LEARNINE MAYA

LEARNING MAYA 2

© 1999, Alias I Wavefront, a division of Silicon Graphics Limited. Printed in U S A, All rights reserved.

Education Publishing Group:

Steve Christov, Deion Green, Bob Gundu, Robert Magee, Elizabeth Mastrotucci, Carla Sharkey

Special thanks to:

Padmé Amidala, Don Chong, Bruce Darrell, Dallas Good, Shawn Dunn, Haskell Friedman, Alan Harris, Steve Hinan, Lincoln Holme, Jill Jacob, Lisa Kelly, Nicholas Li, Cory Mogk, Remko Noteboom, Alan Opler, Lorna Saunders, Jason Ungerman

The following are trademarks of Alias | Wavefront, a division of Silicon Graphics Limited:

Advanced Visualizer ${ }^{\text {TM }}$	Alias PowerTracer ${ }^{\text {TM }}$	Explore ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ PowerModeler
Alias® ${ }^{(1)}$	Alias QuickRender ${ }^{\text {TM }}$	Kinemation ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ Unlimited
Alias Metamorph ${ }^{\text {TM }}$	Alias QuickShade ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ Artisan	SuperConductors ${ }^{\text {TM }}$
Alias MotionSampler ${ }^{\text {TM }}$	Alias QuickWire ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ Cloth	Wavefront ${ }^{\text {TM }}$
Alias MultiFlip ${ }^{\text {TM }}$	Alias RayCasting ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ Complete	Wavefront Composer ${ }^{\text {TM }}$
Alias Natural Phenomena ${ }^{\text {TM }}$	Alias RayTracing ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ Fur	Wavefront Composerlite ${ }^{\text {TM }}$
Alias OpenModel ${ }^{\text {TM }}$	Alias SDL ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ Fusion	Wavefront IPR ${ }^{\text {TM }}$
Alias OpenRender ${ }^{\text {TM }}$	Alias ShapeShifter ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }} \mathrm{F} / \mathrm{X}$	Wavefront MediaStudio ${ }^{\text {TM }}$
Alias OptiF/X ${ }^{\text {TM }}$	Alias StudioPaint ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ Invigorator	Wavefront 3Design ${ }^{\text {TM }}$
Alias OpenRender ${ }^{\text {TM }}$	Conductors ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ Live	ZaP!it ${ }^{\text {Tm }}$
Alias PowerAnimator ${ }^{\text {TM }}$	Dynamation ${ }^{\text {TM }}$	Maya ${ }^{\text {TM }}$ MEL	

Maya is a trademark of Silicon Graphics, Inc. exclusively used by Alias I Wavefront, a division of Silicon Graphics Limited.
Microsoft and Windows NT are registered trademarks of Microsoft Corporation in the United States and/or other countries. Graph Layout Toolkit Copyright „, 1992-1996 Tom Sawyer Software, Berkeley, California, All Rights Reserved. All other product names mentioned are trademarks or registered trademarks of their respective holders.
This document contains proprietary and confidential information of Alias I Wavefront, Inc. and is protected by Federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied, or duplicated in any form, in whole or in part, without the express written permission of Alias I Wavefront, Inc.

The information contained in this document is subject to change without notice. Neither Alias I Wavefront, Inc. nor its employees shall be responsible for incidental or consequential damages resulting from the use of this material or liable for technical or editorial omissions made herein.

Alias wavefront EDUCATION

CロNTENTS

LEARNING MAYA 2 3
How to use this book 4
What you should already know 4
Computer hardware 4
IRIX and Windows NT 4
Maya packaging 4
Installing tutorial files 4
பNDERSTANDING MAYA 5
The user interface 6
Working in 3D 6
UV coordinate space 6
Views 7
Cameras 7
Image planes 8
THE DEPENDENCY GRAPH 8
Nodes 8
Attributes 9
Connections 9
Pivots 10
Hierarchies 10
MEL scripting 11
ANIMATING IN MAYA 11
Keyframe animation 11
Path animation 12
Reactive animation 12
Dynamics 13
MODELING IN MAYA 14
NURBS curves 14
NURBS surfaces 14
Polygons 15
Construction history 16
DEFORMATIONS 16
Lattices 16
Sculpt objects 16

Contents

Clusters 17
CHARACTER ANIMATION 17
Skeletons and joints 17
Inverse kinematics 17
Single chain solver 18
Rotate plane solver 18
IK spline solver 18
Skinning your characters 19
Flexors 19
RENDERING 19
Shading groups 19
Texture maps 19
Lighting 20
Motion blur 20
Hardware rendering 20
A－buffer rendering 21
Raytrace rendering 21
How the renderer works 21
IPR 21
Conclusion 22
PRロ」ECT ロNE 25
LESSロN 1：BロபNCING A BALL 27
Setting up Maya 28
Creating a new project 28
BUILDING OBJECTS 29
Creating the ball 29
Moving the ball 30
Create a floor surface 32
Create a Ring 33
Viewing the scene 34
Setting display options 35
ANIMATING THE BALL 36
Setting keys 36
Conclusion 39
LESSロN 2：ADDING CHARACTER 41
Refining the animated channels 42
Cleaning up your curves 44
SQUASH AND STRETCH 46
Adding a squash deformer 46
Animate the squash 48
Bending the ball 50
Editing timing 52
Conclusion 54
LESSロN 3：RENDERING 55
Hiding the general UI 56
Hotkeys 57
SHADING GROUPS 58
The Hypershade panel 58
Creating a shading group 58
Creating a texture map 59
Creating a ball material 62
Positioning the texture 63
LIGHTING 64
Placing a spot light 64
Rendering the scene 68
Rendering animations 69
Conclusion 71
LESSロN 4：PARTICLES 73
Project set－up 74
Ring of Fire 74
Sparks 76
Designing the look of the sparks 78
Rendering Particles 80
Software rendering 80
Hardware rendering 82
Conclusion 84
LESSロN 5：WaRKING WITH MAYA 85
The Workspace 85
Layouts 86

Contents

View panels 86
View tools 86
Other panel types 87
Saved layouts 87
Display options 88
Texturing and lighting 88
Display smoothness 89
Show menu 90
UI preferences 90
Menus 90
Menu sets 91
The shelf 91
Hotbox 91
Hotbox marking menus 92
Customizing the hotbox 92
Tool manipulators 93
Transform manipulators 93
Using the mouse buttons 94
Shift gesture 95
Set pivot 95
Numeric input 95
Channel box 96
Channel box and manipulators 97
Attribute Editor 99
SELECTING IN MAYA 99
Selection masks 100
The selection user interface 100
Grouping and parenting 100
Selection modes 100
Scene hierarchy mode 100
Object mode 101
Component mode 101
RMB select 102
Combined select modes 102
TOOLS AND ACTIONS 103
Tools 103
Actions 103
A typical action: 2D fillet 104
Conclusion 105
LESSロN 6：THE DEPENDENCY GRAPH 1 ロワ
Hierarchies and dependencies 108
Shading group nodes 110
Making your own connections 111
Adding a texture node 114
Animating the sphere 115
Building scene hierarchies 116
Hiding objects 118
Procedural animation 118
Creating a curve on surface 120
Create group hierarchy 121
Create a path animation 122
Layer the animation 123
Conclusion 125
PRロ」ECT TWロ 129
டESSロN 7：СபRVES AND SபRFACES 131
Set up your project 132
BUILDING THE BOX 132
Setting up the Base 132
Attaching the corner surfaces 134
Creating the top surface 136
Creating the top edge surface 138
Creating middle section 140
Creating the lid 141
The Hinge 143
The Handle 144
Jack＇s body 146
Jack＇s head 147
Adding some color 147
Conclusion 148
LESGロN 8：ロRGANIC MロDELING 149
Getting started 150
Editing Control Vertices 150
USING ARTISAN 152
Setting up the surface 152
Start sculpting the surface 153
The sculpting tools 155
Updating the reference surface 156
Sculpting the eye sockets 157
Sculpting the Nose 159
Sculpting the mouth 159
Finishing touches 160
Conclusion 161
LESSロN 9：ANIMATIロN 163
Adding skeleton joints 164
IK Spline Handle 164
Skinning 166
Set up the joint scaling 166
Constraining the head 168
Set up a character 169
Setting up for animating 171
Animate the Jack in the box 173
Conclusion 176
LESSロN 1 ロ：SECロNDARY ANIMATIロN 177
OVERLAPPING ACTIONS 178
Extending the crank rotation 178
Editing Tangent Weights 179
Overlapping Jack＇s extending 180
Add follow－through to the lid 181
ANTICIPATION 182
Add lattice to box 182
Animate the box deformations 183
Constrain crank to box surface 185
SQUASH AND STRETCH 186
Add squash deformer to head 186
Animate stretching of head 186
Finishing touches 187
Conclusion 188
LESGロN 11：RENDERING 189
CREATE A SIMPLE SET 190
Create a three sided backdrop 190
Add some props 191
A Directional Light 191
Camera setup 192
IPR 193
Lighting 195
TEXTURE MAPS 198
Texturing the wall 198
Texturing the floor 199
TEXTURING THE BASE 200
Projection mapping 200
Texture Reference Objects 201
Rendering the animation 202
Conclusion 203
PRロJECT THREE 2
LESSロN 1 2：PロLYGロNAL SPACESHIP 2
Initial set－up 210
Starting the ship 210
Air intake ports 213
The front cockpit 215
Creating a more organic look 215
Finishing the model 219
TEXTURING THE SHIP 219
Creating the polyShip shading 219
Projecting the texture 221
Mapping the fin 224
Mapping the cockpit 226
Rendering the ship 228
Adding different texture maps 230
Conclusion 233
LESSロN 1 3：NபR日马 SPACESHIP 235
Initial set－up 236
Main thruster 236
Construction history 237
THE HULL 238
Drawing character curves 238
Profile curves 241
Birail surface 242
The side surface 243
Aligning surfaces 246
TRIM SURFACES 249
The back surface 249
A circular fillet 251
The photon recess 253
Building the wing 254
Details 257
Deleting history 258
Grouping the shapes 258
TEXTURING SURFACES 260
Texturing the thrusters 260
Texturing the cockpit 260
Cylindrical projection map 261
Planar projection map 263
Conclusion 264
LESSロN 14: ANIMATING THE SHIPS 265
STARS AND PLANETS 266
Initial set-up 266
Create the starfield 266
Creating three planets 268
Creating the planet textures 268
Create more planet shaders 272
Render the scene 274
THE SPACESHIP SCENE 275
Creating a reference 275
Path animation 275
Animate a second ship 280
Setting up the image plane 281
Edit the path curves 283
Conclusion 284
LESSロN $15:$ VISபAL Effects 285
Initial set-up 286
CREATING OPTIF/X 286
Building a thruster light 286
Adding the fog effects 288
Animate the fog effect 289
Building a photon torpedo 289
Animate the effect 291
Building an explosion 291
Updating the polyShip animation 294
PARTICLE EFFECTS 295
Create a particle emitter 295
Particle attributes 297
Rendering the particles 297
Particle smoke 299
RENDERING 300
Setting the Render Globals 300
The final rendering 301
Resetting the move tool 302
Conclusion 302
PRロJECT FロபR $3 \square 5$
LESSロN 16：PRIMITIVE MAN $3 ロ 7$
Initial set－up 308
BUILDING A CHARACTER 308
Drawing a skeleton leg 308
Adding IK chains to the leg 309
Rolling the foot 310
Orienting the toe 311
Creating geometry 314
Binding the geometry 315
Editing the sets 316
Adding a flexor 317
Creating the second leg 318
Create the torso and head 320
Building arms 321
Tuck and bulge 323
Duplicate the arm 325
Conclusion 326
LESSロN 17：ANIMATING A WALK CYCLE 327
Initial set-up 328
Animate the pelvis 329
Animate the feet sliding 330
Edit the animation curves 332
Animate the feet (up and down) 333
Animate the pelvic rotations 334
Animate the heel rotation 337
Setting keys for the spine 338
Keying the arm motion 339
The rotate plane IK solver 341
Animating a two-node camera 342
Props, color and lighting 344
Testing the motion 344
Rendering the animation 344
Conclusion 347
Pradect Five 351
LESSロN 18: BபILDING SALTY 353
File management 354
Building Salty's body 354
Editing CVs 355
Positioning the CVs 358
Finishing touches 359
Building skeleton joints 360
Bind the surface to the joints 361
Templating objects 362
Building the front flipper 363
The side shape 364
Refining the flipper 366
The back flipper 367
Mirroring the flippers 368
Add joints for the flippers 368
Joining the flippers to the body 370
Binding the surfaces 371
Salty's shading group 372
Conclusion 374
LESSロN $19:$ ADDING FACIAL DETAILS 375
Initial set－up 376
Building Salty＇s right eyeball 376
Creating a target for the eyeball 378
Creating the eyelid 379
The Hypergraph 380
Deforming the eye 381
Adding a cluster deformer 383
Positioning the eye 384
Creating the second eye 384
Building the eye control node 385
Adding a blink attribute 388
Adding a pupil attribute 390
Building the whiskers 391
Texturing the whiskers 393
Building Salty＇s nose 397
Parenting to the skeleton 398
Conclusion 400
LESSロN 2ロ：ANIMATING SALTY 4 1
Initial set－up 402
Adding IK single chain handles 402
Add an IK spline handle 404
Cluster the spline curve 406
Create a ball 408
Connect the ball to Salty＇s nose 409
Setting up for the animation 411
Animating Salty 412
Bounce the ball off the floor 416
Animate the Locator 418
Finishing Salty＇s motion 419
Animating Salty＇s eyes 420
Making the whiskers flop 421
Playblasting the animation 424
Conclusion 424
LESSロN 2 1: BபILDING THE SET 425
Initial set-up 426
Creating the pool 426
Creating the back wall 429
LIGHTING THE SET 431
Creating spot lights 431
Creating background lighting 435
Animating the camera 437
Playblasting the animation 439
Conclusion 439
Lessan 22: TEXTURE MAPPING 441
Initial set-up 442
Creating the deck shading 442
Adding a bump map 444
Refining the floor material 446
The water shading group 446
LAYERED SHADERS 449
The wall shading group 449
Adding to the layered shader 453
REFINING THE LIGHTING 457
Adding reflected lighting 457
Turning on shadows 458
RENDERING 458
Preparing the surfaces 459
Setting the Render Globals 460
Conclusion 461
LESGロN 23: BLINKING பSING MEL 463
Starting a new file 464
WHAT IS MEL? 464
Typing commands 464
The Command line 464
The Script Editor window 468
Learning more about commands 472
Expressions 472
Building a blink procedure 474
Writing the script 474
Adding the function to the UI 478
Building a custom UI script 480
Keyframing Salty's blink 484
THE SCRIPTS 484
blink.mel 484
blinkWindow.mel 485
File Management 491
The Maya directory 492
The preferences directory 492
The projects directory 493
Creating a new project 494
Setting projects 495
Scene files 496
REFERENCING FILES 496
A single user project with referencing 497
A multiple-user project with referencing 498
Understanding References 499
What happens to referenced textures 499
Importing vs. Referencing 500
Exporting parts of a file with reference 500
Making and breaking reference connections 501
The rules of referencing 501

Contents

INTRロDUCTIロN

Learning Maya 2

Maya is a character animation and visual effects system designed for the professional animator．Built on a procedural architecture called the Dependency graph，Maya offers incredible power and flexibility for generating digital images of animated characters and scenes．

This tutorial book gives you hands－on experience with Maya as you complete a series of project－focused lessons．In each project，you will model，animate，texture map，add visual effects and render．

Shown below are the five projects that you will be animating as you complete this book：

Project One：Bouncing Ball

Project Three：Space Battle

Project Two：Jack－in－the－box

Project Four：Primitive Man

Project Five：Salty the Seal

How to use this book

How you use this book will depend on your experience with computer graphics and 3D animation. This book moves at a fast pace and is designed to help both the novice and the expert as outlined below:
Novice - If this is your first experience with 3D software, we suggest that you glance over each lesson before you complete it. This will give you a better understanding of what is going to happen before you tackle the software directly.
Intermediate - If you are already familiar with the world of 3D animation, you can dive in and complete the lessons as written. You may want to keep the Using Maya manual handy to help give you a more complete understanding of each tool.

Expert - Experts can run through the exercises in this book at a quicker pace. The location of Maya's tools and the terminology surrounding its use will be the most helpful aspect of this book for experts.
Upgrading from 1.0 - If you have used a previous version of Maya then we recommend focusing on projects one and two. Project one is a significant update with useful information while Project two contains the most information about new Version 2 features.

What you should already know

This book assumes that you have some experience with computers and computer graphics. Basic skills such as how to use a three button mouse and the keyboard are essential. Some familiarity with using a computer to draw, paint or model would help.

Computer hardware

Maya is designed to take full advantage of your system's graphics capabilities. This means that if you have a system that supports texture RAM then you can display fully textured models interactively as you work.
The images in this book make use of these graphics capabilities. If you do not have texture RAM then you will have to find alternative methods for previewing textures and lights.

IRIX and Windows NT

This book is written to cover both IRIX and Windows NT platforms. Graphics and text have been modified where applicable. You may notice that your screen varies slightly from the illustrations depending on the platform you are using.

Things to watch for:

- Window focus may differ. For example, if you are on Windows NT, you have to click in the panels with our middle mouse button to make it active.

Maya packaging

This book can be used with either Maya Complete or Maya Unlimited. It's focus is on functionality that is shared between the two packages. These include all the tools necessary for modeling, animating and rendering a scene, as well as, particle and dynamic effects and Maya's Artisan tools.

Installing tutorial files

Project directories are available on the Learning Maya 2 CD-ROM that you can find at the back of this book. Follow the instructions outlined on the CD.

Understanding Maya

To understand Maya, it helps to understand how Maya works at a conceptual level. This introduction is designed to give you the story about Maya. This means that the focus of this introduction will be on how different Maya concepts are woven together to create an integrated workspace.
While this book teaches you how to model, animate and render in Maya, these concepts are taught with a particular focus on how Maya's underlying architecture supports the creation of animated sequences.
You will soon learn how Maya's architecture can be explained using a single line - nodes with attributes that are connected. As you work through this book, the meaning of that statement becomes clearer and you will learn to appreciate how Maya's interface lets you focus on the act of creation, while giving you access to the power inherent in the underlying architecture.

A typical Maya workspace layout

The user interface

The Maya user interface includes a number of tools, editors and controls. You can access these using the main menus or using special context-sensitive marking menus. You can also use shelves to store important icons or hotkeys to speed up workflow. Maya is designed to let you configure the user interface as you see fit.

Marking menu
To work with objects, you can enter values using coordinate entry or you can use more interactive 3D manipulators. Manipulator handles let you edit your objects with a simple click-drag.

Maya manipulators
Maya's user interface supports multiple levels of undo and redo and includes a drag-anddrop paradigm for accessing many parts of the workspace.

You will learn how to use the various user interface elements in Lesson One and the Lesson 5.

Working in 3D

In Maya, you will build and animate objects in three dimensions. These dimensions are defined by the cardinal axes which are labeled as X, Y and Z . These represent the length (X), height (Y) and depth (Z) of your scene. These axes are represented by colors red for X , green for Y and blue for Z .

The cardinal axes
In Maya, the Y -axis is pointing up which is also referred to as Y-up.

As you position, scale and rotate your objects, these three axes will serve as your main points of reference. The center of this coordinate system is called the origin and has a value of $0,0,0$.

UV coordinate space

As you build surfaces in Maya, they are created with their own coordinate space that is define by U in one direction and V in another. You can use these coordinates when you are working with curve on surface objects or when you are positioning textures on a surface.

One corner of the surface acts as the origin of the system and all coordinates lie directly on the surface.

You can make surfaces live in order to work directly in the UV coordinate space. You will also encounter U and V attributes when you place textures onto surfaces.

UV coordinates on a live surface

Views

In Maya, you visualize your scenes using view panels that let you see into the 3D world.

Perspective views let you see your scene as if you were looking at it with your own eyes or through the lens of a camera.
Orthographic views are parallel to the scene and offer a more objective view. They focus on two axes at a time and are referred to as the Top, Side and Front views.

In many cases, you will require several views to help you define the proper location of your objects. An object's position that looks good in the Top view may not make sense in a Side view. Maya lets you view multiple views at one time to help coordinate what you see.

Orthographic and Perspective views

Cameras

To achieve a particular view, you look through a digital camera. An orthographic camera defines the view using a parallel plane and a direction while a perspective camera uses an eye point, a look at point and a focal length.

Orthographic camera

Perspective and orthographic cameras
You will learn how to use view panels in Lesson 1 and how to create and animate a camera in Lesson 17 and Lesson 21.

Image planes

When you work with cameras, it is possible to place special backdrop objects called image planes onto the camera. An image plane can be placed onto the camera so that as the camera moves, the plane stays aligned.

Image plane attached to a camera
The image plane has several attributes that allow you to track and scale the image. These attributes can be animated to give the appearance that the plane is moving.

Image plane seen looking through the camera
You will learn how to use image planes in Lesson 14 as you animate a space backdrop for your battling spaceships.

THE DEPENDENCY GRAPH

Maya's system architecture uses a procedural paradigm that lets you integrate traditional keyframe animation, inverse kinematics, dynamics and scripting on top of a node-
based architecture that is called the Dependency graph. If you wanted to reduce this graph to its bare essentials, you could describe it as nodes with attributes that are connected. This node-based architecture gives Maya its flexible procedural qualities.
Below is a diagram showing a primitive sphere's Dependency graph. A procedural input node defines the shape of the sphere by connecting attributes on each node.

The Dependency graph

Nodes

Every element in Maya, whether it is a curve, surface, deformer, light, texture, expression, modeling operation or animation curve, is described by either a single node or a series of connected nodes.

A node is a generic object type in Maya.
Different nodes are designed with specific attributes so that the node can accomplish a specific task. Nodes define all object types in Maya including geometry, shading, and lighting.
Shown below are three typical node types as they appear on a primitive sphere.

Node types on a sphere
Transform node - Transform nodes contain positioning information for your objects. When you move, rotate or scale, this is the node you are affecting.

Input node - The input node represents options that drive the creation of your sphere's shape such as radius or endsweep.

Shape node - The shape node contains all the component information that represents the actual look of the sphere.

Maya's user interface presents these nodes to you in many ways. Below is an image of the Channel box where you can edit and animate node attributes.

Transform node

Shape node

Input node

Channel box

Attributes

Each node is defined by a series of attributes that relate to what the node is designed to accomplish. In the case of a transform node, X Translate is an attribute. In the case of a shader node, Color Red is an attribute. It is possible for you to assign values to the attributes. You can work with attributes in a number of user-interface windows including the Attribute Editor, the Channel box and the Spread Sheet Editor.

Attribute Editor

One important feature in Maya is that you can animate virtually every attribute on any node. This helps give Maya its animation power. You should note that attributes are also referred to as channels.

Connections

Nodes don't exist in isolation. A finished animation results when you begin making connections between attributes on different nodes. These connections are also known as dependencies. In modeling, these connections are sometimes referred to as construction history.

Most of these connections are created automatically by the Maya user-interface as a result of using commands or tools. If you desire, you can also build and edit these connections explicitly using the Connection editor, by entering MEL (Maya Embedded Language) commands, or by writing MELbased expressions.
You will take an in-depth look at nodes, attributes and connections in Lesson 6.

Pivots

Transform nodes are all built with a special component known as the pivot point. Just like your arm pivots around your elbow, the pivot helps you rotate a transform node. By changing the location of the pivot point, you get different results.
Pivots are basically the stationary point from which you rotate or scale objects. When animating, you sometimes need to build hierarchies where one transform node rotates the object and a second transform node scales. Each node can have its own pivot location to help you get the effect you want.

Scaling about pivot
Rotation and scaling pivots

You will be working with transform node pivots in Lesson 7.

Hierarchies

When you are building scenes in Maya, you have learned that you can build dependency connections to link node attributes. When working with transform nodes or joint nodes, you can also build hierarchies which create a different kind of relationship between your objects.

In a hierarchy, one transform node is parented to another. When Maya works with these nodes, Maya looks first at the top node, or root node, then down the hierarchy. Therefore, motion from the upper nodes is transferred down into the lower nodes. In the diagram below, if the group 1 node is rotated, then the two lower nodes will rotate with it. If the nurbsCone node is rotated, the upper nodes are not affected.

Object and joint hierarchy nodes Joint hierarchies are used when you are building characters. When you create joints, the joint pivots act as limb joints while bones are drawn between them to help visualize the joint chain. By default, these hierarchies work just like object hierarchies. Rotating one node rotates all of the lower nodes at the same time.

You will learn more about joint hierarchies later in this introduction where you will also learn how inverse kinematics can reverse the flow of the hierarchy.

Object and joint hierarchies
You will be working with hierarchies in Lesson 6. You will work with joint hierarchies in Lesson 9, and Lesson 16.

MEL scripting

MEL stands for Maya Embedded Language. In Maya, every time you use a tool or open a window, you are using MEL. MEL can be used to execute simple commands, write expressions or build scripts that will extend Maya's existing functionality.

The Windows NT Script Editor
MEL is the perfect tool for technical directors who are looking for easy access to customizing how Maya works to suit the needs of a particular production environment. Animators can also use MEL to create simple macros that will help speed up more difficult or tedious workflows.

You will learn how to work with MEL to build custom procedures in Lesson 23.

ANIMATING IN MAYA

When you animate, you bring objects to life. In Maya, there are several different ways in which you can animate your scenes and the characters who inhabit them.

Animation in Maya is generally measured using frames that mimic the frames you would find on a film reel. You can play these frames at different speeds to achieve an animated effect. By default, Maya plays at 24 frames for every second.

