = 5 1920 1152

3.1 Rankine-Hugoniot Jump Conditions

The Rankine-Hugoniot jump conditions are the simplest test of a code’s ability to capture

shocks. By combining the equations of mass and momentum conservation across the

shock, given the pre-shock density and pressure as well as the shock speed (i.e. the wind

velocity), predictions of the post-shock density, pressure and temperature can be made.

At the leading edge of the shock front (i.e. at the point (0.5,0.9) in Fig. 3) because

of symmetry the Rankine-Hugoniot jump conditions can be simplified to 1-D to predict
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the density, pressure and temperature immediately behind the shock front. For an ideal

gas where ρwind, Pwind, and Twind denote the pre-shock values and ρshock, Pshock, and

Tshock denote post-shock values, the Rankine-Hugonoit jump conditions become

ρshock

ρwind

=
(γ + 1)M2

(γ − 1)M2 + 2
(4)

Pshock

Pwind

=
2γM2

− (γ − 1)

γ + 1
(5)

Tshock

Twind

=
[2γM2

− (γ − 1)][(γ − 1)M 2 + 2]

(γ + 1)2M2
(6)

where M represents the Mach number and γ represents the ratio of specific heats for

the gas. The Mach number was set to 3 in these simulations and γ was set to 1.4,

which is similar to air. The code does a very good job of ensuring the accuracy of the

Rankine-Hugoniot jump conditions for the 1920x1152 run. The lower resolutions give

similar results.

Table 2. A comparison of analytic values by the Rankine-Hugoniot jump conditions

and measured quantities for the 1920x1152 run.

Wind Shock Analytic Shock measured % Difference

Density 1.4 5.4 5.41351 0.25

Pressure 1.0 10.3333 10.3875 0.5

Temperature 85.9083 230.1494 230.777 0.27

3.2 An Analytic Expression for the Peak Pressure

In the textbook, Fluid Mechanics by Landau and Lifshits, an expression for the peak

pressure at the leading end of a round body in a bow shock is derived. Their expression

is general to a square obstacle so the pressure at the center of the reflecting face of the

step (i.e. the point, (0.6,0.9)) can be analytically determined.

Pbody = Pwind

(

γ + 1

2

)
γ+1
γ−1 M2

(γ − (γ − 1)/2M 2)
1

(γ−1)

(7)
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The derivation utilizes the fact that a streamline passing through the center of the bow

shock would cut perpendicularly through the shock and terminate at the body.

The analytically estimated pressure at this point was Pbody = 12.0610 for lrefine = 5

and the measured was P = 12.0588, a difference of 0.02%.

3.3 Vorticity Generation

Since vorticity generation is incredibly important to understanding the magnetic fields

generated by the Biermann Battery, an analytic result for the vorticity jump across a

shock was used to check the accuracy of the code in generating vorticity across the bow

shock. The vorticity jump follows the relation derived in Kevalahan (1997),

∆ω = −
δ2

1 + δ

∂v⊥
∂τ

(8)

where δ = ρshock/ρwind − 1. For a steady bow shock this equation simplifies to

∆ω = vwind

δ2

1 + δ
sin θ

∂θ

∂S
(9)

where θ is the angle that the normal to the shock front makes with the x-axis. The

shape of the bow shock determines the values of sin θ and the curvature, ∂θ/∂S (where

S is the is the distance from the shock front along the normal). In analysis a 10th order

polynomial fit the shape of the shock front was used to infer these values. The densities

in the δ variable were sampled ahead and behind the shock along the normal to the

shock front. A snapshot of the vorticity after the bow shock has stabilized is shown in

Fig. 4.

A comparison of the measured vorticity jump to this analytic expression is shown in

Fig. 5. The measured vorticity jump was calculated as the difference in the vorticity

variable from ahead of the shock and behind it along the normal to the shock front (at

the same sites where the density is sampled for δ).
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Figure 4: A snapshot of the vorticity in a bow shock simulation at the highest level of

refinement.

Figure 5: Covergence of the vorticity jump and comparison to an analytic expression.
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The results of Fig. 5 are a bit suprising. Overall the measured vorticity jump follows

the analytic values, and becomes less noisy with increasing resolution, but the features

near 0.7 cm and 1.1 cm persist at high resolutions- a strange result from a smooth-looking

shock.

These results are primarily caused by two factors: the pixelation of the shock front

and noise from the finite differencing used to determine the vorticity. A closer inspection

of Fig. 4 reveals that the pixelation of the shock front creates a sort of rippling effect in

the vorticity near the y-values where these features are seen. Figure 6 presents a closer

view of the problem.

It is also important to note that error from the higher order terms ignored in the

finite differencing also add to the overall noise.

The carbuncle phenomenon was also considered as a possible source of error. The

carbuncle phenomenon is a numerical instability that hinders efforts to simulate shock

waves in a variety of codes (Dumbser et al. 2003). A severely distorted shape of the

shock front is the most recognizable sign of this effect. The cause of the instability,

as discussed in Gressier’s 1999 Ph.D. Thesis and Mochetta et al. 1995, is due to the

eigenvalue of the mode of the vorticity wave.

Though this fact certainly raises an eyebrow in light of the results shown in Fig. 4,

the carbuncle phenomenon is not a significant effect in these bow shock simulations for

the following reasons:

1. The carbuncle phenomenon is more likely to appear in high-Mach number flows

(Quirk 1994). The numerical issues in the measured vorticity still persisted at

M = 1.05.

2. The shock front is not deformed.
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Figure 6: A closer view of the central section of the bow shock from Fig. 4. The shock

front creates unphysical ripples of vorticity which explain features near y = 0.7 cm and

1.1 cm in Fig. 5.
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3. The carbuncle phenomenon is more of a concern when the shock is grid-aligned,

which is not the case in these simulations.

Despite this conclusion, the recommended remedy for the carbuncle phenomenon–

using a Riemann-HLLE solver on the site of the shock (Quirk 1994)– was still useful

for the bow shock simulations, and was already built into the FLASH code. When

applied to the bow shock simulation it attenuated the features near y = 0.7 cm and

1.1 cm of in measured vorticity jump without significantly increasing computation time.

This technique was applied to all of the bow shock simulation results presented in this

section. It should be mentioned that the carbuncle phenomenon is a member of a family

of “odd-even” problems. The odd even problem in the default FLASH installation is

provided as a test case to illustrate this effect.
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