Keyframe animation

The most familiar method of animating is called keyframe animation. Using this technique, you determine how you want the parts of your objects to look at a particular frame, then you save the important attributes as keys. After you set several keys, the animation can be played back with Maya filling motion in between the keys.

Keys and in-between frames
When keys are set on a particular attribute, the keyed values are stored in special nodes called animation curves nodes.

These curves are defined by the keys which map the value of the attribute against time. The following is an example of several animation curve nodes connected to a transformation node. One node is created for every attribute that is animated.

Dependency graph showing curve nodes
Once you have a curve, you can begin to control the tangency at each key to determine the quality of the motion in between the main keys. You can make your objects speed up or slow down by editing the shape of these animation curves.

Generally, the slope of the graph curve tells you the speed of the motion. A steep slope in the curve means fast motion while a flat curve means no motion. Think of a skier going down a hill. Steep slopes increase speed while flatter sections slow things down.

You will learn how to set keys in Lesson 1 and how to edit the animation curves in Lesson 2. You will then continue to set keys throughout the rest of Learning Maya.

Path animation

Path animation is already defined by its name. You can assign one or more objects so that they move along a path which has been drawn as a curve in 3D space. You can then use the shape of the curve and special path markers to edit and tweak the resulting motion.

You will learn how to set up and edit path animations in Lesson 14.

Path animation

Reactive animation

Reactive animation is a term used to describe animation in which one object's animation is based on the animation of another object.
An example of this technique would be moving gears where the rotation of one gear is linked to the rotation of other gears. You can then set keys on the first gear and all the others animate automatically. Later, when you want to edit or tweak the keys, only one object needs to be worked on and the others update reactively.

Diagram of animated gears
In Maya, you can set up reactive animation using a number of tools including those outlined below:

Set Driven Key

This tool lets you interactively set up an attribute on one object to drive one or more attributes onto another.
You will learn how to use Set Driven Key in Lesson 2, Lesson 9 and Lesson 19.

Expressions

Expressions are scripts that let you connect different attributes on different nodes.
You will learn how to create expressions in
Lesson 4 and Lesson 16.

Constraints

Constraints let you set up an object to point at, orient to or look at another object.
You will learn how to use constraints in Lesson 9 and Lesson 16.

Connections

Attributes can be directly linked to another attribute using dependency node connections. You can create this kind of direct connection using the Connection Editor.

You will learn how to make these kinds of connections in Lesson 6

Dynamics

Another animation technique is dynamics. You can set up objects in your Maya scene that animate based on physical effects such as collisions, gravity and wind. You set up the different variables such as bounciness, friction or initial velocity. When you playback the scene, you run a simulation to see how all the parts react to the variables.

This technique gives you natural motion that would be difficult to keyframe. You can use dynamics with rigid body objects, particles or soft body objects.

Rigid body objects are objects that don't need to be deformed. You set up this kind of simulation by setting objects as either active or passive rigid bodies. Active bodies react to the dynamics, whereas passive bodies act only as colliding objects for active bodies.
To simulate effects such as wind or gravity, you use dynamic fields that are added to the scene then connected to your objects.

Rigid body simulation of bowling ball and pins
Particles are tiny points that can be used to create effects such as smoke, fire or explosions. These points are emitted into the scene where they are also affected by the dynamic fields.

Soft bodies are surfaces that you want to deform during a simulation. To create a soft body, you will combine a surface with a series of particles. The particles react to the dynamic forces to help make the surface deform.

Soft bodies
You will learn how to use particle dynamics in Lesson 4 and Lesson 15.

MODELING IN MAYA

The objects you want to animate in Maya are usually built using either NURBS surfaces or polygonal meshes. Maya offers you both of these geometry types so that you can choose the method best suited for your work.

NURBS curves

NURBS stands for non-uniform rational bsplines which is a technical term for a spline curve. By modeling with NURBS curves, you can lay down control points and smooth geometry will be created using the points as guides.
Shown below is a typical NURBS curve with important parts labelled:

These key components define important aspects of how a curve works. The flexibility and power of NURBS geometry comes from your ability to edit the shape of the geometry using these controls.

As your geometry becomes more complex, you get more of these controls. For this reason, it is usually better to build using simpler geometry so that you can more easily control the shape. If you need more complex geometry, then controls can be inserted later.

NURBS surfaces

Surfaces are defined using the same mathematics as curves except now there are in two dimensions - U and V. You learned about this earlier when you learned about UV coordinate space.

Below are some of the component elements of a typical NURBS surface:

NURBS components
Complex shapes can be, in essence, sculpted using this surface type as you push and pull the controls to shape the surface.

A completed NURBS model

You will learn how to model with NURBS geometry in Lesson 7, Lesson 13 and Lesson 18.

Polygons

Polygons are another geometry type available in Maya. Whereas NURBS surfaces interpolate the shape of the geometry interactively, polygonal meshes draw the geometry directly to the control vertices. When a polygonal mesh is rendered, it is then interpolated to see a smoother form.
Below are some of the components found on a polygonal mesh:

Polygon components
You can build up polymeshes by extruding, scaling and positioning polygonal facets to build shapes. You can then smooth the shape to get a more organic look for your model.

A polygonal model before and after smoothing
You will learn how to build a polygonal model in Lesson 12.

Construction history

When you create models in Maya, the various steps are recorded as dependency nodes that remain connected to your surface.
In the example below, a curve has been used to create a revolved surface. Maya keeps the history by creating dependencies between the curve, a revolve node and the shape node. Edits made to the curve or the revolve node will update the final shape.

Revolve surface with dependencies
Many of these nodes come with special manipulators that make it easier to update the node attributes. In the case of the revolve, manipulators are available for the axis line and for the revolve's sweep angle.
It is possible to later delete history so that you are only working with the shape node. Don't forget though, that the dependency nodes have attributes that can be animated. Therefore, you lose some power if you delete history.
You will learn how to work with history in Lesson 6, Lesson 12 and Lesson 13.

DEFORMATIONS

Deformers are special object types that can be used to reshape other objects. By using deformers, you can give your animations more of a squash and stretch quality.
A powerful feature of Maya's deformers is that they can be layered for more subtle effects. You can also bind deformers into skeletons or affect them with soft body dynamics.

The following lists some of the key deformer types available in Maya.

Lattices

Lattices are external frames that can be applied to your objects. If you then reshape the frame the object is deformed in response.

You will learn how to work with lattices in Lesson 10, Lesson 12, Lesson 16 andLesson 19.

Sculpt objects

Sculpt objects let you deform a surface by pushing it with the object. By animating the position of the sculpt object, you can achieve animated surface deformations.

Sculpt object deformer
You will learn how to work with a sculpt flexor in Lesson 16.

Clusters

Clusters are groups of CVs or lattice points that are built into a single set. The cluster is given its own pivot point and can be used to manipulate the clustered points. You can weight the CVs in a cluster to get more subtle effects.

Cluster deformer
You will learn how to work with clusters in Lesson 20.

CHARACTER ANIMATION

In Maya, character animation typically involves the animation of surfaces using skeleton joint chains and inverse kinematic handles to help drive the motion. At the same time, the chains can be set up to work with special sculpt objects and lattices known as flexors. These let you perform surface deformations that will add realism to your character.

Skeletons and joints

As you have already learned, skeleton joint chains are actually hierarchies. A skeleton is made up of joint nodes that are connected visually by bone icons. These hierarchies let you group or bind in geometry which creates your surface deformations.

Inverse kinematics

By default, joint chains work like any other hierarchy. The rotation of one joint is transferred to the lower joint nodes. This is known as forward kinematics. While this method is powerful, it makes it hard to plant a character's feet or move a hand to control the arm.

Character joint hierarchy

Inverse kinematics lets you work with the hierarchy in the opposite direction. By placing an IK handle that runs from a start joint to an end joint, you can better control the chain of joints. There are three kinds of solvers in Maya - the IK spline, the IK single chain and the IK rotate plane.
Each of these solvers is designed to help you control the joint rotations using the IK handle as a goal. As the IK handle moves, the IK solver defines the joint rotations that let the end joint move to the IK handle position.
The individual solvers have their own unique controls. Some of these are outlined below:

Single chain solver

The single chain solver provides a straight forward mechanism for posing and animating a chain. By moving the IK handle, the chain will update so that the joints lie on a plane.

You will learn how to use the IK single chain solver in Lesson 20.

Rotate plane solver

The rotate plane solver gives you more control. With this solver, the plane that acts as the goal for all the joints can be moved by
rotating the plane using a twist attribute or by moving the pole vector handle.

You will learn how to use the IK rotate plane solver in Lesson 16.

IK spline solver

The IK spline solver lets you control the chain using a spline curve. You can edit the CVs on the spline to update the rotation of the joints in the chain.

IK spline solver
You will learn how to use the IK spline solver in Lesson 9 and Lesson 20.

Skinning your characters

Once you have a skeleton built, you can bind skin the surfaces of your character so that they deform with the rotation of the joints. In Maya you can use either soft skinning or hard skinning. Soft skinning uses weighted clusters while hard skinning does not.

Surface deformations
You will learn how to use soft skinning in Lesson 9 and hard skinning in Lesson 18.

Flexors

In many cases, skinning a character does not yield realistic deformations in the character's joint areas. You can use flexors to add this secondary level of deformations to help with the tucking and bulging of your character.

Flexors
You will learn how to work with flexors in Lesson 16.

RENDERING

Once your characters are set up, you can apply color and texture, then render with realistic lighting.

Shading groups

In Maya, you add texture maps and other rendering effects using shading groups. A shading group is a network of dependency nodes that all connect into a shading group node. Even the assigned surfaces and related lights are part of a shading group.

You can think of a shading group as a sort of bucket into which you place all the color, texture and material qualities that you want on your surface. You then dip in the surface and throw in a light or two and the final effect is achieved.

You will learn how to create shading groups in Lesson 3, Lesson 11, Lesson 12 Lesson 13 and Lesson 21.

Texture maps

To add detail to your shading groups, you can texture map different attributes. Some of these include bump, transparency and color.

Texture map layers
You will learn how to texture map objects in Lesson 3 and Lesson 11. Other mapping techniques will be used in Lesson 12 and Lesson 13.

Lighting

Before you render, you can light your scenes using any number of lights. These lights let you add mood and atmosphere to a scene in much the same way as lighting is used by a photographer. Maya lets you preview your lights interactively as you model, or you can render to see the final effect.

Light manipulator
You will start applying lights in Lesson 3.

Motion blur

When a real-life camera takes a shot of a moving object the final image is often blurred.

This motion blur adds to the animated look of a scene and can be used in Maya. Maya contains two types of motion blur - a $21 / 2 \mathrm{D}$ solution and a 3D solution. You will use both these types of motion blur in this book.

Hardware rendering

Maya includes hardware rendering that lets you see rendered images on your screen for previewing your animations. You can also use the hardware renderer to render some particle effects. These effects can later be composited in with software rendered images of your geometry.

Hardware rendering

A-buffer rendering

By default, Maya uses an A-buffer renderer for software rendering. This render type lets you see shaded scenes with shadows and motion blur. This method of rendering is great for most of your rendering needs. If you want reflections and refractions, then you need to turn on raytracing.

Raytrace rendering

Raytracing lets you include reflections and refractions into your scenes. Maya has a selective raytracer which means that only objects or shading groups that have raytrace capabilities will use this renderer. Raytracing is slower than the default A-buffer and should be used only when it is required to enhance the look of a scene.

Raytrace rendering

How the renderer works

The Maya renderer works by looking through the camera at the scene. It then takes a section or tile, and analyzes whether or not it can render that section. If yes, then it combines the information found in the shading group (geometry, lights and shading network) with the Render Globals information, and the whole tile is rendered.

As the renderer moves on to the next section, it again analyzes the situation. If it hits a tile where there is more information than it wants to handle at one time, it then breaks the tile down into a smaller tile and renders.

Rendering of A-buffer tiles in progress When you use raytracing, each tile is first rendered with the A-buffer, then the renderer looks for items that require raytracing. If it finds any, then it layers in the raytraced sections. When it finishes, you have your finished image, or if you are rendering an animation, a sequence of images.
You will render scenes in Lesson 3, Lesson 11, Lesson 15, Lesson 17 and Lesson 22.

IPR

Maya includes a new Interactive Photorealistic Renderer that gives you fast feedback for texturing and lighting updates. You will use IPR in Lesson 11.

Introduction

Conclusion

Conclusion

Now that you have a basic understanding of what Maya is designed to do, it is time for you to start working with the system directly. The concepts outlined in this introduction will make a lot more sense when you experience them first hand.
Don't forget to place the learningMaya directory into your project directory so that you have tutorial support files on hand. If you haven't done this yet, you can still complete the Getting Started section which does not require any support files.

LESSロN 1

BロபNCING THE BALL

LESSロN 2
ADDING CHARACTER

LESSロN 3

RENDERING

LESSロN 4

PARTICLES AND DYNAMICS

LESSロN 5
WロRKING WITH MAYA

LESGロN 6

THE DEPENDENCY GRAPH

PRロ」ECT ■NE

PRロJECT ロNE

In Project One, you are going to animate a ball bouncing through a ring of fire. This will give you the chance to work with the Maya workspace while animating a scene.

You will learn about building models, adding textures and light, keyframing your objects and rendering your scene. With the ring of fire, you will also explore Maya's preset particle effects while adding your own particles to create the sparks that are emitted when the ball hits the flames.

After bouncing the ball, you will then take a more in-depth look at Maya's user interface and the dependency graph. These lessons offer you a more complete look at some of the key concepts and workflows that drive how Maya works.

1. The ball begins to bounce towards a flaming ring of fire.

2. Sparks fly as the ball brushes past the deadly fire.

3. Bravely, the ball leaps up into the flames.

4. Everyone is relieved as the ball bounces off safely with barely a scratch.

Bouncing a Ball

This lesson teaches you how to build and animate a simple bouncing ball that jumps through a hoop. You will explore Maya's user interface as you learn how to build and develop an animated scene.

A bouncing ball
In this lesson you will learn the following:

- How to create primitive objects
- How to move objects in 3D space
- How to use Maya's view tools
- How to change the display of your objects
- How to set keys on your objects
- How to playback animated sequences

Setting up Maya

Before beginning, install Maya 2.0, and add the Learning Maya support files to your projects directory. These can be found on the Learning Maya 2 CD_ROM.

If you have been working with Maya 2.0 and have changed any of your user interface settings, you may want to delete your preferences in order to start with the default Maya configuration. To do this while saving your existing preferences, see Appendix A: File Management.

If you are running multiple versions (v1, v1.5 etc.) of Maya on the same machine, you should also backup and delete the preference files for those versions. Otherwise, Maya 2.0 will use these preferences when it first launches and some of the new marking menu and hotkey settings will not be available. You can replace them later when you know that your Maya 2.0 prefs have been created.

Creating a new project

Maya uses the concept of a project to organize files. You can create project directories that contain sub-directories for storing your files. You will be saving your work into scene files.

1 Launch Maya

To get started, you need to launch Maya:

- Double-click the Maya icon.

Or

- Enter maya in a shell window in IRIX or in the command window in Windows NT.

2 Set the courseware project

To manage your files, you can set a project directory that contains sub-directories for
different types of files that relate to your project.

- Go to the File menu and select Project \rightarrow Set...
A window opens that points you to the Maya projects directory.
- Open the folder named learningMaya.
- Click on the folder named projectOne to select it.
- Click on the OK button.

This sets the learningMaya directory as your current project.

- Go to the File menu and select Project \rightarrow Edit Current...

Make sure that the project directories are set up as shown below. This ensures that Maya is looking into the proper subdirectories when it opens up scene files.

Edit Current Project window

- If any of the entries are incorrect, edit them to match the preceding image shown above.

3 Make a new scene

- Select File \rightarrow New Scene.

This makes sure that your current scene is part of the new project.

Tip: If you would like to learn more about how Maya organizes files and directories, see Appendix A: File Management.

BUILDING OBJECTS

Every scene you create in Maya will begin with objects. These objects can include things like surfaces, deformers, skeleton joints or particle emitters. For this scene, you will build a ball and a floor surface.

Creating the ball

To start, you will build a few simple objects that you will animate, texture and render. The first object is a primitive sphere which will act as the ball.

1 Change menu sets

There are four main menu sets in Maya: Animation, Modeling, Dynamics and Rendering. These menu sets are used to access related tool sets.

- From the pop-up menu at the left edge of the Status line, select Modeling.
As you change menu sets, the first seven menus remain the same while the remaining menus change to reflect the chosen menu set.

2 Create a NURBS sphere

A primitive sphere will be used for the ball. It will be built using non-uniform rational b-spline (NURBS) geometry. In later lessons, you will learn more about this geometry type.

- From the Create menu, select NURBS Primitives \rightarrow Sphere.
A sphere is placed at the origin.

3 Change the ball's radius

The sphere is a procedural model. This means that it is broken down into parts called nodes. One node contains its positioning information, one contains its shape information and another contains input information that defines the sphere's construction history using attributes such as radius, sweep, and degree. You can edit
this input node's attributes in the Channel box in order to edit the sphere's shape.
The Channel box is found at the right side of the screen and lets you make changes to key attributes very easily.

- From the channel box's Inputs section, click on makeNurbSphere.
This will make several new attributes available for editing.
- Click on the Radius attribute name.
- Type 2 in the entry field then press the Enter key.
Now the sphere is double the size in the perspective view.

Channel box

Note: Another method for increasing the size of the sphere would be to scale it. In Maya, you can often achieve the same visual results using many different methods. Over time, you will begin to choose the techniques that best suit a particular situation.

4 Rename the ball node

You should rename the existing transform node to make it easier to find later.

- Click on the nurbsSphere name at the top of the Channel box to highlight it.
- Type the name ball then press the Enter key.

Renaming the node in the Channel box

Moving the ball

You will now use the Move tool to reposition the ball. This will involve the use of manipulator handles that let you control where you move your object.

1 Position the ball

You can now use the Move tool to reposition the sphere above the working grid.

- Select the Move tool.

A transform manipulator appears centered on the object.

- Click-drag on the green manipulator handle to move the sphere along the Y -axis.
The manipulator handle turns yellow to indicate that it is active.

Manipulator handles

Tip:

The transform manipulator has three handles which let you constrain your motion along the X, Y, and Z axes. These are labeled using red for the X axis, green for the Y -axis and blue for the Z-axis. In Maya, the Y -axis points up by default. This means that Maya is "Yup" by default.

2 Create four view panels

By default, a single perspective window is shown in the workspace. To see other views of the scene, you can change your panel layout.

- At the top of the Perspective view panel, go to the Panels menu and select Layouts \rightarrow Four.
You can now see the sphere using three orthographic views - Top, Side, and Front - which show you the model from a projected view. You can also see it in a Perspective view that is more like the 3D world we see every day. This multiple view set-up is very useful when positioning objects in 3D space.

Four view panels

3 Reposition the ball

When moving in an orthographic view, you can work in two axes at once by dragging on the center of the manipulator or constraining the motion along a single axis using the handles.

- In the Front view, click-drag on the square center of the manipulator to move the sphere along both the X and the Y axes.

Front view

- Use the manipulator in the various view windows to position the sphere on top of the ground plane as shown below.

LESSON 1

Be sure to refer to all four view windows to verify that the object is positioned properly.

Start position of the ball

Note:
If you click-drag on the center of the manipulator in the Perspective view, you will notice that it doesn't move along any particular axis. It is actually moving along the camera's view plane.

Create a floor surface

To create a floor surface, a primitive plane is used. This plane using polygonal geometry which is different from the sphere which uses NURBS geometry. You can use the hotbox as an alternative method for accessing tools.

1 Create a polygonal plane

- In a view panel, press and hold the spacebar to display the hotbox.
- In the hotbox, select Create \rightarrow Polygon Primitives \rightarrow Plane.
A plane is placed at the origin.

Hotbox access to тепи items

Tip: You can access all functions in Maya using either the main menus or the hotbox. As you become more familiar with the hotbox, you can use the user interface options found in the Options menu to turn off the panel menus and therefore reduce screen clutter.

2 Change construction history

Just like the sphere, you can edit the plane using its input node. You will increase the size of the plane, then reduce the number of subdivisions to simplify the plane. Since the floor will not be deformed, the extra polygons are not required.

- In the Channel box shown at the right side of your screen, click on the polyPlane Input node.
- Set the following:

Width to 40;
Height to 40;
Subdivisions X to 1;
Subdivisions \mathbf{Y} to 1.

Updated poly plane

3 Rename the plane node

It is a good idea to rename the existing transform node to make it easier to find later.

- Click on the polyPlane node's name in the top of the channel box.
- Enter the name floor.

Create a Ring

You are now going to add a NURBS torus to the scene that will act as a hoop for the ball to jump through when you animate it bouncing.

1 Create a NURBS Torus

The torus offers a shape that is perfect for the ring. You will create the torus, and then size and position it to get the ring.

- From the Create menu, select NURBS Primitives \rightarrow Torus.
- In the Channel box, click on the makeNurbsTorus Input node.
- Set the following attributes:

Radius to 5;
Sections to 16;
Height Ratio to $\mathbf{0 . 0 5}$.

Edited torus

2 Position the Torus

- In the nurbsTorus section of the Channel box, set the following attribute:

Rotate \mathbf{Z} to 90.

- Rename this node to ring.
- With your middle mouse button click in the perspective view then press the w key to select the Move tool.
- Move the ring up so that it sits above the ground plane. Its Translate \mathbf{Y} attribute should read about 10.

Ring in place

Viewing the scene

When you work in 3D space, it is important to see your work from different angles. The different view panels let you see your work from the Front, Top, Side and Perspective.

You can also use Maya's view tools to change the views to reposition how you see your scene. In some cases, a view change is like panning a camera around a room, while in other cases a view change might be like turning an object around in your hand to see all the sides. These view tools can be accessed using the Alt key in combination with various mouse buttons.

1 Edit the Perspective view

You can use the Alt key with either your left mouse button (LMB), your middle mouse button (MMB) or the two together to tumble, track and dolly in your Perspective view.

- Change your view using the following key combinations:

Alt + LMB to tumble;
Alt + MMB to track;
Alt + LMB \& MMB to dolly.
You can also use the Ctrl key to create a bounding box dolly, where the view adjusts based on a bounding box:

Ctrl + Alt + LMB to box dolly.
Click-drag to the right to dolly in and to the left to dolly out.

You can also undo and redo view changes using the following keys:
[to undo views; and
] to redo views.

- Alter your Perspective window until it appears as shown below.

New view
2 Edit the view in the Side view
Orthographic views use similar hot keys except that you cannot tumble an orthographic view.

- In the Side view, change your view using the following key combinations:

Alt + MMB to track;
Alt + LMB \& MMB to dolly

- Keep working with the orthographic views until they are set up as shown in the following.

New orthographic views

Setting display options

The view panels let you interactively view your scene. By default, this means viewing your scene as a wireframe model. To better evaluate the form of your objects, you can activate hardware shading and increase the sphere's smoothness.

1 Turn on Hardware shading

To help visualize your objects, you can use hardware rendering to display a shaded view within any panel.

- From the Perspective view's Shading menu, select Smooth Shade All.
This setting affects all of the objects within the current view panel.

Smooth shaded view

Tip:

You can also turn on smooth shading by moving your cursor over the desired panel, clicking with your middle mouse button and pressing the 5 key . The $\mathbf{4}$ key can be used to return the panel to a wireframe view.

2 Hide the grid

You can hide the grid to simplify your view using one of two options:

- From the Perspective view panel's Show menu, select Grid to hide the grid for that view only.
OR
- From the Display menu, deselect Grid to hide the grid for all views.

3 Adjust the sphere's smoothness
To better evaluate the sphere's surface qualities, you can increase the smoothness.

- Select the ball.
- From the main Display menu, select NURBS Smoothness \rightarrow Fine.

This setting affects how selected NURBS objects are displayed in all view panels.

4 Adjust the ring's smoothness

Maya also includes some hotkeys for setting surface smoothness.

- Select the ring.
- Press the $\mathbf{3}$ key.

The smoothness setting allows you to see your objects at various degrees of complexity without actually altering the geometry.

New object smoothness

Tip: A NURBS object can have its smoothness set using the following hotkeys:

1 - rough
2 - medium
3 - fine

ANIMATING THE BALL

You now have your scene set up and ready to animate. Using the ball node, you will start by keying the overall translation of the ball.

Next, you will add in the peaks and valleys of the bouncing.

Setting keys

To animate the ball, you must define its position at certain points in time. This is accomplished by setting keys. As you playback the animation, Maya reads these key positions and interpolates the position of the ball in between the keyframes.

1 Position the ball

- Select the ball.
- Move the ball along the X axis to the edge of the floor. Use the Red manipulator handle to constrain along X.

Repositioning the ball

2 Set a start key on the ball

You will use the current position to set a key for frame 1.

- Select the ball.
- Make sure that the current time is set to 1 in the time slider.
- Press F2 to select the animation menu set.
- From the Animate menu, select Set Key.
This places a key at frame 1 for all of the ball's transform attributes.

Tip: \quad The menu sets can be changed using the following hotkeys:

F2-Animation
F3 - Modeling
F4-Dynamics
F5-Rendering

3 Set end key on the ball

A new position for the ball can be set for frame 60 .

- In the Time slider, change the end time and the playback end time to 60 and press Enter.

Time slider frame range settings
This changes the range of the animation to 60 frames.

- Move the Time slider to frame $\mathbf{6 0}$.

Current time indicator

Time slider at frame 60

- Click-drag on the X-axis handle on the sphere to move it forward.

Sphere moved along X-axis

- Press the s key to Set Key at this position and time.

Tip: \quad The \mathbf{s} key is a hotkey for the Set key command.

- Playback the results using the Playback controls which are located in the lower right corner.

Note: Playback will only be visible in the view panel that is highlighted. If you are not seeing any playback then be sure to click in the perspective panel with your middle mouse button.

4 Add intermediate keys

To make the ball hit the ground four times, you will need two more key positions set at frames 20 and 40.

Any time you want to make sure an object is at a certain place at a certain time, set a key.

- Drag the Time slider to frame 20. The ball is positioned based on existing keys.
- Press the s key to Set Key.
- Drag the Time slider to frame 40.
- Press the s key to Set Key.

You now have keys set at the following frames:

Diagram of initial keys

Tip: \quad Every time you set a key, a red mark is placed in the Time slider to help you identify where your keys are.

5 Add more intermediate keys

To create the peaks of the bounce, you need to set new keys at frames 10, 30 and 50 . These keys will require that you move the ball into a new position along the Y axis.

- Move the Time slider to frame 30.
- Click-drag on the green Y-axis manipulator to move the sphere up
along the Y -axis until it sits inside the ring.
- Press the s key to Set Key.

Y-axis move
- Move the Time slider to frame 10.
- Click-drag on the Y-axis manipulator to move the sphere up along the Y-axis. Don't raise it as high as you did for frame 30.

This will put emphasis on the bounce at frame 30 where the ball is jumping through the ring.

- Press the s key to Set Key.

Y-axis move

- Repeat these steps to create the last bounce at frame 50. Don't forget to set a key after placing the ball.

6 Set the playback speed

- Click the Animation Preferences button found at the right side of the Time slider.

This opens a window that lets you set various animation and playback options. Currently, the scene is playing back as fast as it can. Since you only have two objects, playback is a little too fast.

- In the Playback section, set the following:

Playback Speed to Normal.

- Click the Save button.
- Playback the results using the Time slider controls.

7 Save your work

- From the File menu, select Save Scene As...
- In IRIX, enter the name bounce_01 at the end of the file's path.
- In Windows NT, enter the name bounce_01 in the File name box.

IRIX Save As dialog box

Windows NT Save As dialog box

- Press the Save button or press the Enter key.
Make sure you save this file since you will be continuing with it in the next lesson.

Note: Throughout this book, you will be using the final saved file from one lesson as the start file for the next. Save your work at the end of each lesson to make sure that you have the start file ready.

Conclusion

Congratulations. You have completed your first exercise using Maya. In the next lesson, you will take this simple bouncing ball and refine the motion for more dramatic results.

Adding Character

In the last lesson, you built and animated a bouncing ball. As you playback the bounce, you can see that the ball seems to float and is not bouncing in a convincing manner. In this lesson, you will begin to edit the quality of the original animation to add character to the bounce.

This lesson will begin to layer the animation with secondary motion such as squash and stretch. In Maya, you can create these effects using non-linear deformers, that allow you to reshape the ball as it animates.

Adding squash and stretch
In this lesson you will learn the following:

- How to refine animated channels with the Graph Editor
- How to create a bend and a squash deformer
- How to set keyable and non-keyable channels
- How to use Set Driven Key
- How to use Auto Key
- How to create expressions
- How to edit an animation's timing using the Dope sheet

Refining the animated channels

In the last lesson, the bouncing ball does not appear to bounce properly. It seems to float as it touches the ground instead of hitting hard as you would expect. To edit the quality of the bounce, you can use the Graph Editor to work with the animation channels.

1 Select the ball

If you are continuing straight from Lesson 1, the ball may already be selected. If not, then you must select this object to work with the animated channels.

- If the ball is not selected, then select it in one of the view panels.

2 Create a new panel layout

You can switch the contents of a panel to other panel types such as lists or graphs.

- In the perspective view panel's Panels menu, select Saved Layouts \rightarrow Persp/Graph.
This places a perspective view panel above a Graph editor panel.
- Click-drag down on the bar that separates the two panels to make the new perspective panel larger.
- From the Graph Editor's View menu, select Frame AII.
Now you can see all of the animation curves for the ball.
Earlier, you set keys for the ball. This set keys for all the Translate, Rotate and Scale attributes, in all three axes, as well as Visibility. Each of the animated attributes creates an animation curve that represents how each channel changes over time.

Graph Editor panel

Tip: \quad Remember that you can also access the View menu from the hotbox by pressing and holding the spacebar.

3 Focus on the Translate Y channel

To focus on the up and down motion of the ball, you need to focus on the Translate Y channel.

- Click on the Translate Y channel. Now only its curve is shown in the graph.
- Press the Alt key and click-drag with the left and middle mouse buttons to dolly into the graph.
- Press the Shift and Alt keys and click-drag up and down with the left and middle mouse buttons to dolly only along the Y-axis.
- Press the Shift and Alt keys and click-drag up and down with the middle mouse button to track along the Y -axis.
- Use these tools to position the graph as shown below:

New view of curve

Tip: \quad The same view tools used in the modeling views apply to other panel types. The Shift key constraint works in all view panels and with tumbling and tracking.

4 Edit the shape of the curve

The floating effect as the ball touches the ground is a result of the smoothing of the curve as it approaches a value of 0 .
This smoothing is created by the curve tangents. The tangents define the motion in between the keys. By editing the tangents, you will change how the ball moves between the keys.

- Click-drag over all of the points at the bottom of the bounce to select the keys.
- Press the Linear Tangents button to make the curve tangents meet at a point.

Linear tangents

- Move the pointer over the Perspective view and press the spacebar quickly.
This pops the panel to a full size panel. Playback is a little faster without the Graph Editor present.

Tip: \quad You can use a quick tap on the spacebar to pop any panel to full size and back. A longer click would reveal the hotbox.

- Playback the results in the Perspective view panel.
The resulting motion now results in more of a bounce as the ball hits the ground.
- Move your pointer over the Perspective view panel and press the spacebar quickly.
This returns you to the two view panels you had earlier.

5 Edit the tangents at the keys

To accentuate the bounce even further, you can edit the actual tangents to make the curve steeper as it approaches the ground.

- Press the Break Tangents button to break the connection between the opposite tangents at the key.
- Click-drag a selection box around the tangent handle on the first key.
- Make sure that you select only the tangent handle and not the key itself.
- Make sure that the Move tool is active.
- Click-drag with your middle mouse button to edit the curve's tangent until it is almost vertical and you don't get a bump at the next key.

Edited tangent handle

- Click-drag a selection box around the next key on the curve.
This reveals the tangent handles for that key.
- Click-drag a selection box around one of the tangent handles.
- Edit the tangent using the middle mouse button to make it more vertical.
- Repeat the tangent edit for all of the other tangents until the curves appear as shown:

Action curve with keys highlighted

- Playback the results in the Perspective view.

Diagram of edited bounce
The bounce is much more sharp and appears to be affected by gravity.

Cleaning up your curves

Now that the quality of the motion has been set, you can look for ways to clean up your animation curves so that unnecessary information is removed. For this scene, the extra curves will have little influence, but in larger scenes they can add up and affect performance.

1 Remove static channels

If an action curve is flat along its whole length then its value is not changing. This means that it is not being animated.

These curves should be removed to reduce the amount of data in the scene.

- In the name list, press the Ctrl key and click on the following channel names:

Translate Z;
Rotate X, Y and Z;
Scale X, Y and Z;
Visibility.
The Translate X and Translate Y should remain unselected.

Static channels

- From the Graph Editor's Edit menu, select Delete.
This removes the selected curves from your scene.

Note: In the Channel box, you will see that the remaining input fields - Translate X and Translate Y - use a different background color (green on IRIX, orange on Windows NT). This color helps you distinguish channels which have been keyed.

2 Remove extra keys

In some cases, you may have keys on animated channels that don't contribute to the results. These keys are found when a straight line can be drawn from the key before to the key after.

- In the name list, click on the Translate X channel.
- Select View \rightarrow Frame AII.
- Use the Alt key to track and dolly so you can see the whole curve.
You will see that there are five redundant keys on this curve. Since you want the ball to move along a straight path, these keys are not required.
- Click-drag a selection box around the five middle keys.

Extra keys

- Press the Delete key to remove the keys.
The resulting curve would now be easier to edit because there are no intermediate keys.

SQUASH AND STRETCH

One of the best methods to infuse your animation with life is to add squash and stretch. This traditional animation technique helps you avoid a rigid looking animation as the ball hits the ground with more emphasis and seems to soar as it leaps into the air. In Maya, you can create this effect using a squash deformer.

Adding a squash deformer

A deformer is a special object type that lets you reshape a surface or group of surfaces. By using deformers to change the shape of the object over time, you can create a more visually appealing animation.

1 Set up a front view

- Go to frame 1.

This will place the ball at its starting point.

- In the perspective view's Panels menu, select Panels \rightarrow Orthographic \rightarrow Front.
This gives you a view of the ball looking down the Z-axis.
- Dolly and track the view until you are looking at the side of the ball.

2 Add the squash to the ball

- Select the ball.
- Press F2 to go to the Animation menu set.
- From the Deform menu, select Create Nonlinear \rightarrow Squash.
- This adds the squashHandle to the ball. You do not see any
deformation yet since the squash attributes have not been edited.

Scale deformer

3 Move and Scale the deformer

- Move the squashHandle so that the manipulator is at the base of the ball.
- Scale the squashHandle until the handle appears at the top of the ball.

Now the squash will occur from the base of the ball instead of in its middle. This ensures that the bottom of the ball doesn't leave the ground during the squash.

Scale deformer

Adding Character

4 Test the squash's Factor attribute

- In the Channel box, click on the squash input node.

- Select the Show Manipulator tool.
- Click-drag on the middle manipulator handle to squash and stretch the ball.
- When you are finished check the channel box and make sure that the Factor attribute is set to about $\mathbf{0 . 4}$ to give the ball a little stretch.

5 Test the playback of the ball

- Dolly out of the view so that you can watch the whole bouncing motion.
- Playback the animation.

The ball animates but the deformation of the ball only works properly at frame 1 . This is because the deformer is not moving with the ball.

Playing back the animation

6 Parent the deformer

To make the deformer move with the ball, you need to parent the deform handle to the ball.

- Go back to frame 1.
- Select the squashHandle then press the shift key and select the ball.
- Select Edit \rightarrow Parent.

You could also press the \mathbf{p} key to parent the handle to the ball.

- Playback the animation.

Now the deformer moves with the ball.

Animating the parented nodes

Animate the squash

To animate the ball's squash and stretch, you could set keys, but if you later edited the timing of the ball's bouncing then these keys would have to be reset. For this reason, you will use a reactive animation technique called Set Driven Key.

This technique allows you to have one attribute drive another attribute. Since you know that you want the ball to squash when it touches the ground and stretch when it is in the air, you can use the ball's Y translation to drive the squash's factor attribute. Therefore if you later edit the timing of the ball's bouncing or change its Y translation, the squash will react appropriately and squash on cue.

1 Load the Set Driven Key window

The Set driven key window lets you choose which attribute will be the driver and which attribute(s) will be driven.

- From the Animate menu, select Set Driven Key \rightarrow Set - \square to open the Set Driven Key window.

Note: When you want to open an option window, you need to select the menu item then move your cursor over the square icon - \square.

- Select the ball.
- Click on the Load Driver button in the Set Driven Key window.
- In the right hand column of the Driver section, click on translate \mathbf{Y}.
This sets up translate Y as the attribute that will drive the action.

Driver attribute highlighted

- Select the squashhandle.
- Highlight the squash input node in the Channel box.
- Click on the Load Driven button in the Set Driven Key window.
Both the squash input node and the squashHandle node are loaded. You will only be using the squash node.
- In the left hand column of the Driven section, click on squash.
- Click on factor in the right hand column to highlight it as the driven attribute.

Driven attribute highlighted

2 Key the initial position

- Go to frame 1.
- Again highlight the squash input node in the Channel box.
- Set the squash node's factor attribute to show the ball in a squashed position.
The image below shows a value of about -0.5.

You can either use the Channel box or the Show Manipulator tool.

- Click on the Key button in the Set Driven Key window.

The squashed ball

3 Key the second position

- Go to frame 30.
- Set the squash node's factor attribute to show the ball in a stretched position.
- Click on the Key button in the Set Driven Key window.

The stretched ball

- Playback the animation

Now the ball stretches at the peak of each bounce and squashes as the ball hits the ground. Set Driven key is using the height of the ball to decide whether to use squash or stretch.

4 Edit the Animation curve

- Select the squashHandle.
- In the Graph editor, click on the attribute labelled $>$ ball.translate Y.
- From the editor's View menu, select Frame all.

Now you can see a straight line mapping the ball's translate Y attribute to the squash's factor attribute.

- Edit the curve as shown in the following image.
Now the ball will have a more subtle squash when it is near the ground and an exaggerated stretch when the it is high in the air.

Edited animation curve

- Playback the animation

You can see that there is a little more emphasis on the point where the ball hits the ground.

Bending the ball

As the ball goes into and out of a bounce, it might be helpful to have it lean forward as it bounces up and lean back as it falls. You can do this with a second deformer. This time you will use a bend deformer.

This will help give the appearance that the ball is propelling itself forward each time it hits the ground. This will give the ball a life of its own as it bounces along.

1 Add a Bend deformer

- Go to frame 1.
- Select the ball.
- From the Deform menu, select Create Nonlinear \rightarrow Bend.
Just like the Squash deformer, the Bend adds a bendHandle and a bend node to the ball. The bendHandle node is currently highlighted.

2 Parent the deformer

To make the deformer move with the ball, you need to parent the deform handle to the ball.

- From the Window menu, select Outliner.
This window offers you a listing of all the objects in the scene.
With your middle mouse button drag the bendHandle onto the ball node.

Parenting the bendHandle

- Click on the plus sign next to the ball node to open up the hierarchy.
Now you can see that the ball is the parent of the two deformer handles.

- Close the outliner window.

3 Key the bend node's curvature

The bend node has an attribute called curvature that is used to control how much bending will occur. This is the attribute that you will set keys on in order to animate the bending of the ball.

- In the Channel box, click on the bend Input node to open it up.
- Click on the Curvature attribute's name to highlight it.
- From the Channel box's Channels menu, select Key Selected.
This sets a start key for the curvature attribute.

4 Turn on Auto Keying

To set more keys for the curvature, you will use Auto key. This method of keying lets you set keys by simply changing the attribute value.

- Turn on Auto Key.

Now when you update an attribute that has existing keys, a key will be set automatically.

5 Edit the bend's boundary

- Go to frame 5.
- Make sure that the bend input node's name is highlighted in the channel box.

- Select the Show Manipulator tool.

This tool displays some handles that let you edit the attributes of the bend deformer. This gives you interactive control over the deformer's attributes.

- Click drag on the top manipulator to extend the high bound of the deformer.
This will ensure that the bending works properly when the ball is fully stretched.

Updated high bound

6 Edit the curvature

- Click-drag to the right on the center manipulator handle to edit the bend node's curvature. Stop when the ball is bending forward. The value in the Channel box should read about 0.5.

A new key has been set. Auto Key creates the new key when you adjust the curvature attribute.

Bending forward

7 Set another key

- Go to frame 15.
- Drag to the left on the center manipulator handle to bend the ball back. This will set the node's curvature to about -0.6.
Another key is set by Auto Key.

Shear backward
8 Continue animating the bending

- Use the Auto key method to set new keys for the bend node's curvature so that the ball bends back at frames 25 and 45 and forward at frames 35 and 55 .
- Go to frame 60 and change your curvature to 0 .
- Change the front view panel back to a perspective panel.
- Playback the results.

Editing timing

To give the impression that the ball is pushing off as it bounces, you will have to edit the timing of the bend action. The goal is to move the bend action closer to the bounce of the ball to make it appear more immediate. You can edit the timing of your keys in the Graph Editor.

Earlier, you edited the quality of the animation using the Graph Editor. To edit the timing of the bouncing, you can also use the Dope sheet. The Dope sheet lets you focus on timing without having to look at all of the curve information.

1 Select keys in the Dope sheet

- Make sure the bendHandle node is selected and the bend node is not highlighted in the Channel box.
- In the Graph editor panel's Panels menu, select Panel \rightarrow Dope Sheet.
This window shows each channel as a series of ticks on a long bar which represent frames. Some of these are highlighted with color bars that show you where keys have been set. The top bar shows a summary of the keys while each channel of the selected nodes has its own bar.
- Click on the plus sign next to the bendHandle node that is in the square.
- Click on the second plus sign next to the bendHandleShape node that is in the circle.
- With the left mouse button, click on the key at frame 15.
It will be the only key highlighted in yellow.
- Press the Shift key and click with the left mouse button on the keys at frames 35 and 55.

Selected keys in Dope sheet

2 Move the ballShear keys

- Select the Move tool.
- With the middle mouse button, click-drag to the right in the Dope sheet until the first key is at about frame 19.

Edited keys

- Playback the results.

3 Edit the shape of the curve

While editing the timing of the bending in the dope sheet helps a bit, you may not be getting the look that you want. To edit how the curve reacts between the keys, you can edit the shape of the curve in the Graph editor.

- In the Dope Sheet's Panels menu, select Panel \rightarrow Graph Editor
- Use the techniques learned earlier in the lesson to reshape the curve as shown below:

The key is that when the ball hits the ground, the bending changes sharply to emphasize the bounce.

- Playback the results.

4 Save your work

- From the File menu, select Save Scene As...
- Enter the name bounce_2 next to the file's path.
- Press the Save button or press the Enter key.

Tip:	It is a good idea to give your file a new
name after significant changes have	
been made. The different files give you	
	a record of past stages in case you want
to go back. Once you have saved a few	
	versions, you can clear earlier files to
	help conserve disk space.

Conclusion

You have now added some character to the bouncing ball. In the next lesson, you will learn how to texture and light your scene in order to begin creating rendered animations.
If desired, you could now use the Dope sheet or the Graph editor to further refine the quality and timing of the various channels to achieve a bounce with different kinds of character. You might want the ball to bounce higher or the bending to be more subtle.
This refinement is ultimately your role as an animator. While the actual work of setting keys is finished, you will find that the refinement stage could become the most timeconsuming, and yet the most rewarding. Since this book is focused on technique, the
refinement will be left up to you to add at the end of each lesson.

Rendering

Now that you have animated the ball, you are ready to render the scene. The rendering process involves the preparation of shaders and textures for your objects and the manipulation of cameras and lights. You can also add effects such as motion blur to accentuate the motion during playback of the rendered frames.

Software rendering of the ball
In this lesson you will learn the following:

- How to work with a menu-less user interface
- How to work with the Hypershade panel
- How to create a shading group
- How to texture map an object
- How to add lighting to your scene
- How to test render a single frame
- How to set up motion blur
- How to software render an animation

Hiding the general UI

In the last two lessons, you used menus, numeric input fields and other user interface elements to work with your scene. In this lesson, you will hide most of the user interface and rely more on the hotbox and other hotkeys that let you access the UI without actually seeing it on screen.

1 Turn off all of the menus

- Move your cursor over the Perspective view panel, then press the spacebar quickly to pop this panel to full screen.
- Press and hold on the spacebar to evoke the hotbox.

Tip: Tapping and holding down the spacebar, respectively, can be used to both toggle between window panes and to bring up the hotbox.

- Click on the Hotbox Controls.
- From the marking menu, go down to Window Options and set the following:

> Show Main Menubar to Off;
> Show Pane Menubars to Off.

Marking menu

Now the various menus are hidden and you must rely on the hotbox to access tools.

2 Turn off all of the workspace options

- From the hotbox, select Options \rightarrow Show Only Viewing Panes.

Simplified user interface
You now have a much larger working area which will let you focus more on your work.

3 Change the panel organization

- Press and hold on the spacebar to evoke the hotbox.
- Click in the area above the menus to invoke a marking menu.
- Select Hypershade/Render/Persp from this marking menu.

Marking menu

Tip: Each of the four quadrants surrounding the hotbox and the hotbox's center all contain their own marking menu set. You can edit the contents of these menus using Options \rightarrow Customize UI \rightarrow Marking Menus...

This saved layout puts a single Perspective panel above a Hypershade and a Render view panel.
The Hypershade is where you will build shading networks and the Render view is where you will test the results in your scene.

4 Open the attribute editor

- From the Options menu, select Attribute Editor.
Now you also have an attribute editor panel on the right side of the workspace. This will make it easy to update shading group attributes.

New window layout

Hotkeys

When working with a minimal UI, you will rely on the hotbox and hotkeys for your work. The following is a list of relevant hotkeys that you may need to use as you work:

spacebar	hotbox/window popping
Alt v	Start/stop playback
Alt + Shift v	Go to first frame
Alt .	Move one frame forward
Alt ,	Move one frame back
k	Click-drag to scrub animation

If you have selected an animated node such as the ball, then you can also use the following hotkeys:
$\begin{array}{ll}\text {. } & \text { Go to next key } \\ \text {, Go to last key }\end{array}$
For a complete listing of available hotkeys, go to the Options window and select Customize UI \rightarrow Hotkeys...

SHADING GROUPS

To prepare the ball and the floor for rendering, you need to add color and texture. In Maya, this is accomplished using shading groups that bring together material qualities, textures, lights and geometry to define the desired look.

The Hypershade panel

The Hypershade panel is made up of two sections - the work area and the Visor. The Visor gives you access to nodes that can be dragged to the work area.

Closeup of Hypershade

Creating a shading group

A shading group is made up of a series of nodes which input into a shading group and material nodes. In the following examples, you will create several nodes that define the material qualities of the ring and the floor.

1 Create a material for the ring

To build a material for the ring, you will use the Hypershade and the Attribute editor.

- Click with your right mouse button in the Hypershade panel and select Graph \rightarrow Clear View.

This clears the workspace so that you can begin working on a new shading network.

- In the Hypershade's Visor section, scroll down to the Create section then click on the Materials folder.

This offers you a series of icons that can be used to create new materials.

- Move your cursor over the icons until you find one that says blinn\# (blinn).
- With your middle mouse button, click on the Blinn icon and drag it into the working area of the Hypershade.
This adds a new blinn material to your scene file that can be assigned to objects. You will also see the Attribute editor update to show the new nodes information.

New node in Hypershade
Blinn is a particular type of shading model that defines how the material will look. The Blinn model gives you control over the look of the materials highlights using special attributes.

2 Rename the material node

- Press Ctrl - a to open the Attribute editor. In the Attribute editor, change the name of the material node to ringM.
The M designation is to remind you that this node is a material node.

3 Edit the Material's color

To define how the material will render, you will need to set several key material attributes such as color.

- In the Attribute editor, click on the color swatch next to the Color attribute.

Color swatch in the Attribute Editor
This opens the Color Chooser. This window lets you set color by clicking in a color wheel and editing HSV (Hue, Saturation, Value) or RGB (Red, Green, Blue) values.

Color Choosers

- Choose any color you want then click the Accept button.

4 Assign the material

- With your middle mouse button, click-drag on the ringM node and drag it from the Hypershade panel into the perspective view and drop it on the ring.
This assigns the material to the object.

Assigned shader

Creating a texture map

To give the floor a pattern, a grid texture will be added to the floor material's color. This will be accomplished using the drag and drop capabilities of the Hypershade.

1 Create a material for the floor

To build a textured material for the floor, you will use the Hypershade panel to build up the shader using a grid texture.

- From the Hypershade panel's Graph menu, select Clear View.
- In the Hypershade's Visor section, move your cursor over the icons until you find one that says phong\# (phong).
- Click with your middle mouse button on the Phong icon and drag it into the working area of the Hypershade.
- In the Attribute editor, change the name of the material node to floorM.

New node in Hypershade

2 Create a checker texture

- In the Hypershade's Visor section, scroll down to the Create section then click on the Textures folder.
This offers you a series of icons that can be used to create new textures.
- Move your cursor over the icons until you find one that says grid\# (grid). It's icon appears all black because of its reduced size.
- Click with your middle mouse button on the Grid icon and drag it onto the floorM material node in the working area of the Hypershade.
- Release the mouse button.

A pop-up menu appears offering you a number of attributes that can be mapped by the checker texture.

- Select color from the menu to map the grid to the material node's color attribute.

3 Assigning the material

You will assign the texture map to the floor then use hardware shading.

- With your middle mouse button, click on the floorM material node and drag it onto the floor surface in the perspective view.
- Move your cursor over the Perspective window and click with your middle mouse button.
- From the hotbox, select Shading \rightarrow Hardware Texturing.

Hardware texturing

Tip: You can also turn on hardware texturing by making the desired panel active and pressing the $\mathbf{6}$ key.

4 Edit the grid attributes

- In Hypershade, click on the grid node.
- In the Attribute editor, click on the color swatch next to the Line Color attribute.
- Choose any color you want then click the Accept button.
- Click on the color swatch next to the Filler Color attribute.
- Choose any color you want then click the Accept button.
- Change the grid's width attributes as shown below:

U Width to 0.75;
V Width to $\mathbf{0 . 7 5}$.
The Attribute editor allows you to easily update the look of a procedural texture.

New Grid

5 Display the whole shading group

- With the grid texture highlighted in the Hypershade, go to the upper right of the window and click on the Up and Downstream Connections button.

This displays some other nodes that help define this shading group.

- Press the Alt key then click-drag with your left and middle mouse button to zoom out.

Up and Downstream Connections

Complete shading network

6 Edit the texture's positioning

The placement of a texture on a surface is defined by the place $2 D$ Texture node.

- Click on the place2dTexture node to highlight it.
- In the Attribute editor, change the following attributes:

Repeat U to 8;
Repeat V to 8.

Updated texture placement

Creating a ball material

You will create a material for the ball that uses a file texture instead of a procedural texture. Many digital artists like to create textures in a 2D paint package. For the ball, you will use a painted texture of a face.

Face texture

1 Create a material for the ball

- From the Hypershade panel's Graph menu, select Clear View.
- Click-drag another Phong material node into the working area of the Hypershade.
- Rename this node ballM.

2 Create a file texture node

To load an external texture, you need to start with a file texture node.

- In the Attribute editor, click on the Map button next to Color. The map button is shown with a small checker icon.
This opens the Create Render node window.
- Click on the Textures tab in the 2D Textures section, then click on File.
A file node is added to the phong material. All the appropriate connections have already been made.

New file texture node

- Close the Create Render Node window.

3 Import the file texture

- In the Attribute editor, click on the File folder button next to Image name.
- Select the file names face.iff then click on the Open button.
The file texture is now loaded into the shading network.

Imported file texture

Note:

This file will be available only if you set up your project as indicated at the beginning of lesson 1 .

4 Apply the material to the ball

- Select the ball in the perspective view.
- In the Hypershade, click on the new material node with your right mouse button and choose Assign Material to Selection from the pop-up menu.
The texture is assigned to the ball but it doesn't seem to be positioned correctly. You will correct this using the placement node.

Ball with texture

Tip: \quad This method of assigning materials works better than the click-drag method when you want to assign a material to multiple objects.

Positioning the texture

When the file texture was assigned to the ball, it was mapped to the actual surface of the ball based on the surface's topology. In this case, this results in the texture being rotated on the surface of the ball. You can rotate the texture's placement to correct the problem.

1 Change the texture's rotation

- Click on the file texture node's place2DTexture. This will activate it in the Attribute Editor.
- In the Attribute Editor, set the following attribute:

Rotate UV to 90.

If you are using hardware texturing, you can see the file texture is now oriented properly on the ball's surface but it is facing the wrong
way. This is because the ball's seam is facing forward. You need to offset the texture.

Backward ball texture

- In the Attribute Editor, set the following attribute:

Offset V to $\mathbf{0 . 5}$.
This will place the file texture so that it is facing the front of the ball.

Rotated ball texture

2 Test Render the scene

Now that you have the textures ready, it would be a good time to do a test rendering.

- In the Render view panel, click with your right mouse button and select

Render \rightarrow Render \rightarrow persp from the pop-up menu.
Oops! The scene renders to black.
This is because there are no lights in the scene. You must first add a few lights to illuminate the objects for the renderer.

LIGHTING

In the real world, it is light which allows us to see the surfaces and objects around us. In computer graphics, digital lights play the same role. They help define the space within a scene, and in many cases help to set the mood or atmosphere.

Placing a spot light

To create the primary light source in the scene, you will use a spot light. This light type lets you define important attributes such as the light's cone angle and its intensity.

1 Create a spot light

- Press F5 to go to the rendering menu set.
- Click on the perspective view panel with your middle mouse button then press the spacebar quickly to pop to a full view.
- From the hotbox, select Lights \rightarrow Create Spot Light.
This places a light at the origin.

Note: In the hotbox, you will find a lights menu and a lighting menu. The lights menu is for adding lights to the scene while the lighting menu lets you control the panel's hardware lighting.

2 Edit the spot light's position

This tool gives you a manipulator for the light's look at point and eye point. You can edit these using the same method as you would with a typical transform manipulator.

- Press the \mathbf{t} key to access the Show Manipulator tool.

Show manip tool

- Click-drag on the manipulator handles to reposition the light.
- Move the manipulators until they appear as shown below.

New light position

3 Turn on hardware lighting (if possible)

One step beyond hardware texturing is hardware lighting. This lets you see how the light is affecting the surface that it is shining on.

- From the hotbox, select Lighting \rightarrow Use All Lights. This time you will use the other Lighting menu. You could also use the 7 key.
At first you may not see much lighting on the surface. You need to update the floor's subdivisions.
- In the Perspective window, click and hold with the right mouse button on the floor object.
- From the marking menu, select Inputs \rightarrow PolyPlane - .
This node now displays in the Attribute editor.
- Set the following attributes:

$$
\text { Subdivisions } \mathbf{X} \text { to 20; }
$$

Subdivisions \mathbf{Y} to 20.
The spot light's cone of illumination can now be seen on the surface of the floor.

Increased subdivisions on floor surface

Note: You only need to increase the subdivisions for a hardware texturing preview of the scene. If you are software rendering, then one subdivision in each direction should work fine.

4 Edit the spot light's cone angle You can now edit some of the light's attributes to control its effect. You will reveal other light manipulators to let you edit this attribute interactively.

- Select the spotlight.
- Press \mathbf{t} to select the Show Manipulator tool.
Next to the light is a small icon that displays a circle with a small line pointing up and to the right. This icon is the cycling index and is used to cycle between different types of light manipulators.
- Click two times on the manipulator's cycle index.
The cycling index rotates to show that you are accessing new manipulators. The chosen manipulator consists of a little blue dot just outside of the light cone. The new manipulator lets you edit the cone angle of the spot light.
- Click-drag on the cone angle manipulator to illuminate more of the scene.
In the Attribute editor, you can watch the Cone Angle attribute update as you click-drag.

New angle of view

5 View through the light

It is sometimes difficult to position a light when standing beside the scene. In Maya, you can also look through the light to aid in positioning.

- Move your cursor over the perspective view panel.
- Using the hotbox, select Panels \rightarrow Look Through Selected.

You are now looking at the scene from the light's point of view. The Cone Angle manipulator is still available for you to click-drag.

- Click-drag on the manipulator to set the Cone Angle to about 60 degrees.

Spot light view

6 Reposition the light

You can now use the view change tools to edit the position of the light.

- Press the Alt key to tumble, pan and dolly into the view.
Work with these tools until you see a view similar to the view shown below:

New spot light view

Tip: \quad You may want to playback the animation to make sure that the ball is illuminated throughout its bouncing.

7 Adjust the Penumbra angle

To get some softness at the edge of the spotlight, you can adjust the light's penumbra.

- In the Attribute editor, set the Penumbra Angle to 5.
- You can now see a second circular line outside the cone angle icon that indicates the area where the light will be soft.

9 Playback the animation

- Use the view tools to center the action within the view panel.

8 Return to Perspective view

- Move your cursor over the Move your cursor over
perspective view panel.
- Using the hotbox, select Panels \rightarrow Perspective \rightarrow persp.
You are now looking at the scene from your old point of view.

Tip: \quad You can click-drag lights and cameras from the Outliner to any view panel.

- Playback the animation using the necessary hotkeys to see how it looks with hardware lighting.

Perspective view

Rendering the scene

Now that you have a light in your scene, you can turn on shadow casting then create a test render. This will let you see a higher quality image of a still frame.

1 Turn on depth map shadows

In Maya, shadows are turned off by default for each light. This allows you to turn shadows on for only those lights that require shadows.

- Select the spotLight.
- In the Attribute Editor, open the Shadows section and click on Use Depth Map Shadows.
Leave the default settings. They will be explained in more depth in a later lesson.

2 Set Render Globals

The Render Globals are a set of global attributes that you can set to define how your scene will render. To set up the
quality of the test rendering, you need to set the Render Globals.

- In the Render View panel, click with your right mouse button and choose Options \rightarrow Render Globals...
- Open up the Anti-aliasing Quality section.
- Set the presets to Intermediate Quality.
Anti-aliasing is a visual smoothing of edge lines in the final rendered image. Because bitmaps are made up of square pixels, a diagonal line would appear jagged unless it was somehow anti-aliased.
- Close the Render Globals window

3 Display resolution gate

Your current view panel may not be displaying the actual proportions that will be rendered. You can display the camera's resolution gate to see how the scene will actually render.

- Make the Perspective view the active panel.
- Use the hotbox to select View \rightarrow Camera Settings \rightarrow Resolution Gate.

The view is adjusted to show a bounding box that defines how the default render resolution of 320 x 240 pixels relates to the current view.

- Dolly into the view so that it is well composed within the resolution gate. Try to set up a view where the ball starts in the back of the scene then animates to the front.

Keep in mind that only objects within the box will be rendered.

- Playback the animation to confirm that the scene works for the whole sequence. If not, then edit the view until you are happy with the camera setup.

New view
4 Test render the scene

- Select Options \rightarrow Time Slider.
- Go to frame 30.
- In the Render View panel, click with the right mouse button and choose Render \rightarrow Render \rightarrow persp.

Rendered scene

5 Zoom into the rendering

You can view the rendering using the Alt key and the zoom and track hotkeys.

- Use the Alt key and the left and middle mouse buttons to zoom in to the view.

Now you can evaluate in more detail how your rendering looks at the pixel level.

Close-up of rendering

- In the Render View panel, click with your right mouse button and choose View \rightarrow Real Size.

Rendering animations

Once you are happy with your test rendering, it is time to render an animation. This will be accomplished using Maya's batch renderer. In preparation, you will add motion blur to your scene to simulate the blur generated in live action film and video work.

1 Set the Image output

To render an animation, you must set up the scene's file extensions to indicate a rendered sequence. You must also set up the Start and End Frames.

- From the Hotbox, select Window \rightarrow Render Globals...
- From the Image File Output section, set the following:

File Name Prefix to bounce;
This sets the name of the animated sequence.
Frame/Animation Ext to:
name.\#.ext (for NT)
name.ext.\# (for IRIX);
This sets Maya up to render a numbered sequence of images.

Start Frame to 1;
End Frame to 60;
By Frame to 1.
This tells Maya to render every frame from 1 to 60 .

Render Globals

2 Turn on motion blur

- In the Render Globals Motion Blur section, click on the Motion Blur button to turn it on.
- Set the Motion Blur Type to be 2D. This type of motion blur renders the fastest.

Motion blur check box
3 Batch render the scene

- Press F5 to change to the Render menu set.
- Use the hotbox to select Render \rightarrow (Save) Batch Render...
- Enter the name bounce_anim next to the path.
You will notice that this file is being saved into the render directory instead of the scenes directory.
- Click on the Save/Render button.

4 Watch the render progress

The sequence will be rendered as a series of frames.

- Use the hotbox to select Window \rightarrow General Editors \rightarrow Script Editor.

In this window, you can watch a series of status entries for your animation.

5 View the resulting animation

After the rendering is complete, you can preview the results using the fcheck utility.

On NT

- Open the fcheck utility by clicking on its icon.
- Select File \rightarrow Open Animation.
- Navigate to the projectone\images folder.
- Select one of the frames of your animation then click Open.

On IRIX

- In a shell window, set your current directory to the maya/projects/ learningMaya/projectOne/images directory.
- Type the following:
fcheck bounce.iff.

Animation previewed with fcheck utility
In both cases, the animation will load one frame at a time then playback more quickly once in memory.

Tip: \quad To learn more about the capabilities of fcheck for previewing your animations, enter fcheck -h in a shell window.

6 Save your work

- From the File menu, select Save Scene As...
- Enter the name bounce_03 next to the file's path.
- Press the Save button or press the Enter key.

Conclusion

You have now touched some of the basic concepts in texturing and rendering a scene. Maya's shading groups offer a lot of depth for creating the look of your scenes. In later lessons, you will learn how to make use of some of this power.
The resulting animation shows a ball with a texture map of a face. In the next lesson, you will use particles to create a ring of fire that helps explain the concerned look on the ball's face.

Lesson 3
Conclusion

4
 Particles

Particles are small object types that can be animated using dynamic forces in place of traditional keyframes. These effects are in essence simulations of physical effects such as water, smoke and fire.

To add particle effects to the scene, you are going to add flames to the ring. These flames will be created using Maya's default particle fire effect. You will then create sparks that will be animated to appear when the ball touches the fire.

The ring of fire
In this lesson you will learn the following:

- How to add a fire effect to a NURBS torus
- How to collide the ball and the flames
- How to set up a particle event
- How to define a particle attribute using a ramp
- How to define a particle attribute using an expression
- How to software render a particle animation
- How to hardware render a particle animation

Project set-up

If you are continuing from the last lesson, then you can begin working right away. If not, then open the Maya file you saved in that lesson. You will continue to use the menu-less user interface to explore the use of hotkeys and the hotbox.

1 Display the Time slider

To work with particles, you will need the Time slider.

- From the hotbox, select Options \rightarrow Time Slider.

2 Set up your Perspective panel

To simplify the workspace, you will focus on a single Perspective view. You will also turn off the resolution gate to let you focus on the particles.

- Use the spacebar to make the Perspective view panel full screen.
- Select View \rightarrow Camera Settings
\rightarrow No Gate to turn off the resolution gate.

3 Change menu sets

- Press \mathbf{h} and with the left mouse button, choose Dynamics from the marking menu.

Note: You could have also used the F4 hotkey to change menu sets.

Ring of Fire

Using one of Maya's preset particle effects, you will add fire to the ring. This preset creates everything needed to make the particles act and look like fire.

1 Adding the Fire Effect

- Select the ring torus.
- Select Effects \rightarrow Create Fire.

2 Playback the simulation

- Click the Animation Preferences button found at the right side of the Time slider.

If this icon is not visible then select
Options \rightarrow Range Slider to show the icon.

- In the Playback section, set the following:

Playback Speed to Free.

When working with particles it is very important that the playback speed is set to free. Otherwise your simulations may act unpredictably.

- Click the Save button.
- Go back to frame 1 and playback the simulation.

The particles are generated from the ring. The simulation plays back at the same time the ball is animating. In Maya, you can combine animated objects with your particle simulations.

The fire effect is the result of a particle object that is controlled by several dynamic fields such as gravity and turbulence. The fire preset added these elements to your scene and lets you easily control them.

Note: Particle simulations should always start at frame 1 for you to see accurate results.

3 Editing the fire attributes

To control the various parts of the fire effect, you can simply edit attributes that are designed specifically for the fire effect.

- Playback the simulation to a point where particles are visible then stop.
- Select the fire particles.
- In the Attribute editor, make sure that the particleShape tab is pressed.
- Rename the particles flame.
- Scroll down to the bottom and open the Extra Attributes section.
- Set the following attributes:

Fire Density to 15;
Fire Lifespan to $\mathbf{1 . 5}$.

- Go back to frame 1 and playback the simulation.
Now there are more fire particles and they last longer.

Updated fire particles

4 Setting the Initial state

One problem you may notice with the simulation is that there are no particles when the animation starts. Since the ring of fire needs to be lit at all times, you must set the particle's initial state.

- Playback the scene until around frame 30 then stop playback.
- Select the particles.
- From the Solvers menu, select Initial State \rightarrow Set for Selected.
- Go back to frame 1 and playback the simulation.
By setting the initial state for the particles, you can see that at frame 1, the particles are already created.

5 Test render the particles

- Playback the scene until around frame 35 then stop playback.
- Press F5 to go to the Rendering menu set.
- From the Render menu, select Render into New Window...

The scene is now rendered with the fire particles included. Some particles can be rendered using the software renderer which allows them to be automatically integrated into the scene.

Software rendering

Note:
The flame's shadows don't look very convincing because the depth map shadows don't work well with the fire's volumetric shader. Also, there is a strange halo around the fire that is caused by the 2D motion blur. You will fix these problems later in the lesson.

Sparks

As an added effect, you will set up more particles that will represent emitted sparks when the ball touches the flames. You will set up this effect to occur at exactly the point where the touches hits the flames.

1 Set up particle collisions

To make the ball and the particles collide, you must define them as colliding objects.

- Select the flame particles.
- Press the Shift key then select the ball.

Note: It is very important that the ball is selected last.

- Press F4 to go back to the Dynamics menu set then from the Particles menu, select Make Collide.

2 Preview the results

- Select Panels \rightarrow Orthographic \rightarrow front.
- Playback the simulation.

When the ball collides with the flames they are pushed a little forward.

Minimal collisions

Note: If you are not getting a strong collision, you may want to adjust the ball's Y translate animation curve in the graph editor so that it jumps just over the bottom of the ring.

3 Adding friction

- Select the fire particles on their own.
- In the Attribute editor, click on the geoConnector tab.
- Set the following attributes:

Resilience to 0.3;
Friction to 0.9.

- Playback the simulation.

Now the flames react a little more when they collide with the ball. The lower resilience allows them to react more and the friction is allowing the ball to drag the flames forward.

Stronger collisions

4 Create a Particle Event

To generate the sparks, you will use the collision between the ball and the flames to emit a new particle object.

- Select the fire particles.
- From the Particles menu, select Particle Collision Events...
- In the Particle Collision Events window, go to the Event Type section and set the following.

Type to Emit;
Random \# Particles to On;
Num particles to 6;
Spread to 0.2;
Inherit Velocity to 0.8.

- Click Create Event.
- Playback the simulation.

Several small particles are emitted after the ball touches the flames. These particles float forward based on the momentum they received from the collision. Now you will adjust how they react and how they look.

5 Add Gravity to the particles

- Select the new particles.
- From the Fields menu, select Create Gravity.
- In the Attribute editor, set the

This will make them drop more quickly.

Magnitude to 25.

- Playback the simulation.

Now the particles drop to the ground after the collision. The gravity field is pulling them down.

Designing the look of the sparks

To create particles that look like sparks, you need to adjust various particle attributes. In this case, you will create particles that will be streaks that die fairly quickly after being emitted. Their color will start out white, and then turn to a yellow-orange.

1 Change Render Type to streak

Particles can have their render type set from a list of possible looks. You can switch between the different types until you get one that suits your needs.

- Select the new particles.
- Rename them sparks.
- In the Attribute Editor, go to the Render Attributes section and set Render Type to Streak.

Render Attributes
This render type is designed to work with hardware rendering. This means that later, you will have to composite the final hardware rendered particles with software rendered scenes.

Streak particles

2 Add and edit render attributes

- Click on the Current Render Type button.
- Set the Render Attributes as follows:

Line Width to 1;

Tail Fade to 0.67;
Tail Size to 3.0.
This gives the sparks a much stronger presence. The higher tail fade value means that it doesn't taper off too strongly and the tail size value lengthens the sparks.

Streak particles

3 Add color per particle

The particle node has the ability to have new attributes added to it as they are needed. This lets you add complexity to a particle node when you need to.
You can use this technique to add color to the particles that will affect the particles individually instead of as a group.

- In the Add Dynamic Attributes section, click on the Color button.
- From the Particle color window, select Add Per Particle Attribute then click the Add Attribute button.
This adds a rgbPP line to the Per Particle Attributes section.
- Click on the rgbPP field with your right mouse button and select

Create Ramp.

- Click again on the rgbPP field with your right mouse button and select
<-arrayMapper.outColorPP \rightarrow Edit Ramp.
In the Ramp window, you will find three markers each with a square and a circular icon.
- Click on the circle icon at the bottom of the ramp then click on the color swatch next to Selected Color.
- Change the color to white.
- Complete the same steps to change the middle marker to a yellow and the top marker to a yellow-orange.

Particle color ramp

- Playback the simulation.

Now the particles start out white then become yellow and orange over time.

4 Particle Lifespan

The Lifespan attribute lets you determine how long the particle will remain in the scene before it disappears or dies. In this case you will add the lifespan on a per particle basis then use an expression to add randomness to the particles.

- With sparks selected, go to the Add Dynamic Attributes section in the Attribute editor.
- Click the Lifespan button.

A window pops up offering you the chance to add this attribute on a per object basis or a per particle basis.

- Select Add Per Particle Attribute.
- Click the Add Attribute button.

5 Add a Creation Expression

This adds a LifespanPP attribute to the particle node's Per Particle section. By
selecting Add Per Particle Attribute, you can set a different value for each of the particles. For lifespan you can use a simple mathematical expression to add randomness to the simulation.

- Click on the lifeSpanPP field with your right mouse button and select Creation Expression.
This opens the Expression editor.
- In the Expression field enter the following;
lifespanPP $=$ rand ($0.05,0.55$)
This expression sets a random number between 0.05 and 0.55 for the lifespan of each particle.
- Click the Create button,
- Playback the simulation.

Now the particles last for somewhere between 0.05 and 0.55 seconds. This gives the sparks a more random look.

6 Save your work

- From the File menu, select Save Scene As...
- Enter the name my_ball4 next to the file's path.
- Press the Save button or press the Enter key.

Rendering Particles

It was discussed earlier that the sparks used a particle type that could only be rendered using hardware rendering while the fire used software rendering. The question, therefore, is how do you bring hardware rendered particles together with software rendered scene?

The answer is to render them separately, and then bring them together using a compositing package such as Maya Composer (IRIX) or Maya Fusion (NT).

To composite the particles with the ball, you will need to render the top layer - in this case the sparks - with a matte, or mask.

The mask is a grayscale channel that defines what areas are to be masked out when layered on top of the background. In this scene, the background is the bouncing ball, the ring of fire, and the floor.

Diagram of compositing layers

Software rendering

The flames created using the fire effect can be rendered using software rendering. This means creating another batch rendering of your scene. This will represent the first render pass that can then be later composited together with the sparks.

1 Change your motion blur type

Since the 2D motion blur used in the last lesson doesn't render well with the flame particles, you will switch to the 3D motion blur type.

- Select Window \rightarrow Render Globals.
- Open the Motion Blur section and change the Motion Blur Type to 3D.
This type of motion blur renders more slowly but is more accurate and works better with software rendered particles.

2 Fix the flame shadows

Earlier it was noted that the shadows generated from the flames didn't look correct. The depth map shadows can not recognize the subtleties of the volumetric shader used for the flames and raytrace shadows are needed.

- Select the spotlight that is illuminating the scene.
- In the Attribute editor, open the Shadows section, scroll down to Raytrace Shadow Attributes and set Use Ray Trace Shadows to On.
This sets up the light, but to use raytraced shadows, you will need to turn on raytracing itself.
- Open the Render Globals.
- Open the Raytracing Quality section and turn Raytracing to On.

Note: Maya uses a selective raytracer and only objects that require reflections, refractions or Raytrace shadows will use this technique.

3 Limiting the Reflections

When Raytracing is turned on, any shader that has a reflectivity value will render with reflections. It is therefore a good idea
to set Reflectivity to 0 for some objects so that the rendering be as fast as possible.

- Open up a Hypershade panel.
- Select the ball, the floor and the ring in the perspective view.
- In the Hypershade's Graph menu, select Graph Materials on Selected Objects.
- Select the ballM material node.
- In the Attribute editor, go to the Specular shading section and set Reflectivity to 0.
Now the ball won't reflect anything.
- Set Reflectivity to $\mathbf{0}$ for the ring.
- Set Reflectivity to $\mathbf{0 . 3 3}$ for the floor so that you do see some reflectivity in the scene.

4 Re-size of the floor surface

To make the floor larger so that it extends beyond the spotlight's influence, you will scale it out then update its texture placement to match the new size.

- Select the floor surface.
- In the Attribute editor, set the following:

Scale X to 4;
Scale Y to 4 ;

Scale \mathbf{Z} to 4.

- In the Hypershade, select the floorM shader.
- Click on the Show upstream connections button.
- Click on the place2Dtexture node.
- In the Attribute editor, set the following:

Repeat U to 32;
Repeat V to 32.

5 Batch render the scene

- Press F5 to change to the Render menu set.
- Use the hotbox to select Render \rightarrow Batch Render...
- Enter then name fire_bounce next to the path.
- Click on the Batch Render button.

This will create a render pass that includes the geometry and the fire. Now you will render the sparks using hardware rendering.

Hardware rendering

You have been using hardware rendering in the Perspective view panel to help preview the scene. You can also use hardware rendering to render the spark particles so that they match the rendered scene.

1 Set the opacity of the fire

Since you only want the sparks to appear in the hardware rendering, you will need to hide the flames by setting an opacity value to 0 .

- Select the flame particles.
- In the Attribute editor, scroll down to the Add Dynamic Attributes section and click on Opacity.
- Choose Add Per Object Attribute then click on the Add Attribute button.
- This adds an opacity attribute to the Render Attributes section.
- Set Opacity to 0 .

Now the particles will not be visible in the hardware rendering. You can set opacity to 0 when you want to hardware render the scene and to 1 when you want to software render the scene.

2 Set the hardware render attributes

- Select Window \rightarrow Rendering Editors \rightarrow Hardware Render Buffer...
- In the Hardware Render Buffer window, select Render \rightarrow Attributes...
- In the Attribute editor, set the following attributes:

Filename to sparks;
Extension to name.1.ext (NT)
or to name.ext. 1 (IRIX)
This should match the extension setting you chose for your software rendering.

Start Frame to 1;

End Frame to 60;
Resolution to 320x240;
This sets the length and size of the animation.

Alpha Source to Luminance; Geometry Mask to On.

This will use the ring, floor and the ball as mask objects and the particle luminance to define the alpha. An alpha channel, otherwise known as
a matte channel, is important for layering images in a compositing package later.

- Open the Multi-Pass Render options section and turn

Multi-Pass rendering to On;
Anti-Alias Polygons to On.
This will soften the look of the rendering.

Note: In some ways, these attributes are similar to the Render Globals, except that these settings only affect hardware rendering.

3 Test a frame

- Playback the simulation until you hit a frame where some of the sparks appear.
- Click on the Test button in the middle of the Render Buffer's time controls.

Hardware render buffer

Tip: The resolution gate must be off when performing a hardware render if it is to be composited with the batch render.

4 Render a sequence

You can now render a whole animation using this window. Compared to software rendering, this window lets you use the speed of hardware rendering to generate animations quickly.

- Select Render \rightarrow Render Sequence.

5 Preview the resulting flipbook

Once the sequence is complete, you can preview the results.

- Select Flipbooks \rightarrow sparks.1-60

Animation preview

6 Composite rendered animations

You now have an animation of a bouncing ball and a sequence of particles embedded with an alpha channel. You can now use your compositing software to layer all the elements together.

Final composite
There are several advantages to compositing your layers instead of rendering them all into one scene:

- by separating background and foreground elements and rendering them individually, rendering times can be greatly reduced;
- by rendering different elements on different layers, it is easier to later make revisions to one layer without having to re-render the whole scene;
- when working with particles, interesting effects can also be achieved by compositing hardware and software rendered particles; and
- by using different layers, you can use your compositing software to adjust the color for a particular layer without affecting other layers.

Conclusion

Congratulations, you now have a complete scene that includes objects, shaders and visual effects. You have also begun to develop skills that you will use throughout your use of Maya.

The next chapter is a more in-depth look into some of the user interface elements that you have been using in these lessons. Once you have read this chapter, you will be able to make your own decisions on how you want to configure the UI for your needs.

In the projects that follow, the instructions will not specify whether or not you should use the hotbox or menus to complete an action. The choice will be left up to you.

5 Working with Maya

If you have just completed the first four tutorials, then you have worked with Maya from modeling and animating to rendering and particles. Now is a good time to review some of the user interface concepts that you have worked with to give you a more complete overview of how Maya works.

It is recommended that you work through this chapter before proceeding with Learning Maya. This chapter explores the basic user interface actions that you will use in your day-to-day work.

The Workspace

You have learned how to build and animate scenes using different view panels and user interface tools. The panels offer different points of view for evaluating your work such as perspective views, orthographic views, graphs and Outliners - while the tools offer you different methods for interacting with the objects in your scene. Shown below is the workspace and its key elements:

Layouts

When Maya is first launched, you are presented with a single Perspective view panel. As you work, you may want to change to other view layouts.

The default layout

To change your view layouts:

- Go to the view panel's Panels menu and select a new layout option from the Layouts pop-up.

The Layouts pop-up menu
You can set up various types of layouts ranging from two to four panels.

A four view layout

Tip: If you are looking at several view panels at the same time and you want to focus on one of them, tap the space bar and the view will become full screen. Tap the spacebar again and the panels will return to the previous layout.

View panels

As you begin to build and animate objects, you will want to view the results from various points of view. In Maya, you can place either perspective or orthographic views in each panel.

To change the content of a view panel:

- Go to the view panel's Panels menu and select a view type from either the Perspective or Orthographic pop-ups.

View tools

When you are working with perspective and orthographic views, you can change your view point by using hotkey view tools.

To tumble in a Perspective view:

- Press the Alt key and click-drag with the left mouse button.

Tip: The ability to tumble an orthographic view is locked by default. To unlock this feature, you need to select the desired orthographic view and open the Attribute Editor.

To track in any view panel:

- Press the Alt key and click-drag with the middle mouse button.

To dolly in any view panel:

- Press the Alt key and click-drag with both the left and middle mouse buttons.

These view tools allow you to quickly work in 3D space using a simple hotkey.

> Tip: You can also track and dolly in other view panels such as the Hypergraph, the Graph Editor, Visor, Hypershade, and even the Render View window. The same view tools work for most panel types.

Other panel types

You can also change the content of the view panel to display other types of information such as the Multilister or the Graph Editor.

To change the content of a view panel:

- Go to the view panel's Panels menu and select a panel type from the Panel pop-up.

The Panel pop-up menu
In the workspace below, you can see a Hypershade panel for helping you organize your shading groups and a Graph Editor for working with animation curves.

The workspace with various panel types

Saved layouts

As you become more familiar with Maya, you may want to set up an arrangement of panels to suit a particular workflow. For example, you may want a Dope sheet, a Perspective view, a Top view and a Hypergraph view all set up in a particular manner.

To add a new layout of your own:

- Go to the view panel's Panels menu and select Saved Layouts \rightarrow Edit Layouts...

In the Edit window, you can add a new saved layout and edit the various aspects of the layout.

To add a new layout to the list:

- Click on New Layout.
- Select and edit the layouts name.
- Press the Enter key.

To edit the configuration of a saved layout:

- Press the Edit Layouts tab.
- Choose a configuration, then clickdrag on the center bars to edit the layout.

Layout Editor

- Press the Contents tab.
- Choose a panel type for each of the panels set up in the configuration section.

Display options

Using the Shading menu on each view panel, you can choose which kind of display you want for your geometry.

To change your panel display:

- Go to the panel's Shading menu and select one of the options.

Or

- Make the panel you wish to change the active panel.
- Use one of the following hotkeys to switch display types:

4 for wireframe;
5 for smooth shaded.

Various display styles

Texturing and lighting

Another important option found on this menu is hardware texturing. This option allows you to visualize textures interactively
in the view panels - but you require texture RAM on your computer to use this feature.

To use hardware texturing:

- Build a shader that uses textures.
- Go to the panel's Shading menu and select Hardware Texturing.

Or

- Press the following hotkey: 6 for hardware texturing.

To display different textures:

It is possible to display texture different texture maps on your surface during hardware texturing. For instance, you could display the color map or the bump map.

- Select the material that is assigned to your objects.
- In the Attribute editor, open the Hardware Texturing section and set the Textured channel to the desired channel.
- You can also set the Texture quality for each material node.

To add hardware lighting to your scene:

- Add a light into your scene.
- Go to the panel's Lighting menu and select one of the options.

Or

- Press the following hotkey:

7 for realistic lighting.

Texturing

Lighting

Hardware lighting and texturing

Display smoothness

By default, NURBS surfaces are displayed using a rough smoothness setting in order to enhance playback and interactivity of scenes.

To increase objects smoothness:

- Go to the Display menu and under NURBS Smoothness choose one of the options.

Or

- Use one of the following hotkeys to switch display types:

1 for rough;
2 for medium;
3 for fine.
Or

- Press the \mathbf{d} key and choose an option from the marking menu.

Rough
Surface smoothness

Tip: If you want to set a particular smoothness when you first place a piece of geometry into the scene, go to the Options menu and select General Preferences. In the Display section, you have various options for setting defaults.

Show menu

The Show menu is an important tool found on each view panel's menu. This menu lets you restrict what each panel can show on a panel-by-panel basis.
Restricting what each panel shows, lets you display curves in one window and surfaces in another to help edit construction history. Or you can hide curves when playing back a motion path animation while editing the same curve in another panel.

The Show тепи

UI preferences

The Maya workspace is made up of various user interface elements which assist you in your day-to-day work. By default, this interface puts all of these on the screen for easy access.

To reduce the user interface to only view panels and menus:

- Go to the Options menu and select Show Only Viewing Panes.
With less user interface clutter, you can rely more on hotkeys and other user interface methods for accessing tools while conserving screen real-estate.

To go back to a full user interface:

- Go to the Options menu and select Show All Panes.

Menus

Most of the tools and actions you will use in Maya are found in the main menus. The first seven menus are always visible, while the next few menus change depending on which UI mode you are in.

Menus and menu pop-ups that display a dotted line at the top can be 'torn off' for easier access.

To tear off a menu:

- Pull down on the menu then release as your mouse hits the top of the menu.

Release at dotted line to get tear-off menu

A tear-off menu

Later in this chapter, you will look at the difference between the two main types of menu items - tools and actions.

Menu sets

There are four menu sets in Maya: Animation, Modeling, Dynamics and Rendering. These allow you to focus on tools appropriate to a particular workflow.

To choose a menu set:

- Select the menu set from the pop-up menu found at the left of the Status Line bar.

To choose a menu set using hotkeys:

- Press the \mathbf{h} key and choose the desired UI mode from the radial marking menu.

To choose a menu set using function keys:

- Press F2 for Animation;
- Press F3 for Modeling;
- Press F4 for Dynamics;
- Press F5 for Rendering.

The shelf

Another way of accessing tools and actions is using the shelf. You can move items from the menu to the shelf to begin combining tools into groups based on your personal workflow needs.

To add a menu item to a shelf:

- Press Ctrl+Alt+Shift then select the menu item. It will appear on the active shelf.

To edit the shelf contents and tabs:

- Go to the Options menu and select Customize UI \rightarrow Shelves...

Hotbox

As you have learned, pressing the spacebar quickly pops a pane between full screen and its regular size. If you press a little longer, you gain access to the hotbox.
The hotbox is a user interface tool that gives you access to as much or as little of the Maya UI as you want. It appears where your cursor is located and offers the fastest access to tools and actions.

To access the hotbox:

- Press and hold the spacebar.

The hotbox with four quadrants marked The hotbox offers a fully customizable interface element that provides you with access to all of the main menus as well as your own set of marking menus.

You can use the Hotbox Controls to display or show as many or as few menus as you need, and you can configure up to 15 different marking menus for fast interaction.

Accessing the recent commands menu

Hotbox marking menus

You can access marking menus in five areas of the hotbox. Since each of these areas can have a marking menu for each mouse button, it is possible to have 15 menus in total. You can edit the content of the marking menus by
going to the Options menu and selecting Customize UI \rightarrow Marking menus.

To access the center marking menu:

- Press the spacebar.
- Click and drag in the center area to access the desired menu.

The center marking menu
To access the edge marking menus:

- Press the spacebar.
- Click and drag in the top quadrant to access the desired menu.

North marking menu

A quadrant-based marking menu

Customizing the hotbox

You can customize the hotbox to make it as simple or as complex as you need. You can
choose which menus are available and which are not.

If you want, you can reduce the hotbox to its essentials and focus on its marking menu capabilities.

Alternatively, you could hide the other UI elements, such as panel menus, and use the hotbox for access to everything. You get to choose which method works best for you.

A complete hotbox layout

To customize the hotbox:

- Use the Hotbox controls.

Or

- Use the center marking menu.
- Choose an option from the Hotbox Styles menu.

Tool manipulators

At the top left of the workspace you have access to important tools. These include the

Select, Move, Rotate, Scale and Show

 manipulator tools. Each of these is laid out to correspond to a related hotkey that can be easily remembered using the QWERTY keys on your keyboard.

These tools will be used for your most common tool-based actions-like selecting and transforming.

Note: The Y key drives the last spot on the QWERTY palette which is for the last tool used. The advantages of this will be discussed later in the Tools and Actions chapter of this document.

Transform manipulators

One of the most basic node types in Maya is the transform node. This node contains attributes focused on the position, orientation and scale of an object. To help you interactively manipulate these nodes, there are three transform manipulators which make it easy to constrain along the main axes.

Each of the manipulators uses a color to indicate their axes. RGB is used to correspond to XYZ . Therefore, red is for X , green for Y and blue for Z . Selected handles are displayed in yellow.

Transform manipulators
To explore some of the options available with manipulators, you will use the transform manipulator.

To use a transform manipulator in view plane:

- Click-drag on the center of the manipulator.

To constrain a manipulator along one axis:

- Click-drag on one of the manipulator handles.

Drag on handles to constrain

Drag in center for all axes (based on view plane)
The move manipulator
To constrain a manipulator along two axes:

- Press the Ctrl key and click-drag on the axis normal to the desired plane of motion.

This now fixes the center on the desired plane, thereby letting you click-drag on the center so that you
can move along the two axes. The icon at the center of the manipulator changes to reflect the new state.

To go back to a view plane focus for center:

- Press the Ctrl key and click on the center of the transform manipulator.

Press Ctrl key on Y -axis handle

Center now constrained to an XZ plane
Working along two axes

Note: The ability to constrain in two axes at a time is available to only the move manipulator.

Using the mouse buttons

When working with manipulators, you can use the left mouse button to select objects and interact directly with manipulators. The middle mouse button is for the active manipulator and lets you click-drag without direct manipulation.

To select objects:

- Set up selection masks.
- Click with the left mouse button.

To select multiple objects:

- Use the left mouse button and clickdrag a bounding box around objects.

Or

- Press Shift, and with the left mouse button click on multiple objects.

To manipulate objects directly:

- Click-drag on a manipulator handle.

To manipulate objects indirectly:

- Activate a manipulator handle.
- Click-drag with the middle mouse button.

Shift gesture

The manipulators allow you to work effectively in a Perspective view panel when transforming objects.
If you want to work more quickly when changing axes for your manipulators, there are several solutions available.

To change axis focus using hotkeys:

- Press-hold on the transform keys: w for move; e for rotate; r for scale.
- Choose an axis handle for constraining from the marking menu.

To change axis focus using shift key:

- Press the Shift key.
- Click-drag with the middle mouse button in the direction of the desired axis.

Set pivot

The ability to change the pivot location on a transform node is very important for certain types of animation.

To change your pivot point:

- Select one of the manipulator tools.
- Press the Insert key on keyboard.
- Click-drag on a manip to move pivot.
- Press Insert to return to manip.

Numeric input

To add values to your transformations using accurate values, you can go to the numeric input box at the right of the Feedback line. This allows you to apply exact values to the attributes associated with the current manipulator. You can use the Feedback line to check out current values and to confirm your results.

To access the feedback line

- From the Options menu, select Feedback line.

To change focus to the coordinate box:

- Click on the box.

Or

- Press the Alt - ~ keys

To change all values at once:

- Enter three values in a row, with spaces in between.

567

Numeric input field

Note: Beside the coordinate box is a button to toggle between absolute and relative values. The default is absolute.

To enter a value for the active manipulator.

- Click on the desired handle. (e.g. -Z-translate)
- Enter a single value.

8

Inputting active manipulator value

Note: If no manipulator handle is active, then the single value will be applied to X.

To enter a value while preserving others:

- Type in periods (.) for channels that you want to stay the same. remember to add spaces in between.
- Enter a numeric value for the channels that will change.
The example below would keep the X and Y values constant and change only the Z information.

3

Entering periods to keep values constant

Channel box

Another way of entering accurate values is the Channel box. This powerful panel gives you access to an object's transform node and any associated input nodes.

If you have multiple objects selected, then your changes to a channel will affect all the nodes which share that attribute.

To put one of the selected objects at the top of the Channel box so that it is visible, choose the desired node from the channel box's Object menu.

If you want to work with a particular channel, you can use the Channels menu to set keys, add expressions and complete other useful tasks. You can also change the display of the Channel box names to short MEL-based names.

Channels menu

Note: To control what channels are shown in the Channel box, you must go to the Options menu, and choose General Editors \rightarrow Channel Control.

Channel box and manipulators

One of the features of the Channel box is the way in which you can use it to access manipulators at the transform level.

By default, the Channel box is set to show manipulators each time you tab into a new Channel box field. You will notice that as you select the channel names such as Translate Z or Rotate X, the manipulator switches from translate to rotate.

One fast way of working is to select the name of the desired channel in the Channel box, then use the middle mouse button to edit the value by click-dragging in a view panel.

There are three options for the Channel box manipulator setting:

Default manipulator setting

This setting lets you activate the appropriate field in the Channel box, and then modify the values with either the left or the middle mouse buttons.

To use the default method, complete the following steps:

- Click on the desired channel name or within the channel's input field.
- Click-drag directly on the active manipulator with the left mouse button.

Or

- Click-drag in open space with the middle mouse button.
This may be the easier method since you can click remotely.

Channel box default manipulator setting

No-manipulator setting

You can click on the manipulator icon at the bottom of the Channel box to turn manipulation off which leaves the Channel box focused on coordinate input. With this setting, you cannot use the middle or left mouse buttons for manipulation. To manipulate objects in this mode, you must do one of the following:

- Click in the channel's entry field and type the exact value.

Or

- Use one of the normal transform tools such as move, rotate and scale.

Channel box no-manipulator setting

No-visual manipulator setting

A third option found on this manip button returns manipulator capability to the Channel box - but now you won't see the manipulator on the screen, as shown in the icon at the bottom of the Channel box.

- Click on the desired channel name or within the channel's input field.
- Click-drag in open space with the middle mouse button.
You can now use the two new buttons that let you edit the speed and dropoff of the manipulations.

Channel box no-visual manipulator setting
The first button that becomes available with the No-visual setting is the speed button which lets you click-drag with your middle mouse button either slow, medium or fast.

Channel speed controls
The second button is the drop-off button which lets you choose between a linear motion, as you click-drag with the middle mouse button, or a click-drag that is slow at first then faster as you drag further.

Attribute Editor

If the Channel box lets you focus on attributes that are keyable using Set Key, then the Attribute Editor gives you access to all the rest of the attributes/channels.

The Attribute Editor is used for all nodes in Maya. This means that shaders, textures,
surfaces, lattices, render globals, etc. can all be displayed in this one type of window.

To open the Attribute Editor window:

- Select a node.
- Go to the Window menu and select Attribute Editor.

To open the Attribute Editor panel:

- Select a node.
- Go to the Options menu and select Attribute Editor. The Channel box is now replaced by an attribute editor panel.
When you open up the Attribute Editor, you get not only the active node, but also related nodes based on dependency relationships. In the example below, a sphere's transform, shape and makeNurbSphere nodes are all present. These are the same input and shape nodes shown in the Channel box.

A typical Attribute Editor

SELECTING IN MAYA

One of the most important tasks when working in Maya is your ability to select

different types of nodes and their key components.

For instance, you need to be able to select a sphere and move it, or you need to select the sphere's control vertices and move them. You also need to distinguish between different types of objects so that you can select only surfaces or only deformers.

Selection masks

To make selecting work in Maya, you have a series of selection masks available to you. This allows you to have one Select tool that is then masked so that it can only select certain kinds of objects and components.

The selection mask concept is very powerful because it allows you to create whatever combination of selecting types that you desire. Sometimes, you only want to select joints and selection handles, or maybe you want to select anything but joints. With selection masks, you get to set up and choose the select options.

The selection user interface

The user interface for selecting offers several types of access to the selection masks. You can learn all of them now and then choose which best suits your way of working down the line.

Grouping and parenting

When working with transform nodes, you can build more complex structures by building hierarchies of these node types.
To build these structures, you can choose to group the nodes under a new transform node or you can parent one of the nodes under the
other so that the lower node inherits the motion of the top node.

Grouped and parented nodes

Selection modes

At the top of the workspace, you have several selection mask tools available. These are all organized under three main types of select modes. Each of these gives you access to either the hierarchy, object type or components.

The select modes

Scene hierarchy mode

Hierarchy mode gives you access to different parts of the scene hierarchy structure. In the example shown below, the leaf node and the root node are highlighted. This mode lets you access each of these parts of the hierarchy. You can select root nodes, leaf nodes and template nodes using the selection masks.

Root nodes

Leaf nodes
Hierarchy types

Object mode

Object mode lets you perform selections based on the object type. Selection masks are available as icons which encompass related types of objects.

With your right mouse button, you can access more detailed options that are listed under each mask group. If you create a partial list, the mask icon is highlighted in orange.

Click with RMB on icon for list
Object mode with selection masks

Tip: Once you choose selection masks, Maya gives priority to different object types. For instance, joints are selected before surfaces. You will need to use the Shift key to select these two object types together. To reset the priorities, select Options \rightarrow General Preferences and click on the Select tab.

Component mode

The shape nodes of an object contain various components such as control vertices or isoparms. To access these, you need to be in component mode.

RMB list - click on icon
Component selection masks
When you select an object in this mode, it first highlights the object and shows you the chosen component type; you can then select the actual component.
Once you go back to object mode, the object is selected and you can work with it. Toggling between object and component mode allows you to reshape and position objects quickly and easily.

CV components and lattice point components

[^0]
RMB select

Another way of accessing the components of an object is to select an object, then press the right mouse button. This brings up a marking menu that lets you choose from the various components available for that object.

The right mouse button select menu
If you then select another object, you return to your previous select mask selection. This is a very fast way of selecting components when in hierarchy mode, or for components that are not in the current select mask.

Combined select modes

Just in front of the selection mask mode icons is a pop-up menu that gives you different preset mask options. These presets let you combine different object and component level select options.
An example would be the NURBS option. This allows you to select various NURBSbased mask types such as surfaces, curves, CVs, curve control points and isoparms.

Note: In this mode, if you want to select CVs which are not by default visible, then you must make them visible by going to the Display menu and selecting NURBS Components \rightarrow CVs.

When using a combined select mode, objects and components are selected differently. Objects are selected by click-dragging a select box around a part of the object while components can be selected with direct clicking.

Note: If you have CVs shown on an object and the select box touches any of them, then you will select these components instead of the object. To select the object, you must drag the select box over part of the surface where CVs are not.

NURBS select options

TOOLS AND ACTIONS

In Maya, there are a large number of menu items that let you act on your scenes in a number of ways. These menu items are broken down into two types of commands: tools and actions, each working in their own particular way.

Tip: If a menu item says "Curve tool" then it uses tool interaction. If the word "tool" is not mentioned then the menu item is an action.

Tools

Tools are designed to remain active until you have finished using them. You select a tool, use it to complete a series of steps then press the Enter key to complete, at which point your focus returns to your last transform tool. In most cases, the Help line at the bottom of the workspace can be used to prompt your actions when using the tool.

Earlier you were introduced to the \mathbf{y} key on the QWERTY palette. By default, this button is blank because it has been left over to show the last tool used. When you pick a tool from the menus, it's icon inserts itself into the QWERTY menu.

To use a tool:

- Pick and use a tool.
- Press the Enter key to complete.

Your focus returns to a transform tool.

To return to the last tool used:

- Press the y key.

Y key with curve tool icon

Actions

Actions follow a selection-action paradigm. This means that you have to first pick something and then act on it. In Maya, this allows you to choose an action, return to editing your work, and lets you refine the results immediately.

Actions require that you have something selected before acting on it. This means that you must first find out what is required to complete the action.

To find out selection requirements of an action:

- Move your cursor over the menu item.
- Look at the Help line at the bottom left of your workspace.
The selection requirements are displayed. For instance, a Loft requires curves, isoparms or curves on surfaces while Insert Isoparm requires that isoparms be picked.

To complete the action:

- Use either pick modes or the right mouse button pick menu to make the required selections.
- Choose the action using either the hotbox, shelf or menus.
The action is complete and your focus returns to your last transform tool.

A typical action: 2D fillet

A good example of a typical action is a 2D fillet. As with all actions, you must start with an understanding of what the tool needs before beginning to execute the action.

1 Draw two curves

- Select Create \rightarrow CV Curve Tool.
- Place several points for one curve.
- Press Enter to complete.
- Press the y key to refocus on curve tool.
- Draw the second curve so that it crosses the first.
- Press the Enter key to complete

2 Find out 2D fillet requirements

- Move your cursor over the Modeling \rightarrow Edit Curves \rightarrow Curve Fillet menu item.
- Look in the Help line to find out what kind of pick is required.
The Help line is asking for curve parameter points.

3 Pick the first curve point

- Click on the first curve with the right mouse button.
- Pick Curve Point from the selection marking menu.
- Click on the curve to place the point on the side you want to keep.

4 Pick the second curve point

- Click on the second curve with the right mouse button.
- Pick Curve Parameter point from the selection marking menu.
- Press the Shift key and click on the curve to place the point on the side of the curve you want to keep.
The Shift key lets you add a second point to the selection list without losing the first curve point.

RMB pick of curve parameter point

[^1]

Two curve points in place

5 Fillet the curves

- Select Modeling \rightarrow Edit Curves \rightarrow Curve Fillet - \square to open the tool options.
- Turn the trim option on.
- Click on the Fillet button.

Fillet tool options window

- Close the Fillet Curve Options window.

Final filleted curves

Conclusion

You now know how to navigate the Maya user interface and how the tools and actions work. The skills you have learned here will be applied throughout the rest of this book. It is now up to you to choose how you want to use the interface. Try out the different techniques taught here as you work through the Learning Maya projects.
In the next chapter, you will explore Maya's Dependency graph. You will learn about the different Maya nodes and how to build them into hierarchies and procedural animations.

Lesson 5
Conclusion

6

 The Dependency Graph

 The Dependency Graph}

In the first four lessons of this book, you were able to interactively animate a ball bouncing. Along the way, you encountered many nodes which helped you build up and animate the scene. You came across input nodes, hierarchy nodes, shading group nodes and texture nodes, as well as emitter and particle nodes. These nodes represent key elements within Maya - each node containing important attributes which help you define and animate your scenes.

Maya's architecture is defined by this node-based system that is known as the Dependency graph. Each of your nodes contains attributes which can be connected to other nodes. If you wanted to reduce Maya to its bare essentials, you could basically describe it as nodes with attributes that are connected. This node-based approach gives Maya its open and flexible procedural characteristics.
In this chapter, you are going to explore nodes, attributes and connections by animated objects at various levels. You will explore how attributes are connected by Maya and how you can connect them yourself. You will also learn how to distinguish scene hierarchies from object dependencies.
This chapter will at first seem a bit abstract, but in the end you will be able to see how the various nodes contribute to an animated scene which will help you in later lessons.

Hierarchies and dependencies

If you understand the idea of nodes with attributes that are connected, then you will understand the Dependency graph. By building a simple primitive sphere, you can see what this means in Maya.

1 Set up your view panels

To view nodes and connections in a diagrammatic format, the Hypergraph panel is required along with a Perspective view.

```
- Select Panels \(\boldsymbol{\rightarrow}\) Layouts \(\boldsymbol{\rightarrow} \mathbf{2}\) Side by Side.
```

- Set up a Perspective view in the first panel and a Hypergraph view in the second panel.
- Dolly into the Perspective view to get closer to the grid.

2 Create a primitive sphere

- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- Press 5 to turn on smooth shading and 3 to increase the surface smoothness of the sphere.

New sphere

3 View the shape node

In the Hypergraph panel, you are currently looking at the scene view. The scene view is focused on transform nodes. This type of node lets you set the position and orientation of your objects.
Right now, only a lone nurbsSphere node is visible. In actual fact, there are two nodes in this hierarchy but the second is hidden by default. At the bottom of most hierarchies, you will find a shape node which contains the information about the object itself.

- In the Hypergraph, select Options \rightarrow Display \rightarrow Shape nodes.
You can now see the transform node which is in effect the positioning node, and the shape node which contains information about the actual surface of the sphere. The transform node defines the position of the shape below.

Transform and shape nodes

- In the Hypergraph panel, select Options \rightarrow Display \rightarrow Shape nodes to turn these off.
Notice that when these nodes are expanded, the shape node and the transform node have different icons.

The Dependency Graph
Hierarchies and dependencies

When collapsed, the transform node takes on the shape node's icon to help you understand what is going on underneath.

Transform node on its own

4 View the dependencies

To view the dependencies that exist with a primitive sphere, you need to take a look at the up and downstream connections.

- Click on the sphere with the right mouse button and select Inputs \rightarrow Make Nurb Sphere from the marking menu.

Selection marking menu

Note: You can also select the input node by selecting on it in the Channel box.

- In the Hypergraph panel, click on the Up and Downstream Connections button.
The original transform node is now separated from the shape node. While the transform node has a hierarchical relationship to the shape node, their attributes are not dependent on each other.
The input node called makeNurbSphere is a result of the original creation of the sphere. The options set in the sphere tool's option window, have been placed into a node that feeds into the shape node. The shape node is dependent on the input node. If you change values in the input node, then the shape of the sphere changes.
 In the Channel box, you can edit attributes belonging to the various nodes. All of the node types can be found in the Channel

5 Edit attributes in the Channel box

box. This lets you affect both hierarchical relationships and dependencies.
If you edit an attribute belonging to the makeNurbSphere node, then the shape of the sphere will be affected. If you change an attribute belonging to the nurbSphere transform node, then the positioning will be changed. Use the Channel box to help you work with the nodes.

- For the transform node, change the Rotate \mathbf{Y} value to $\mathbf{4 5}$.
- For the makeNurbSphere input node, change the Radius to 3.
You can set attribute values to affect either the scene hierarchy or the Dependency graph.

Shading group nodes

In earlier lessons, the word node was used a great deal when working with shading groups. In fact, shading group nodes create dependency networks which work the same way as shape nodes.

1 Create a shading group

When you create a shading group you are creating two main nodes that are connected - the shading group node and the material node.

- Select Window \rightarrow Hypershade.
- Select Create \rightarrow Materials \rightarrow

Phong. In the perspective view panel click on the sphere to assign the material.

- Select the sphere in the perspective panel then click on the Up and Downstream Connections button.

In the Hypergraph view, notice how the input node is connected to the shape node which relates to the phong shading group.
A line is now drawn between the sphere's shape node and shading group node. This is because the shading group is dependent on the surface in order to render.
Every time you assign a shading group to an object you make a dependency graph connection.

Shading group dependencies

- Select the nurbSphere node and the phongSG node in the Hypergraph.
- Again, click on the Up and Downstream Connections button.
You can now see how the phong material node and the sphere's shape node both feed the shading group. You can move your cursor over any of the connecting lines to see the attributes that are being connected.

Assigned shading group

2 Open the Attribute Editor

You have seen how the nodes in the Hypergraph and the Channel box have been used to view and edit attributes on connected nodes. Now you will see how the Attribute Editor displays nodes, attributes and connections.

- Click on the Scene Hierarchy button in the Hypergraph Panel to go back to a scene view.
- Select the sphere's transform node.
- Press Ctrl a to open the Attribute Editor.
In this important window, you will see several tabs each containing groups of attributes. Each tab represents a different node. All the tabs displayed represent parts of the selected node's Dependency graph that are related to the chosen node. By bringing up several connected nodes, you have easier access to particular parts of the graph.

Nodes and attributes in Attribute Editor

- Close this window.

Note: In Maya, the Dependency graph lets you focus on one part of the graph at a time.

Making your own connections

To help you understand exactly what a Dependency graph connection is, you are going to make your own connection and see how it affects the graph.

1 Open the Connection Editor

- Select Window \rightarrow General Editors \rightarrow Connection Editor...
- Click on the Reload Left button.

The selected transform node is loaded into the left column. All of the attributes belonging to this node are listed.

Note: There are more nodes here than you saw earlier in the Channel box. The Channel box only shows attributes that have been set as keyable. Other nodes can be found in the Attribute Editor.

Transform node in Connection Editor

2 Add phong as the output node

- In the Hypergraph, select Rendering \rightarrow Show Materials.
- Select the phong1 material node.
- In the Connection Editor, click on the Reload Right button.

Material node in Connection Editor

3 Make connections

You will now connect some attributes in from the transform node to the material node.

- In the left hand column, scroll down until you find the Translate attributes.
- Click on the arrow to open this attribute type and see the Translate X, Y and Z attributes. Be sure not to click on the name.
- In the right hand column, scroll down until you find the Color attribute.
- Click on the arrow to open this attribute type and see the Color R, G and B attributes.
- Click on the Translate \mathbf{X} attribute in the left hand column.
- Click on the Color \mathbf{R} in the right hand column.

Connected attributes

- Use the same method to connect:

Translate \mathbf{Y} to Color G;
Translate \mathbf{Z} to Color B.
In the modeling view, the sphere is still showing gray because hardware shading cannot display this kind of connection.

4 Test render the view

- Go to the Rendering menu set.
- Select Lights \rightarrow Directional Light.
- Select Render \rightarrow Render into New Window.
The ball is rendered as black against a black background. Since the sphere's XYZ, coordinates are set to $0,0,0$, the colors RGB are the same. An RGB setting of $0,0,0$ gives you black.

5 View the connections

- In the Hypergraph panel, select the phong node then click on the Up and Downstream Connections button.
- Move your cursor over one of the arrow connections between the
transform node and the material node.
The arrow is highlighted and the connected attributes are displayed. You now see the diagrammatic results of your action. Now you should see the effect in the Perspective view.

Viewing attribute connections

6 Move the sphere

- In the Perspective view, select the sphere.
- Move the sphere along the X-axis.
- Select Render \rightarrow Render into New Window.
The color of the sphere is now red. By increasing the value of the translation along X, you add red to the color.
Of course, once you pass a value of 1 for the translation, the color value gets too high. This example works best if you only move the sphere up to 1 unit in each direction.
- Try moving the sphere along each of the three main axes to see the colors change.

Adding a texture node

While it is a fun and educational exercise to see the material node's color dependent on the position of the ball, it may not be very realistic. You will now break the existing connections and map a texture node in their place.

1 Delete connections

You can delete the connections in the Hypergraph view.

- In the Hypergraph view panel, select one of the three connection arrows between the transform node and the material node.
- Press the Backspace key to delete the connection.
- Repeat for the other two connections between these nodes.

Broken connections

2 Add a checker texture map

You will now use the Attribute Editor to help you add a texture to the existing shading group.

- Click on the phong1 material node.
- Press Ctrl a to open the Attribute Editor.
- Click on the Map button next to Color.
- Choose a Checker texture from the Create Render node window.
- If you have hardware texturing, move your cursor over the Perspective view panel and press 6.

Tip: If you do not have hardware texturing, then you may want to use a wireframe view - by pressing 4 - so that you can see the object's rotation being animated.

Textured sphere
In the Hypergraph, you can see the dependencies building up for the shading group. The texture is built using two nodes. The checker node which contains the procedural texture attributes, and the placement node which contains attributes that define the placement of the texture on the assigned surfaces.

Shading group network

Animating the sphere

When you animate in Maya, you are changing the value of an attribute over time. Using keys, you set these values at important points in time, then use tangent properties to determine how the attribute value changes in between the keys.
The key and tangent information is placed in a separate animation curve node that is then connected to the animated attribute.

1 Select the sphere

- In the Hypergraph panel, click on the Scene Hierarchy button.
- Select the nurbsSphere transform node.

2 Return the sphere to the origin

Since you earlier moved the sphere along the three axes, it's a good time to set it back to the origin.

- In the Channel box, set the Translate \mathbf{X}, \mathbf{Y} and \mathbf{Z} to $\mathbf{0 , 0 , 0} \mathbf{0}$.
- In the Channel box, change the Rotate \mathbf{Y} attribute to $\mathbf{0}$.

3 Animate the sphere's rotation

- In the Time slider, set the playback range to $\mathbf{1 2 0}$ frames.
- In the Time slider, go to frame 1.
- Click on the Rotate \mathbf{Y} channel name in the Channel box.
- Click with your right mouse button and select Key Selected from the pop-up menu.
This sets a key at the chosen time.
- In the Time slider, go to frame 120.
- In the Channel box, change the Rotate \mathbf{Y} attribute to $\mathbf{7 2 0}$.
- Click with your right mouse button and select Key selected from the pop-up menu.
- Playback the results.

The sphere is now spinning.

4 View the dependencies

- In the Hypergraph panel, click on the Up and Downstream Connections button.
You see that an animation curve node has been created and then connected to the transform node. The transform node is now shown as a trapezoid to indicate that it is now connected to the animation curve node. If you click on the connection arrow, you will see that the connection is to Rotate Y.
If you select the animation curve node and open the Attribute Editor, you will see that each key has been recorded along with value, time and tangent information. You can
actually edit this information here, or use the Graph Editor where you get more visual feedback.

Connected animation curve node

Building scene hierarchies

So far, you have worked a lot with the dependency connections but not with the scene hierarchy. In a hierarchy, you always work with transform nodes. You can make one transform node the parent of another node, thereby creating a child which must follow the parent.
You will build a hierarchy of spheres that are rotating like planets around the sun. This example is a helpful way to understand how scene hierarchies work.

1 Create a new sphere

- Go to frame 1.
- In the Hypergraph panel, click on the Scene Hierarchy button.
- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- Move the sphere along the Z axis until it sits in front of the first sphere.
- Press 3 to increase the display smoothness of the sphere.
- Go to the Rendering menu set.
- Select Shading \rightarrow Assign Shading Group \rightarrow phongSG.

Second sphere

2 Parent the sphere

- Press the Shift key and select the first sphere.
- Press the \mathbf{p} key to parent the new sphere to the first.
The \mathbf{p} key does the same thing as selecting Edit \rightarrow Parent.
- Play back the scene.

The second sphere rotates along with the first sphere. It has inherited the motion of the original sphere.

Rotating hierarchy

3 Animate the new sphere's rotation

While child nodes in a hierarchy inherit the motion of the parent, they can also contain their own animation.

- Go to frame 1.
- With the new sphere selected, go to the Channel box and select Key Selected for the Rotate \mathbf{Y} channel.
- Go to frame 120.
- In the Channel box, change the Rotate \mathbf{Y} attribute to -1440.
- Key Selected for the Rotate \mathbf{Y} channel.
- Playback the scene.

The second sphere rotates in the opposite direction as it revolves around the first sphere.

Note: One way of thinking of the hierarchy is to think of a person walking on our own planet. As the planet revolves around its axis, the person revolves too. The person can also walk, jump or spin.

4 Create another sphere

To make this point more clear, you will add a third sphere to the hierarchy to see what happens.

- Go to frame 1.
- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- Move the sphere along the Z-axis until it sits in front of the first sphere.
- Scale the sphere in all three axes to about one third its size.
- Press 3 to increase the display smoothness of the sphere.
- Go to the Rendering menu set.
- Select Shading \rightarrow Assign Shading Group \rightarrow phong1Grp.

Third sphere scaled down

5 Parent the sphere

- In the Hypergraph panel, click on the scene hierarchy button.
- Now use the middle mouse button to click-drag the new transform node onto the second sphere's transform node. This is another method for parenting nodes.
- Play back the scene.

The third sphere revolves with the rotation of the second sphere. This hierarchy is then revolved around the first sphere.

Scene hierarchy view

6 Move and rotate the hierarchy

- In the Perspective view panel, select the first sphere.
- Select Edit \rightarrow Group to add another node to the hierarchy.
This node is now the root of the hierarchy. You can use this to position the nodes below.
- Move the hierarchy up along the Yaxis about 5 units.
- Rotate the hierarchy around the Xaxis about 15 degrees.
- Play back the results.

The hierarchy is now rotating at an angle. You have changed the axis of the whole system.

Repositioned hierarchy

Understanding how hierarchies work will be an important part of working with Maya. In upcoming lessons, keep an eye on how hierarchies are built, especially when you begin building characters.

Hiding objects

Before moving onto a more complex animation, you will hide the existing hierarchy. This will let you focus on the second part of this lesson.

1 Hide the grouped hierarchy

- With the new group selected, select Display \rightarrow Hide \rightarrow Hide Selection.

Invisible node

Procedural animation

If Maya's procedural nature is defined as nodes with attributes that are connected, then a procedural animation would be set up by animating attributes at various levels of a Dependency graph network.

You will now build a series of animated events that build on each other to create the final result.

1 Create an edit point curve
 - Select Create \rightarrow EP Curve Tool.

- Press the \mathbf{x} key to turn on grid snap.
- Draw a curve as shown below.
- When you are finished, press Enter then select Modify \rightarrow Center Pivot.

2 Duplicate the curve

- Select Edit \rightarrow Duplicate.
- Move the new curve to the opposite end of the grid.

3 Create a lofted surface

A lofted surface can be created using two or more profile curves.

- Click-drag a selection box around both of the curves.
- Select Surfaces \rightarrow Loft.
- Press 3 to increase the surface display smoothness.

4 Change your panel display

- In the Hypergraph panel, select Panels \rightarrow Perspective \rightarrow persp.
- In the Hypergraph panel, select Show \rightarrow None then Show \rightarrow Curves.
Now you have two Perspective views. One shows the surface in shaded mode and the second shows only the curves. This makes it easier to pick and edit the curves in isolation from the surface itself.

5 Edit CVs on the original curves

- Select the first curve.
- Click with your right mouse button to bring up the selection marking menu and select Control Vertex.
- Click-drag a pick box over one of the CVs and Move it down.

Edited profile curve
In the original Perspective view, you can see the effect on the lofted surface. Since the surface was dependent on the shape of the curve, you again took advantage of the Dependency graph.

Resulting surface update

Note: The dependencies associated with models are sometimes referred to as construction history. By updating the input shape, you have in effect updated the history of the lofted surface.

Creating a curve on surface

You will now build a curve directly onto the surface. This curve will become dependent on the shape of the surface for its own shape.

The surface was built as a grid of surface lines called isoparms. These lines help define a separate coordinate system specific to each surface. Whereas world space coordinates are defined by X, Y and Z , surface coordinates are defined by U and V .

1 Make the surface live

So far, you have drawn curves into the world space coordinate system. You can also make any surface in Maya into a live surface and draw into the UV space of the surface.

- Select the lofted surface.

The CVs on the curve disappear and you are able to focus on the surface.

- Select Modify \rightarrow Make Live.
- Select Display \rightarrow Grid to turn off the ground grid.

2 Draw a curve on the surface

- Select Create \rightarrow EP Curve Tool.
- Draw a curve on the live surface.

New curve on surface
3 Move the curve on surface

- Press the Enter key to complete the curve.
- Select the Move tool.

The Dependency Graph

Create group hierarchy

The move manipulator looks a little different this time. Rather than three manipulator handles, there are only two. One is for the U direction of the surface and the other is for the V direction.

- Click-drag on the manipulator handles to move the curve around the surface space.

Moving the curve on surface

Tip: \quad This UV space is the same used by texture maps when using 2D placement nodes.

4 Make the ground grid live

- Click in empty space to deselect the curve on surface.
- Select Modify \rightarrow Make Live.

With nothing selected, the ground grid becomes the active or live grid.

Create group hierarchy

You are now going to build another hierarchy. This time you will group two primitives, then animate the group along the curve on surface using path animation.

1 Create a primitive cone

- Select Create \rightarrow NURBS Primitives \rightarrow Cone.
- Press the $\mathbf{3}$ key to increase its display smoothness.

New primitive cone

2 Create a primitive sphere

- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- Press the $\mathbf{3}$ key to increase its display smoothness.
- Move the sphere above the cone.

3 Group the two objects

- Select the cone and the sphere.
- Select Edit \rightarrow Group.

- Select Display \rightarrow Object Components \rightarrow Selection Handles.

The selection handle is a special marker that will make it easier to pick the group in object selection mode.

Grouped objects with selection handle

Create a path animation

To animate the new group, you will attach it to the curve on surface. You can use the curve on surface to define the group's position over time.

1 Attach to the curve on surface

- With the group still selected, press the Shift key and select the curve on surface.
- Go to the Animation menu set.
- Select Animate \rightarrow Paths \rightarrow Attach to Path - \square. In the option window, make sure that the Follow option is turned Off.
- Click Attach then Close.
- Play back the results.

As the group moves along the path curve, you will notice that it is always standing straight up.

Path animation

2 Constrain to the surface normal

You will now constrain the orientation of the group to the normal direction of the lofted surface. The normal is like the third dimension of the surface's UV space.

- Click in open space to deselect the active objects.
- Select the loft surface.
- Press the Shift key and select the grouped primitives using the selection handle.
- Select Constrain \rightarrow Normal - . In the option window, set the following:

Aim Vector to 0, -1, 0;
Up Vector to 1, 0, 0.

- Click Add then Close.
- Play back the results.

Now the group is orienting itself based on the normal direction of the surface. The group is now dependent on the surface in two ways. Firstly, its position is dependent on the path curve, which is dependent on the surface for its shape. Secondly, its orientation is directly dependent on the surface's shape.

Constrained orientation

Layer the animation

In Maya, the various parts of the Dependency graph can all be animated to create exciting results. To see the Dependency graph in motion, you will animate different nodes within the network to see how the dependencies react.

1 Edit the loft curve shape

Since the shape of the surface is dependent on the original loft curves, you will start by animating the shape of the second curve.

- Select the second loft curve. You may want to use the second Perspective panel which is only displaying curves.
- Click with your right mouse button to bring up the selection marking menu and select Control Vertex.
Control vertices help define the shape of the curve. By editing these, you are editing the curve's shape node.
- Click-drag a pick box over one of the CVs and Move it up to a new position.

As you move the CV, the surface updates its shape, which in turn redefines the curve on surface and the orientation of the group. All the dependencies are being updated.

2 Set keys on the CV position

- Go to frame $\mathbf{1}$ in the Time slider.
- Press s to set key.
- Go to frame 120 in the Time slider.
- Press s to set key.
- Go to frame $\mathbf{6 0}$ in the Time slider.
- Move the CV down to a new position.
- Press sto set key.
- Play back the results.

You can see how the dependency updates are maintained as the CV is animated. You are animating the construction history of the lofted surface and the connected path animation.

Animated history

3 Animate the curve on surface
To add another layer of animation, you will key the position of the curve on surface.

- Select the curve on surface.
- Go to frame $\mathbf{1}$ in the Time slider.
- Press sto set key.
- Go to frame 120 in the Time slider.
- Move the curve on surface to another position on the lofted surface.

Press s to set key.

Animated curve on surface

4 Assign the phong shading group

To make it easier to see the animating objects, apply the checker shading group to the primitive group. You will also make visible the animated hierarchy to see all the pieces together.

- Select the primitive group using its selection handle.
- Go to the Render menu set.
- Select Shading \rightarrow Assign Shading Group \rightarrow phong1SG.
- Select Display \rightarrow Show \rightarrow Show Last Hidden.
- Play back the scene.

5 Connect two of the spheres

To add your own connection into the equation, you will now connect the rotation of the large sphere from the original hierarchy with the sphere that sits on the cone.

- Select Window \rightarrow General Editors \rightarrow Connection Editor.

- Select the large sphere from the original hierarchy.
- In the Connection Editor, click on the Reload left button.
- Select the sphere that is sitting on top of the cone without using the selection handle.
- In the Connection Editor, click on the Reload right button.
- In the left hand column, scroll down to the Rotate section.
- Click on the arrow next to Rotate to open this section then click on Rotate \mathbf{Y}.
- Repeat these steps for the right hand column. When you click on the Rotate \mathbf{Y} attribute for the second sphere, the two are connected.

Connected attributes

- Play back the scene.

Now the sphere on top of the cone animates in relation to the larger sphere.

Animated scene

6 View the dependencies

Of course, you can view the dependency network that results from all these connections in the Hypergraph view, which will probably be a bit more complex than anything you have seen so far.

- Select the primitive group that is attached to the motion path.
- Open the Hypergraph panel and click on the Up and Downstream Connections button.
The resulting network contains the various dependencies that you built during this example.

The dependency network

7 Save your work

Conclusion

Maya's procedural qualities are tied to how the Dependency graph uses nodes, attributes and connections. You can see how deep these connections can go and how they are maintained throughout the animation process. Similar techniques can be used on other node types throughout Maya.

Obviously, you don't have to use the Hypergraph and the Connection Editor to build, animate and texture map your objects. But in most cases, you will be thinking more about the motion of your character's walk or the color of their cheeks. In this way, it is a good idea to know that the Dependency graph underlies everything that you do and can always be used to your advantage.

LESSロN 7
Madeling

LESSロN 8

ロRGANIC MロDELING

LESSロN 9
ANIMATIロN

LESSロN 1 ロ

SECロNDARY ANIMATIロN

LESSロN 11

RENDERING

PRロ」ECT TWロ

Pravect Twa

In this project，you will animate a Jack－in－the－box．You will begin by modeling the box．You will then use CV pulling and Maya Artisan tools to create Jack＇s face and head．

To animate the whole scene，you will set keyframes on the rotation of the box＇s lid and crank then you will use inverse kinematics to animate Jack emerging from the box．
Deformations will then be added for some squash and stretch．This project includes the following lessons：

1．A Jack－in－the－box sits quietly in the corner of the little boy＇s room．

3．Suddenly the box burst open and Jack emerges，bouncing up and down．

2．The crank starts to rotate and the box begins to bulge in anticipation of something big．

4．Jack settles down to sit quietly in the corner as if nothing had ever happened．

7

Curves and Surfaces

This lesson will introduce you to modeling with NURBS (Non-uniform rational B-spline) surfaces. This geometry type lets you create curves and surfaces to build up your models. In this lesson, you will build the jack-in-the-box using tools such as revolve, loft and extrude. You will also begin learning about how to use existing geometry to help you build new geometry.

The Jack in the box
In this lesson you will learn the following:

- How to build a box from a quarter cylinder
- How to attach and close surfaces
- How to work with layers
- How to duplicate curves from an existing surface
- How to draw curves
- How to use surface tools such as loft and revolve
- How to group your objects to prepare for animation

Set up your project

Since this is a new project, you must set a new directory as your project directory. This will let you separate the files you generate in this lesson from other lessons.

1 Set the courseware project

To manage your files, you can set a project directory that contains sub-directories for different types of files that relate to your project.

- Go to the File menu and select Project \rightarrow Set...
A window opens that points you to the Maya projects directory.
- Open on the folder named learningMaya.
- Click on the folder named projectTwo to select it.
- Click on the OK button.

This sets the learningMaya directory as your current project.

2 Make a new scene

- Select File \rightarrow New Scene.

This makes sure that your current scene is part of the new project.

BUILDING THE BOX

The box will be built out of several surfaces. You will start by building the base using a primitive cylinder. You will then extract curves from that surface to build the top of the box.

Setting up the Base

You will build the base by first drawing a quarter of a primitive cylinder that will act as one of the corners of the base. This corner will be duplicated to set up all four corners.

1 Create a quarter cylinder

- Select Create \rightarrow NURBS Primitives \rightarrow Cylinder - \square.
- In the option window, press the Reset button then set the following:

End Sweep Angle to 90;
Ratio of Height... to 8;
Number of Sections to 4.
This creates a quarter cylinder. This primitive provides you with a starting surface for the box.

- Click Create then Close.
- Press 3 to increase the surface's smoothness then press 5 to turn on hardware shading.

Quarter cylinder

Note: Throughout this lesson, you will want to press 3 to increase the smoothness of any new object. All of the images in this book will reflect this setting.

2 Move the cylinder

- Select the Move tool.
- From a side view, press the \mathbf{x} key to use grid snapping then Move the cylinder up by 4 units so that it is sitting on the ground.

Side view

- From a top view, use grid snap to Move the cylinder diagonally by 4 units in both X and Z .

Top view

3 Set the cylinder's pivot

- With the cylinder selected and the Move tool active, press the Insert key.

This makes the pivot manipulator available. This allows you to edit the object's pivot location.

- In the top view, grid snap the pivot back to the origin.

4 Duplicate the cylinder

- Select Edit \rightarrow Duplicate - \square.
- Set the following:

Rotate \mathbf{Y} to 90 ;
Number of Copies to 3.

- Press Duplicate.

Four corners

Attaching the corner surfaces

The base will work best if it is a single surface. You will now attach the various corner surfaces to create one complete surface. You will start by selecting isoparms from the existing surfaces. Isoparms are lines that sit on the surface that help define its topology. In some ways they are the grid lines of a NURBS surface.

1 Select an end isoparm

To attach the corners, you need to work with the surface's isoparms. This will require that you go into component selection mode. This will let you select surface isoparms that will help you control the attach.

- Press the Select by Component type button on the status line.
- Click on the Points button to turn it off.
- Click on the Lines button to turn it on.

Selection icons
Now you can easily select the edges of quarter cylinders.

- Click once on one of the corners. This selects the surface and highlights it.
- Click again on the end isoparm. It will highlight in yellow.

Selected isoparm

2 Select the opposing isoparm

- Click on a second corner surface.
- Press the Shift key and click on its end isoparm, the one that sits opposite the first isoparm you selected, to add it to the selection.

Second isoparm selected

3 Attach the surfaces

- Go to the Modeling menu set.
- Select Edit Surfaces \rightarrow Attach Surfaces - I.
- In the option window, set the following:

Attach Method to Connect; Multi Knots to Keep; Keep Originals to Off.

- Click Attach.
- Close the tool options window.

Attached surface

4 Attach the other surfaces

- Select the two opposing isoparms between the newly attached surface and the next corner.
- Select Edit Surfaces \rightarrow Attach Surfaces.
- Repeat for the next corner.
- Now you have a single surface but it is not completely closed. Since you cannot attach a surface to itself, you will instead use the close tool.

Single attached surface
5 Close the surface

- Click on the Select by Object type button on the Status line.
- Select Edit Surfaces \rightarrow Open/ Close Surfaces.
- In the Channel box, rename this surface to base.

Closed surface

6 Delete History

- Select Edit \rightarrow Delete by Type \rightarrow History.
This gets rid of any extra nodes so that the model is as light as possible for animation down the line.

7 Save your work

- Select File \rightarrow Save As and name the new file jack_01.

Creating the top surface

To build the top surface, you will extract an isoparm from the base then use that as one of the generation curves for the top surface.

1 Create two layers

- Select Options \rightarrow Layer Bar
- Click on the New layer button.
- Double-click on the layer then enter the name box_layer.
- Click on the New layer button.
- Double click on the layer then enter the name top_layer.

New layers
2 Assign surface to box layer

- Select the base surface.
- Click on the arrow icon on the box layer and select Assign Selected from the pop-up.

3 Select an isoparm from the base

- Click on the base surface with the right mouse button and select Isoparm from the marking menu. This menu lets you go to the surfaces component level without changing selection modes.
- Click on the top edge of the surface to select this isoparm.

Selected curve

4 Duplicate the isoparm

- Select Edit Curves \rightarrow Duplicate Surface Curves.
- Click on the arrow icon on the top_layer and select Assign Selected from the pop-up.
- Click on the arrow icon on the box_layer and select Template.

Now you can focus on the top of the box while keeping the base around as a visual reference.

Duplicated curve

5 Offset the curve

- With the duplicated curve still picked, select Edit Curves \rightarrow Offset \rightarrow Offset Curve.

This creates a second curve that is offset from the original. The default offset seems a little big.

Offset curve

- Click on the offsetCurve input node in the Channel box.
- Set the Distance to 0.2.

Offset curve

6 Duplicate the curve

- Select Edit \rightarrow Duplicate - \square.
- In the Option window, click on the Reset button then click Duplicate.
- Move the new curve up along the Y axis to create the depth of the box's top surface.

Duplicated curve
7 Create another duplicate curve

- Select Edit \rightarrow Duplicate

You can see that the pivot of the curve lies at the origin. It would be more useful if the pivot was at the center of the curve.

- With the curve selected, select Modify \rightarrow Center Pivot.
- Scale the new curve in a little to create a border.

Scaled curve

8 Create another duplicate curve

- Again, select Edit \rightarrow Duplicate
- Move the new curve down.

Duplicated curve

Creating the top edge surface

You will now build the top of the box using these curves to create several lofted surfaces that will then be attached with blending. In the end you will have two surfaces that will make up the top of the box.

1 Set up your view panels

- Select Panels \rightarrow Layouts $\boldsymbol{\rightarrow} \mathbf{2}$ Side by Side.
- Set up both panels as perspective views.
- For the first panel, select Show \rightarrow None then Show \rightarrow Curves.
- For the second panel, select Show \rightarrow None then Show \rightarrow Surfaces.
- Select Show \rightarrow Grid to turn off the grid for both the view panels.
You will use one of the panels for selecting curves and the other to preview the resulting surfaces. This is a useful technique for easily picking different object types.

Side-by-side layout

2 Create a lofted surface

- In the perspective panel that only shows curves, select the first and second curves that you created.
- Select Surfaces \rightarrow Loft.

A surface is generated that uses the curves as edge isoparms.

Lofted surface

3 Create a second lofted surface

- Select the second and third curves.
- Select Surfaces \rightarrow Loft.

Lofted surface
4 Attach the surfaces using blend

- Select the two surfaces in the perspective panel that only shows surfaces.
- Select Edit Surfaces \rightarrow Attach Surfaces - \square.
- In the option window, set the following:

Attach Method to Blend;
Keep Originals to Off.

- Click Attach.

Now the two surfaces are blended together smoothly.

Attached surfaces

5 Complete the shape

- Create a third lofted surface using the methods taught above. This surface will be the top surface.
- Attach the surfaces.
- Repeat to create another lofted surface for the last two curves. This surface will be the inner edge.
- Attach these together using the method taught with the corner surfaces.
You will need to select the edge isoparms using the right mouse button to make sure that you attach the surfaces properly.

Final shape

6 Delete History

- Select the surface.
- Select Edit \rightarrow Delete by Type \rightarrow History.
Again, you don't want the history to interfere with your animation later.

Creating middle section

To create the middle section of the top, you will loft the last of the existing curves with a primitive circle. The circle will act as the hole from which Jack will emerge.

1 Create and place a circle primitive

- Select Create \rightarrow NURBS Primitives \rightarrow Circle.
- In a top view, Scale the circle to fit in the middle of the top surface.

Circle

2 Snap-Constrain the circle

- In a side view, click on the Y-axis handle to activate it.
- Select the Move tool.
- Place your cursor over the curve that you want to match the circle to.
- Press the c key to use curve snapping then with your middle mouse button click-drag on the curve.

This snaps the circle so that it only moves along the Y axis while it snaps to the curve.

Curve snapping the circle

3 Loft between the curves

- Return to your two perspective layout.
- Select the last curve and the circle.
- Select Surfaces \rightarrow Loft.

The resulting surface is twisted. The circle is not oriented correctly.

Strange lofted surface

4 Update the surface using history

You can update the surface by editing the profile curves. If you rotate the circle then you can remove the twisting.

- Select the circle.
- In the Channel box, set Rotate \mathbf{Y} to either $\mathbf{9 0}$ or $\mathbf{- 9 0}$, whichever corrects the surface.

Corrected loft

5 Duplicate and position the circle

- Select the circle.
- Duplicate the circle.
- Move the circle down just below the first.
- Select the two circles.
- Select Surfaces \rightarrow Loft.

You will keep these surfaces as two separate surfaces instead of attaching them together.

Inner ring

6 Delete History

- Select the two new surfaces.
- Select Edit \rightarrow Delete by Type \rightarrow History.

7 Add the surfaces to the box layer

- Select the three top surfaces.
- From the box_layer's pop-up menu, select Assign Selected.
They will be templated to match the chosen layer state.

Creating the lid

The box's lid will be constructed using one of the existing curves that will be turned into a Set planar surface.
This surface will then be duplicated and the two surfaces will be joined using another lofted surface.

1 Set up the starting curve

- Select all the curves except the last rounded curve that was created before the circle.

Selected curves

- Press the Backspace key to delete them.
- In the panel that only displays curves, select Show \rightarrow Surfaces.
- Select the remaining curve.
- Scale it a little bit smaller then Move it up slightly above it original position.

New curve

2 Create a set planar surface

- With the curve selected, select Surfaces \rightarrow Planar.
This creates a trimmed surface. This means that the surface actually extends outside of the boundary curve then the curve is used to trim the surface.
- Delete History on the surface

Planar surface

3 Duplicate the surface

- Select the planar surface.
- Press CtrI-d to create a second surface.
- Move the surface above the first surface.

Two surfaces

4 Select the trim edges

- Click with your right mouse button on the first planar surface and select Trim edge from the marking menu.
- Click on the edge of the surface to select the trim edge.

Trim edge

- Click with your right mouse button on the second planar surface and select Trim edge from the marking menu.
- Press the Shift key and click on the edge of the surface to select the trim edge.
- Select Surfaces \rightarrow Loft.

Very Important! Do not delete history for this surface. The history will play a role later if you decide to deform the planar surfaces.

Lofted surface

The Hinge

To act as the hinge for the box's lid, you will create and position a cylinder. This surface will also act as the parent for the other surfaces to help define the rotation of the lid.

1 Create and place a cylinder

- Select Create \rightarrow NURBS Primitives \rightarrow Cylinder - \square.
- Click the Reset button then set the following:

Axis to \mathbf{Z};

Radius to 0.25;
Ratio of Height to 28;
Caps to Both.

- Click Create.
- Move the cylinder up to the back of the lid.
- Rename the cylinder to hinge.

2 Freeze the hinge's transforms

- Select the hinge.
- Select Modify \rightarrow Freeze transformations.
This sets the transform values to 0 , 0,0 for translation and rotation, and 1, 1, 1 for scaling while leaving the object in its current location. This gives a good starting point for the animation of the hinge.

3 Parent the lid surfaces

- Select the three lid surfaces then press the Shift key and click on the hinge.
- Press the \mathbf{p} key to parent them.

4 Test the rotation of the hinge

- Select the hinge. Notice how the rest of the lid is selected at the same time since they are children of the hinge.
- Select the Rotate tool.
- Click drag on the axis manipulator to rotate the lid.
Oops, the lofted surface seems to be rotating twice as fast as the planar surfaces.

Lofted surface

5 Correct the loft surface

- Select the loft surface.
- In the Attribute editor, set Inherits Transform to Off.

This tells the surface to not rotate with the hinge. Now it will only rotate as a result of its construction history and you will avoid the double transformations.

Lofted surface

6 Add the new group to box layer

- Select the hinge.
- Assign the new surfaces to the box layer. It will be templated.

The Handle

To create a handle for the jack-in-the-box, you will extrude a circle along a path.

1 Create and place a primitive circle

- Select Create \rightarrow NURBS Primitives \rightarrow Circle- \square.
- Click the Reset button then set the following:

Axis to \mathbf{Z};

Radius to 0.20;

Degree to Linear.

Number of Sections to 6;

This Linear setting creates a curve that has flat spans. This will give the look of a faceted metal.

Path curve

2 Draw a path curve

- In a side view, zoom in to the origin.
- Select Create \rightarrow CV Curve Tool.

Press the \mathbf{x} key to use grid snapping and draw the following curve using 6 CVs:

Path curve

- Press the Enter key to complete the curve.

3 Extrude the circle

- Select the circle and the path curve. Make sure that you select the path curve last.
- Select Surfaces \rightarrow Extrude.

The resulting surface is a result of the circle being passed along the path curve. The resulting surface is faceted (Linear) in one direction and smooth (Cubic) along the other.

Extruded surface

- Delete History from the surface.
- Delete the circle and the path curve.
- Rename the surface to crank.

4 Add a sphere to the end

- Create a primitive sphere.
- Scale it into an egg-like shape.
- Move it to the end of the crank handle.
- Press the Shift key and add the crank to the selection.
- Press the \mathbf{p} key to parent the sphere to the crank.

Crank handle

5 Position the crank

- Move the crank to the side of the box near the middle. You may need to look at both a top and a side view at the same time to position the crank successfully.

6 Add the crank to box layer

- Select the crank.
- Assign the new surfaces to the box_layer. It will be templated.

Jack's body

You are going to create an accordion-like surface for Jack's body. This will include a Linear (degree 1) profile curve that is revolved into shape.

1 Create a Linear NURBS curve

Like the profile of the crank, you will create the body surface using a faceted (Linear) curve in one direction and a smooth (Cubic) curve along the other

- Select Create \rightarrow CV Curve Tool \square.
- In the Option window, set Curve Degree to 1 Linear.
By using a linear setting, a curve will be created with straight lines drawn between CVs.
- In the side view panel, use grid snapping to help you draw a zigzag curve to act as the profile for the body surface.

Profile curve

2 Revolve the curve into a surface
 - Select Surfaces \rightarrow Revolve.

Revolved body surface

3 Delete history

－Select and Delete the profile curve．
By removing the profile curve，you have deleted the surface＇s history．

Jack＇s head

Using a Cubic（degree 3）curve，you are going to create another revolved surface．This surface will start out very simple then it will be used in the next lesson to sculpt facial features for Jack．

1 Create a degree 3 curve

－Select Create \rightarrow CV Curve Tool－ \square.
－In the Option window，set Curve Degree to 3 Cubic．
The cubic setting will create a smooth curve that is interpolated from the CVs．
－Draw a curve from the end of the body surface up to the Y axis line．

Use grid snap to make sure that your last two CVs are lined up perpendicular to the Y axis line． This will prevent Jack＇s head from being pointy when it is revolved．

2 Revolve the curve into a surface
－Select Surfaces \rightarrow Revolve．

Revolved head surface

3 Delete history

－Select and Delete the profile curve．

Adding some color

In another lesson，you will set up the rendering for the Jack－in－the－box．For now，
you will create a few shaders and assign them to the parts of the model to

1 Reveal the box layer.

- From the box layer's pop-up, select Standard.

Now the objects are visible in the shaded view.

2 Create and assign color shaders

- Use the methods you learned in Project one to create five Blinn materials for the scene.
- Edit the color of the shaders as shown below:

New shaders

- Name the shaders as shown below and assign them to the following surfaces:
baseShader to base surface; lidShader to lid, box top and the crank handle; springShader to Jack's body; skinShader to Jack's head; metalShader to the hinge and the crank stem.

Box with shaders

Conclusion

You now have some experience working with curves and surfaces. You have seen how profile curves can be used to generate surfaces with the help of tools such as revolve, loft and extrude.

In the next lesson, you will sculpt Jack's face by manipulating the surface at a component level. You will also learn about Maya's Artisan functionality that lets you mold the surface using a brush-like interface.

Organic Modeling

In this lesson, you will sculpt facial features onto Jack by manipulating the surface's control vertices (CVs). At first you will use the transform manipulators to edit the CVs, then you will put Maya's Artisan tools to work using a brush paradigm as you push, pull, and smooth the surface.

In this lesson you will learn the following:
Maya's Artisan tools offer a different approach to how you work in Maya. Rather than typing in values, Artisan lets you use a paint-like interface to edit shapes in Maya. In later lessons, you will also learn how to use Artisan for other important functions.

- How to rebuild a surface
- How to pull CVs using the Move tool's Normal setting
- How to sculpt surfaces by painting with Artisan
- How to use different brush operations

Getting started

For this lesson, you will continue to work with the model you produced in the last lesson. You are going to work on the face area to define Jack's character.

Editing Control Vertices

Control Vertices represent points on a surface or a curve that help define its shape. By repositioning these important points, you can sculpt the surface.

1 Rotate the surface

Since the curve you used to revolve the head surface was created on the side, this means that the surface's seam is at that point. You want the seam at the back of the head.

- Select the head surface.
- In the Channel box, set Rotate \mathbf{Y} to -90.

In the shaded view, this didn't seem to change anything. But by moving the seam to the back of the head, you can take advantage of some of Artisan's symmetry tools used later in the lesson.

2 Change to component mode

CVs are part of the surface's shape node and can only be selected by going to component selection mode.

- Make sure that Show \rightarrow NURBS CVs is On for the perspective panel.
- On the status line, click on the Select by Component Type button.
- Turn the Points button to on and the Lines button to off.

Now the CVs are shown on the head's surface.

- Select the base surface of the box. Now this surface is displaying its CVs. As you select surfaces, you can focus on editing their CVs.
- Again Select the head surface.

Head surface with CVs visible

3 Select CVs

- From a side view, select the row of CVs that lie just under the center of the shape.

Edited CVs

4 Move and Scale some CVs

- Move the CVs down a little.
- Scale the CVs out to tighten the shape.

Edited CVs

5 Focus on a few CVs

- In the perspective view, select the two CVs that lie on and just below the middle of the head on its centerline.
- Be careful that you don't select CVs at the back of the character's head.

Selected CVs

- Select Display \rightarrow Hide \rightarrow Unselected CVs.
Now you can only see the selected CVs which will make it easier to work with them.

Focusing on the two CVs

6 Move using world space

- Select the bottom CV.
- Select the Move tool.
- Move the CV into the head.

You are moving the CV in world space using the XYZ coordinates to guide you.

Moving the bottom CV

7 Move CV normal

Sometimes moving a CV in world space can be difficult to control. You will now use the Move tool's Normal setting to work more closely with the surface.

- Select the upper CV.
- Double-click on the Move tool to open the Tool options.
- Set your Move Options to Normal.

The manipulator now displays new axes that are labelled U, V and N . The U and V labels represent the two dimensions of the surface as represented by the isoparm lines. The N represents the normal direction off of the surface.

Move CV normal manipulator

- Drag on the \mathbf{N} axis of the manipulator to Move the CV out of the head.
You are moving the CV in world space using the $X Y Z$ coordinates.
- Drag down on the \mathbf{U} axis of the manipulator to Move the CV down along the surface of the head.

Moving the top CV normal

Now the CV is moving along the shape of the surface.

8 Return to object mode

- Press F8 to go back to object mode.

Oops, there is a warning in the feedback line. It is telling you that the Move \rightarrow Normal option does not work in Object mode.

- Double-click on the Move tool to open the Tool options.
- Click the Reset button to go back to the default settings.

9 Save your work

- Select File \rightarrow Save Scene As...
- Enter the name jack_02 and Save.

USING ARTISAN

You could now continue pulling CVs until you have sculpted a head out of this surface. Instead you will use Maya's Artisan tools. These will let you push and pull on the surface as if it were a piece of clay.

Setting up the surface

To work effectively with Artisan tools it is important that the surface has a large number of CVs. You must therefore rebuild the surface so that it has more available CVs for Artisan to work with. You will also change the material qualities on the head to show stronger highlights. This will help you work in hardware shading when using Artisan.

1 Rebuild the surface

- Select the head surface.
- Select Edit Surfaces \rightarrow Rebuild Surfaces - \square.
- In the option window, click the Reset button then set the following:

Number of Spans U to 30;
Number of Spans V to 30.

New surface topology
2 Edit the surface's material

- Open up a Hypershade panel.
- With the head selected, select Graph
\rightarrow Graph Materials on Selected Objects.
- Double click on the icon to open the Attribute editor.
- Set the following material attributes:

Type to Blinn;
Eccentricity to 0;

Updated material node

This puts a strong highlight on the surface that will help evaluate the Artisan sculpting.

Start sculpting the surface

You will now sculpt the surface of the mask by painting on it using the Artisan Sculpt Surfaces tool. At first, you will just test the tools to get a feel for them. Later, you will erase these brush strokes so that you can paint real facial features.

1 Open the Tool Settings window

- Select the head surface.
- Select Edit Surfaces \rightarrow Sculpt Surfaces Tool - I.
This opens the Tool Settings window which includes all of Artisan's sculpting options.

Tool Settings window

- Click on the Reset Tool button to make sure that you are starting with Artisan's default settings.
- Set the following attributes:

Under Stamp Profile:

Radius (U) to 0.3;

Under Sculpt Variables:

Max Displacement to 0.8.

- Place the new window to the right of the mask model.

You will work with this window open, until you are familiar with how to use hotkeys.

2 Paint on the surface

- Move your cursor over the head surface. The cursor icon changes to show an arrow surrounded by a red circular outline. The arrow indicates how much the surface will be pushed or pulled while the outline indicates the brush radius.
Artisan's brush icon is context sensitive. It changes as you choose different tool settings.
- Click-drag on the surface. You are now painting on the surface to sculpt it.
You can either click-drag using a mouse, or preferably, draw directly with a stylus.

Tip: Artisan works more intuitively with a tablet and stylus, since the input device mimics the use of an actual paintbrush.

This brush stroke pushes in the surface. The brush stroke is sculpting the surface.

First brush stroke

3 Change the Artisan display

- Click the Display tab in the Tool Settings window.
- Click on Show Active Lines to turn this option Off.
Now you can focus on the surface without displaying isoparm lines.

4 Paint another stroke

- Paint a second stroke across the mask surface.
Now it is easier to see the results of your sculpting.

Second brush stroke

The sculpting tools

You will now explore some of the Artisan sculpting operations to see how they work. So far, you have been pushing on the surface. Now you will learn how to pull, smooth and erase.

1 Pull on the surface

- In the Tool Settings window, click on the Sculpt tab.
- Under Operation, click on Pull.
- Tumble around to the other side of the model.
- Paint on the surface to create a few strokes that pull out.

Pulling the surface with several brush strokes

2 Smooth out the results

- Under Operation, click on Smooth.
- Under Stamp Profile, change the Radius (U) to 0.6.
This increases the size of your brush. You can see that the red outline has increased in size. This is the brush feedback icon.
- Paint all of the strokes to smooth the details. If you stroke over an area
more than once, the smoothing becomes more evident.

Smoothing the brush strokes
3 Erase some of the brush strokes

- Under Operation, click on the Erase option.
- Paint along the surface to begin erasing the existing sculpt edits. Don't erase all the edits.

Erasing the brush strokes

4 Flood erase the surface

- In the Stamp Profile section, click on the Flood button next to Opacity.
This uses the current operation and applies it to the whole surface using the current opacity setting.

Fully erased surface

Updating the reference surface

When you paint in Artisan, you paint in relation to a reference surface. By default, the reference surface updates after every stroke so that you can build your strokes on top of each other. You can also keep the reference surface untouched until you decide to update it manually.

1 Change the brush attributes

- Under Operation, click on Pull.
- Set the following attributes:

Under Stamp Profile:

Radius (U) to 0.5;

Under Sculpt Variables:

Max Displacement to 0.4.

2 Pull the surface with two strokes

- Paint on the surface to create two crossing strokes that pull out.
The second stroke built on top of the first stroke. Therefore, where the two strokes intersect, the height of the pull is higher.

Painting with reference update

3 Change the reference update

- In the Tool Settings window, scroll down to the Surface section, and click on the Reference Srf: update on each Stroke to turn this option Off.

4 Paint more overlapping strokes

- Paint on the surface to create a few strokes that pull out. This time, the strokes do not overlap. The reference surface does not update, therefore the strokes can only displace to the Maximum Displacement value. You cannot displace beyond that value until you update the reference surface.

Painting with no reference update

5 Update the reference layer

- In the Surface section, click on the Update button next to Reference Srf.

6 Paint on the surface

- Paint another stroke over the last set of strokes.

The overlapping strokes are again building on top of each other.

Painting on updated reference layer

7 Flood erase the surface

- Under Operation, click on the Erase option.
- Click on the Flood button.

Sculpting the eye sockets

Now that your surface is clean again, you can sculpt two eye sockets. Ideally, you want the strokes you apply to the left eye to be mirrored on the right eye. Artisan makes painting symmetrical strokes very simple.

1 Turn reference updating back on

- In the Surface section, click on the Reference Srf: update on each Stroke to turn this option to On.

This will let you build up the facial details as the reference surface updates.

2 Change your stylus pressure setting
If you are working with a tablet and a stylus, you can set up your stylus to create more subtle results.

- Click on the Stroke tab.
- Under Stylus Pressure, click on Radius.

This means that the harder you press, the larger the radius of the brush stroke. You can now set the upper radius (Radius (U)) and lower radius (Radius (L)) sizes that will be used by the stylus.
As you work through this lesson, explore the various stylus settings to see how they can help you paint.

3 Change your Stamp Profile settings

- Click on the Sculpt tab.
- Change the Radius(U) to 0.7.
- Change the Radius(L) to 0.3 .

This means that the lowest your stroke will go is 0.3 and the largest will be 0.7.

- Change the Opacity to $\mathbf{0 . 2}$.

This means that each stroke will only have 0.2 of the effect. This lets you use softer strokes to build up a shape.

- Change your stamp setting to the second icon, which has more feathering at the brush's edge.

New brush shape

4 Turn Reflection on

- Click on the Stroke tab.
- Under Reflect Paint, set Reflection to On.

By default, it is set to reflect around the U-axis.

- Move your cursor over the surface. You can see that the reflection is going the wrong way.

- Click on V Isoparm for reflecting. Now the two stroke icons are visible on the two sides of the face.

5 Push the eye sockets in

- Press the u key and select Push from the Artisan marking menu.
- Paint one of the eye socket areas to push it in. The other socket is pushed by the reflection.

Pushing in eye sockets

6 Pull the eyebrows out

- In the Sculpt Variables section, change the Ref. Vector to Normal.
- Press the u key and click to bring up the Artisan marking menu.
This marking menu is context sensitive and changes depending on which Artisan tool you are using.
- Select Pull from the marking menu. This is an alternative method for changing the tool operation without using the Tool Settings window.
- Paint the eyebrow areas to pull them out.

Pulling out eyebrows

Organic Modeling

Sculpting the Nose

7 Flood smooth the surface

－Press the u key and select Smooth from the Artisan marking menu．
－Click on the Flood button two times．

8 Save your work

－Select File \rightarrow Save

Sculpting the Nose

You will now sculpt the nose．You will work with the Artisan hotkeys to change brush attributes．

1 Change the brush radius

－Press the \mathbf{b} key and click－drag to make the upper radius smaller．This hotkey gives you quick access to the brush radius．

Note：Artisan has a couple of hotkeys that make it easier to edit key brush attributes．These include：
b－Radius（U）
m－Maximum Displacement

2 Paint the length of the nose

－Press the u key and select Pull from the Artisan marking menu．
－Paint from the top of the nose to the tip．Use several strokes to build up the bridge of the nose and the nostril areas．You may need to tumble your view to complete these strokes．
If you don＇t like any of your strokes， you can undo the action using the \mathbf{z} key，or you can Erase back to the
original surface．Artisan gives you this flexibility in order to let you explore design alternatives．

Sculpting the nose

3 Flood smooth the shape

Since these strokes appear somewhat bumpy，you can smooth all the strokes using the Flood button．
－Press the u key and select Smooth from the Artisan marking menu．
－In the Tool Settings window，click on Flood twice．
This smooths out some of the bumps．Because the opacity setting is set to 0.2 ，the smoothing is more subtle．It is a good idea to smooth your shape regularly to clean up your strokes．

Sculpting the mouth

You will now sculpt the mouth by pulling out the lips．

1 Pull out two lips

－Press the u key and select Pull from the Artisan marking menu．
－Paint the lip area to pull two lips out．

Pulling out two lips

2 Add the upper lip detail

- Set your Radius (U) and Radius (L) to 0.1.
- Press the u key and select Push from the Artisan marking menu.
- Paint the area above the upper lip to push it in.

Pushing in the upper lip

3 Continue sculpting

- Keep working with the Artisan tools until you get the face that you want.

Remember to adjust the upper and lower radius of your brush as well as your maximum displacement.

Finishing touches

To complete the head, you will add a hat and two eyes. These extra surfaces can be parented into the head.

1 Add a hat

- Now add a primitive Cone for a hat and Move it to the top of Jack's head.
- Use Artisan's tools to add some detail to the hat.
- Select the hat then select the head surface.
- Press \mathbf{p} to parent the hat to the head.

2 Create eyes for Jack

- Add two primitive Spheres for eyes and Move them into the eye sockets.
- Make sure that the eye spheres have a Rotate \mathbf{X} of -90 so that their polar axis is pointing out from the head.
- Select the eyes then select the head surface.
- Press p to parent the eyes to the head.

Head with eyes and hat

3 Add Materials to the eyes

- Open the Hypershade
- Create and apply a phong material to the eyes.
- Double click on the new material node.
- Click on the Map (checker) button next to Color.
- Select Ramp from the Create Render Node window.
- Click on the square icon next to the middle color indicator. This deletes this marker.
- Click on the round icon next to the top color indicator.
- Click on the color swatch next to Selected color then change the color to black.
- Use the same technique to change the lower color indicator to white.
- Click drag on the round icons to move the two colors to the top of the ramp.

Ramp

If this doesn't look accurate on your model then the black bar may need to be at the bottom of the ramp.

Head with eyes and hat

4 Save your work

- Select File \rightarrow Save

Conclusion

You have now edited a surface using its control vertices. You have also used Maya's Artisan tools to help give the face a more organic quality. Generally, you will use CV pulling to get the basic shape of a surface then use Artisan to give it a more natural look. In the next lesson, you will begin to animate Jack and his box.

Head with eyes and hat

Lesson 8

Conclusion

9 Animation

In the last two lessons, you modeled various pieces of the Jack-in-the-box. You can now set keyframes on the various parts to bring Jack to life. To start, you will build some skeleton joints that will help you control Jack. You will then add inverse kinematics to animate Jack's release.

In this lesson, you will also use Maya's character definition tools that will help you create a pose-based animation that lets you quickly block out the motion.

The Jack in the box
In this lesson you will learn the following:

- How to set up skeleton joints
- How to bind geometry onto joints
- How to set up a Spline IK solution
- How to create a new attribute
- How to constrain an object to a joint
- How to set up a character
- How to set keys on characters

Adding skeleton joints

Skeleton joints offer a great tool for controlling how a character moves. By moving the skeleton, you will move the surface.

1 Prepare your scene

- Open the scene file that you saved in the last lesson.
- Place the head and the body surfaces on a new layer. Call the new layer Jack_layer.
- Select Template from the box layer's pop-up menu.
Now you are focused on the Jack character.

2 Draw two skeleton joints

- Select Display \rightarrow Joint Size \rightarrow 25\%.
- Go to the Animation menu set.
- Select Skeleton \rightarrow Joint Tool.
- In a side view, press the \mathbf{x} key to use grid snapping then click near the ground to place the first joint.
- Click two grid units above the first joint to place the second joint.

First Joint

3 Draw 8 more joints

- Use grid snap to place several more joints at two grid intervals until you reach the head.
- Press the Enter key to complete the skeleton.

Second Joint

IK Spline Handle

Later you will want to control Jack's head so that it sways back and forth after emerging from the box. You will use an Inverse Kinematics solution called IK Spline.
An IK Spline handle uses a curve to control the shape of the skeleton. As you move the curve, the Inverse Kinematics solver rotates the joints to match.

1 Create IK spline for the joints

- Select Skeleton \rightarrow IK Spline Handle Tool.
- Click on the base of the skeleton when prompted for the start joint for handle.
- Click on the end of the skeleton when prompted for the end joint or end effector.

This adds an IK handle to the skeleton and a curve for controlling the joints．

Spline IK handle

2 Add a point on Curve Deformer

You now have a single span curve that can be used to control the joints．You could edit the CVs on the curve，but instead you will add a Point on curve deformer for more high level control．
－From the side view panel，select Show \rightarrow None，Show \rightarrow Grid then Show \rightarrow Curves．
－Click on the curve with your right mouse button．
－Select Curve Point from the pop－ up marking menu．
Click and hold on the curve then drag up to the top．This is your selected curve point．

－Select Deform \rightarrow Point on Curve．
－Select Show \rightarrow Locators and Show \rightarrow Joints．Now you can see a locator at the top of the IK spline that will be used to control the curve．
－Select Modify \rightarrow Center Pivot．
－Move the Locator to control the Spline．

3 Skinning the neck surface

－Press \mathbf{z} to undo the move．
－Select Show \rightarrow All．
－With the Locator still selected，select Display \rightarrow Object Components \rightarrow Selection Handles．

This will make it easier to select the locator later, since these handles have a higher selection priority than other objects.

Skinning

To make the body surface move with the skeleton joints, it needs to be bound to the joints using Maya's skinning tools.

1 Skin the body surface.

- Select the root joint of the skeleton.
- Press the Shift key and select the body surface.
- Select Skin \rightarrow Bind Skin \rightarrow Smooth Bind.

2 Testing the results

- Click-drag over the area where the locator is to select it.
Since you added the selection handle, the Locator is selected over all the other objects when you clickdrag to select.
- Move the Locator to test the bind.

The smooth bind is very effective at giving good results very quickly. This bind is exactly what is needed.

Testing the bind

Set up the joint scaling

In order for Jack to pop out of the box, you need to set up the body so that it can extend out of the box or pull back into it.

1 Add an attribute to the locator

To control the extending of the body, you will add an attribute to the locator. This will give you a single attribute that will be linked to the joints using Set Driven key.

- With the Locator selected, select Modify \rightarrow Add Attribute...
- In the Add Attribute window, set the following:

Attribute Name to extend;
Data Type to Float;
Minimum to 0;
Maximum to 10;
Default to 10.

- Click OK.

In the Channel box, you will see that a new attribute named Extend has been added to the list. You will use this to control Jack moving in and out of the box.

2 Load the Set driven key window

Since the extending of the skeleton joints requires the scaling of several nodes, you will use Set Driven key so that editing the Locator's extend attribute does all the work.

- Select Animate \rightarrow Set Driven Key \rightarrow Set - \square.
- In this window, click on the Load Driver button.
- Click on Locator in the left hand column.
- Click on extend in the right hand column.

Loading the driver attribute

3 Load all the joints as the driven

- Select Window \rightarrow Outliner.
- Press the Shift key and click on the square box next to joint1. This will expand the hierarchy so that you can see all the joints.
- Press the Shift key and select all the joints in the skeleton.

Outliner

- Click Load Driven in the Set Driven Key window.
- In the left hand column, select all of the joints.
- In the right handle column select scaleX.

By default, the joints' X-axes are pointing along the joints. For this reason this is the axis that needs to be modified.

- Click on the Key button so that when the extend attribute is set to 10, the joints will be scaled to 1 in X.

5 Key the end position

- Select the Locator.
- Set the extend attribute to $\mathbf{0}$.
- Re-select all the joints in the Outliner.
- In the Channel box, set ScaleX to around $\mathbf{0 . 1 5}$. This squashes the body into the box.
- Click on the Key button.

Setting a second key

6 Test the results

- Select the Locator.
- Click on the Extend name in the Channel box.
- With your middle mouse button, click-drag left to right to adjust the body surface.
- Move the Locator to see how the extending action works with the spline curve.

Constraining the head

You now want the head to move with the skeleton, but you don't want it to squash with the body. Therefore instead of binding the head into the skeleton, you will constrain the
head's position and orientation to match the skeleton's top joint.

1 Edit the head's pivot location

- Select the head surface.

This will also select the eyes and hat which are children of the head.

- Select Modify \rightarrow Center pivot.
- Select the Move tool.
- Press the Insert key to go into edit mode.
- Move the head's pivot to the base of head.
- Press the Insert key to go back to object mode.

Setting the pivot location
2 Point constrain the head

- Select last joint. You may want to use the Outliner to help you.
- Press the Shift key and select the head surface.
- Select Constrain \rightarrow Point.

Now the head sits in the same position as the top joint. Right now it isn't oriented properly.

Point constraint

3 Orient constrain the head

－With the joint and the head still selected，select Constrain \rightarrow Orient．

Now the head is oriented to match the joint．One problem is that it has been rotated sideways．This is because the head＇s local axis and the joint＇s local axis work slightly differently．
Every node has a local axis that determines its orientation in space． You can view and edit the axis to correct the rotation of the head．

Orientation constraint

4 Rotate the local rotation axis
 －Select the head surface．

－Press F8 to go into component mode．
－Click on the Points selection mask button to turn it off then click on the Miscellaneous button to turn it on．

This selection mask option displays the local rotation axes for all the parts of the head．
－Select the axis near Jack＇s neck．
－Select the Rotate tool．
－Click－drag on the Y Rotate manipulator until the head is facing forward．If you rotate the manipulator handle to the right，the head will rotate to the left．

Editing the local rotation axis
－Click on the Miscellaneous selection mask button to turn it off then click on the Points button to turn it on．
－Press F8 to go back to object mode．

Set up a character

Before animating the whole scene，you are going to create several Maya character definitions．A Character definition is a collection of attributes that you need to animate for your chosen character．

1 Create a new character

- Select the Locator.
- Select Character \rightarrow Create.
- Select Character Sets from the Character pop-up menu found just under the playback controls in the bottom right of the workspace.

- In the Relationship editor, double click on name character1 and change it to Jack.
- Click on the square icon next to the character to expand the list of associated attributes.
All of the Locator's keyable attributes have been added to the character.
- Select everything except extend and Translate \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

- Select Edit \rightarrow Remove

Highlighted from character.
Now you have the character definition restricted to the remaining attributes.

2 Create a second character

To animate the parts of the box, you will create another character that uses other attributes that you would associate with the box.

- With nothing selected, select Character \rightarrow Create.
- Rename this character Box.
- In the left hand list of the Relationship editor, select the new character.
- In right hand list, find the hinge node.
- Click on the round icon to expand the node and view the available attributes.
- Select RotateZ in this list so that this attribute is added to the character.
- Repeat these steps to also add the crank node's RotateZ to the character.

Adding attributes

3 Combine the characters.

You can now create another character and use it to combine the Jack character and the Box character.

- With nothing selected, select Character \rightarrow Create.
- Rename this character jack_in_box.
- In the left hand list of the Relationship editor, select the new character.
- In the right hand list scroll down until you find the Jack character then select it.
- Repeat for the box character.
- Now click on the square icon next to jack_in_box and you will find that the first two characters are now subcharacters of the first.

Expanded character

Tip: \quad This method can also be used to create definitions for a character's body parts such as arms and legs.

Setting up for animating

You are almost ready for animating the scene. Before you start, you need to get Jack and the box into their starting positions.

1 Position the Locator

To set up Jack, you need to set the locator's extend attribute so that Jack is hiding in the box.

- Move the Locator so that it is sitting directly above the box.
- Set the Locator's extend attribute to 0.
- You may notice that Jack's hat is sticking up past the top of the box. You will need to scale the head down when it is in the box.

Locator positioning

2 Untemplate the box layer

- From the box_layer's pop-up menu, select Standard.

Now you can see all of the parts of the model.

Open position

3 Set head to scale with the hinge

To set up the scaling of Jack's head, you will use Set Driven key. This will allow you to control the scaling of the head by the rotation of the hinge.

- Select Animate \rightarrow Set Driven Key \rightarrow Set - \square.
- Select the hinge then click on the Load Driver button.
- Click on rotate Z in the right hand column.
- Select the hat surface then press the up arrow to navigate the hierarchy to the head.
You can use the up and down arrows to navigate between children and parent nodes in a hierarchy.

- Click Load Driven.

- Click on scale Y in the right hand column.
- Rotate the hinge to about 90 degrees around the Z axis.
- Click on the Key button so that when the lid is all the way open the head will be scaled to 1 in Y .

Open position
4 Key the end position

- Select the hinge. and set Rotate \mathbf{Y} to 0 .
- Select the head and set its Scale \mathbf{Y} so that the hat is sitting inside the box.
- Click on the Key button.

Closed position

5 Set up the box

- Set the Rotate \mathbf{Z} of both the hinge and the crank to $\mathbf{0}$.
- You are now ready to animate the Jack-in-the-box.

Starting position for box

Animate the Jack in the box

Because you set up the Jack-in-the-box as a character, you can quickly flesh out your animation using a pose-based technique. This means that you set up a series of poses for the character then set keys for all the attributes.

1 Set up for the animation

- In the time range, set the Start frame and Playback start frame to 1 and the End frame and Playback end frame to 120.
- In the Character menu, select jack_in_box. This does not highlight the character in the modeling view. It only indicates it as the active character.

Character тепи

Now when you set keys using the s key, all the character's attributes will be keyed. When working with a character, it is important to remember that you can set keys on the active character even if the related nodes are not selected in the modeling views.

2 Set your tangent defaults

You will edit your tangent defaults so that all keys are created with Flat tangents.
This tangent option gives a good starting point for the pose-base animation being used here.

- Select Options \rightarrow General Preferences.
- Click on the Animation tab then scroll down to the Keys section.
- Set the following:

Default In Tangent to Flat;
 Default Out Tangent to Flat.

3 Set an initial key

- Move the Time slider to frame 1.
- Press the s key to set keys.

4 Create a pose at frame 60

- Move the Time slider to frame 60.
- Select the crank.
- Set its Rotate Z to $\mathbf{9 0 0}$.
- With your middle mouse button, click in a modeling view then press the skey to set keys.

Rotated crank

Note: Even though the crank is selected in the modeling view, the keys are being set for all the attributes in the jack_in_box character.

5 Create a pose at frame 70

- Select the hinge.
- Set Rotate Z to around 110.
- With your middle mouse button, click in a modeling view then press the skey to set keys.
Now the lid is open and the head has scaled back to its normal size.

New Pose at frame 70

6 Create a pose at frame 80

- Select Locator and set Extend to 10.
- Move the Locator to the left.
- Set another key.

New Pose at frame 80

7 Create a pose at frame 85

- Select Locator and set Extend to 7.
- Move the Locator to the middle.
- Set another key.

New Pose at frame 85

8 Create a pose at frame 90

- Select Locator and set Extend to 10.
- Move the Locator to the right.
- Set another key.

New Pose at frame 90

9 Create a pose at frame 95

- Select Locator and set Extend to 6.
- Move the Locator to the middle.
- Set another key.

New Pose at frame 95

10 Create a pose at frame 100

- Select Locator and set Extend to 10.
- Move the Locator to the left.
- Set another key.

New Pose at frame 100

11 Preview the results

- Make sure that your perspective panel is active.
- Select Window \rightarrow Playblast...

This creates a quick preview animation that is good for reviewing the look of an animation.

For the Jack-in-the-box, you will see that the motion is a little mechanical. While the pose-based animation has not given you a finished product, it did offer a quick way of blocking out the action. In
the next lesson, you will fix the look of the animation using several secondary motion techniques.

12 Save your work

Conclusion

By creating a character definition for the Jack-in-the-box, you were able to quickly set up poses to get a quick look at the motion. The character definition lets you bring different attributes from a number of different nodes and put them in one easy to organize place.

In the next lesson, the character will be used to help you edit the animation curves. You will then add some deformers to your surfaces to create some anticipation and follow-through for the action.

10

This lesson is about adding some life to the mechanical motions generated by the pose-based animation of the last lesson. You are going to use traditional animation techniques such as anticipation, overlapping action and squash and stretch to enhance the quality of the motion.

In Maya, you have a lot of flexibility when it comes to refining your animations. You can edit the curves in the graph editor or you can add deformers to give life to a scene. By combining several of these techniques you will create a more effective animation.

The Jack in the box
In this lesson you will learn the following:

- How to create overlapping actions in the graph editor
- How to use breakdown keys.
- How to insert in-between keys
- How to use a lattice deformer
- How to lock an object to a deforming surface

OVERLAPPING ACTIONS

When you look at the animation of the Jack-in-the-box, each action follows directly after the last. The crank rotates. As it stops the lid opens. After the lid opens, Jack emerges. This breaks down the flow of the animation by giving distinct start and stop points.

You are now going to adjust the animation curves belonging to these actions so that each one flows into the other. You will continue working with the file you completed in the last lesson.

Extending the crank rotation

The first place where you can overlap the action is the crank rotation. Currently it stops just as the lid is being opened. You will extend the crank rotation to overlap the lid.

1 Open a graph editor panel

- Set up a panel layout where you have a perspective view, a Graph editor and any other panel type that you want.

2 View box curves in the graph editor

- From the character menu below the playback controls, select the jack_in_box character.
The character now appears in the Graph editor. This is another advantage of using the character definitions. You can have the character loaded in the Graph editor even if no objects are selected in the modeling views.
- Click on the square plus sign next to jack_in_box to expand the character.

You now see the two sub-characters and all of their attributes.

- Press the Ctrl key and click on the Jack and the box characters.
- From the Graph editor, select View \rightarrow Frame All.

Graph editor

3 Delete extra keys on crank curve

- Click on the crank.rotateZ channel in the Graph editor.
Now it is the only visible channel.
- Select the keys at the end of the curve. Leave only the first two unselected.

－Press the Backspace key to remove these keys．

4 Move the last key

－Select the last key on the curve．
－In the Stats section of the Graph editor，change the frame value to 95.

Graph editor stats

－Press the Shift key and click on the hinge．rotateZ channel in the Graph editor．
You can see that the rotation of the crank is now overlapping the opening of the lid in time．
－Playback the results in the perspective panel to see the overlap．

Viewing overlap in the Graph editor

Editing Tangent Weights

Since the crank．rotateZ channel is only described by two keys，the quality of its motion will be defined by what is happening between the keys．The Flat tangents set in the last lesson ensure that the crank accelerates
into motion at the beginning and decelerates to a stationary position at the end．
To control these two actions，you need to edit the weighting of the existing tangents so that you can either lengthen or shorten the action at the end points．

1 Convert the keys to weighted keys

－Click on the crank．rotateZ channel in the Graph editor so that it is again the only visible channel．
－Select both keys in the Graph editor．
－From the Graph editor，select Curves \rightarrow Weighted Tangents．
－Next，click on the Free tangent weight button．This lets you edit the tangent weight on one side of a key without editing the tangent weight on the other．

2 Adjust the tangent weight

－Select the first key on its own．
－Select the Tangent weight handle．
－Select the Move tool．
－Press the Shift key and click－drag to the right．

This increases the weighting.

Added tangent weight

3 Adjust the end key tangents

- Select the second key on its own.
- Select the Tangent weight handle.
- Press the Shift key and click-drag to the right.
This decreases the weighting.

Added tangent weight

- Playback the results.

Now the handle takes longer to start up but stops more abruptly.

Overlapping Jack's extending

Another place where you could use some overlap is where Jack begins to extend up from the box. Right now, Jack doesn't emerge from the box until after the lid is actually opened. This is a result of the pose-based animation that was used. By deleting just one key, you can get some overlap here.

1 Select the extend channel

- In the Channel box, click on the channel labelled locator.extend.
- Select View \rightarrow Frame All.

2 Select the extra key

- Select the key at frame 70.

This is the key that matches the point where the lid is fully opened.

- Press the Backspace key to delete the key.
- Playback the results.

Now Jack begins to emerge as the lid is opening.

Extend animation curve

Add follow-through to the lid

When the hinge rotates, it goes from a closed position to an open position directly. To help emphasize the force of the lid's opening, you will now create some follow-through when the lid is fully opened. Rather than stopping it will sort of bounce back and forth to suggest a reverberation from the opening.

1 Move the extra keys

- Select the hinge.rotate Z attribute in the Channel box.
- From the Graph editor, select View \rightarrow Frame All.

This curve has a number of extra keys after the point where the lid opens. Rather than deleting these, you will modify them to create the back and forth motion.

- Select the last six keys on the curve.
- From the Graph editor, select View \rightarrow Frame Selected.
- Select and Move the frames as shown below. Notice how the key at frame 70 has had its value increased to about 140 degrees. The goal is to have the lid open extra wide at frame 70 then oscillate back and forth for the next few frames:

- Playback the results.

2 Convert keys to breakdown keys

Now that the final 6 keys are working correctly, you want to work with them as a grouped action. By converting the middle keys to Breakdown keys, you can control them all using the last key.

- Select the four keys that sit between the key at frame 72 and the end key.
- From the Graph editor, select Keys \rightarrow Convert to Breakdown.

3 Test the breakdown keys

A breakdown key is a special key in Maya that maintains a relationship to the keys around it. If they move, then the breakdown key is adjusted to suit.

- Select the end key.
- Press the Shift key and with your middle mouse button, Move the key left and right to move it in time.
- You can see that now the breakdown keys maintain an appropriate relationship to the keys around it.

Editing the end key

- Playback the scene. If you are happy with the look of the lid then move on. If not, then continue to edit the keys until you are happy.

ANTICIPATION

Another important animation concept is anticipation. If you playback the Jack-in-thebox scene, you will notice that your audience is given no clue that Jack is going to emerge. One way to offers some anticipation would be to add a cartoon-like squashing of the box. As the crank begins to wind, the box begins to
bulge until at the last minute it bursts with Jack emerging.

Add lattice to box

To create the bulging of the box, you will use a lattice deformer. This deformer type allows you to reshape one or more surfaces using a special frame. By working with the Lattice points, you can deform the look of the surface.

1 Delete history

- Select Window \rightarrow Outliner.
- Select the base surface and the three lofted surfaces and the hinge.

Selected surfaces

- Select Edit \rightarrow Delete by Type \rightarrow History.
This is to make sure that the Lattice works correctly on these surfaces.

2 Add the Lattice

- Press F8 to go into component mode.
- Select all the CVs for all the surfaces.

Selected control vertices

- Select Deform \rightarrow Create Lattice.
- In the Channel box, set the \mathbf{T} divisions to 3.

Box Lattice

Animate the box deformations

To animate the bulging of the box, you need to animate the lattice points themselves.

1 Set keys for frame 1

- Go to frame 1.
- From the Character menu, select Set Current Character \rightarrow none.

Setting this to none is very important to make sure that any keys you set do not get set on other character nodes.

- Click on the ground to deselect the Lattice then click on the Lattice to re-select it.
This allows the Lattice points to become visible.
- Select all the Lattice points.
- Press \mathbf{s} to set keys for the points.

2 Set keys for frame 50

- Go to frame 50.
- Edit the Lattice points to get the following shape. You will need to pick Lattice points either one at a time or as a group then either Move or Scale them. The goal is for the box to appear squashed with its front end tilted slightly lower than the back end:

Box lattice at frame 50

- Select all the Lattice points.
- Press \mathbf{s} to set keys for the points.

3 Set keys for frame 72

- Go to frame 72.
- Edit the Lattice points to get the following shape:

Box lattice at frame 72

- Select all the Lattice points.
- Press \mathbf{s} to set keys for the points.

4 Set keys for frame 82

- Go to frame 82.
- Edit the Lattice points to get the following shape:

Box lattice at frame 82

- Select all the Lattice points.
- Press \mathbf{s} to set keys for the points.

5 Set keys for frame 95

- Go to frame 95.
- Edit the Lattice points to get the following shape:

Box lattice at frame 95

- Select all the Lattice points.
- Press \mathbf{s} to set keys for the points.

6 Set keys for frame 100

- Go to frame 1.
- With your middle mouse button, drag the current time indicator in the time slider to frame 100.
By using the middle mouse button, the time was updated but the objects stay in their frame 1 positions.
- Select all the Lattice points.
- Press \mathbf{s} to set keys for the points.

Box lattice at frame 100

Constrain crank to box surface

As you playback the scene, you will notice that the base of the box bulges but the crank remains stationary. You can use a single frame motion path to add the crank to the bulging action.

1 Draw a curve on surface

- Press F8 to go back into object selection mode.
- Select the base surface of the box.
- Select Modify \rightarrow Make Live.
- Hide the grid for the perspective view panel.
Now the base surface is the working surface. Its isoparm lines will be the grid on which you will draw.
- Select Create \rightarrow EP Curve Tool.
- Press the \mathbf{x} key and click on the isoparm crossing at the center of the side face.
- Click a second point somewhere else on the surface.
- Press the Enter key to complete the curve.

Crank attached to surface

- Select Modify \rightarrow Make Live to make the ground grid active again.

2 Attach Crank to path

- Select the crank then press the Shift key and select the curve on surface.
- Select Animate \rightarrow Paths \rightarrow Attach to Path - \square.
- In the option window, set the following:

Time Range to Start.

- Click Attach then Close.
- Playback the results.

Now the crank is locked to the curve on surface and follows the surface during its deformations.

Crank attached to surface

SQUASH AND STRETCH

In the bouncing ball example, you learned about squash and stretch. This principle will also be useful when Jack's head reaches the peak of his extension. Right now you notice that the head reaches the peak with no visible reaction. By adding a squash deformer to the head, you will be able to stretch the head at these points to give the feeling that the head is following through with the action.

Add squash deformer to head

To make the deformer work with the head, you will have to add it to the appropriate shapes then parent it into the hierarchy.

1 Add the deformer

- Select the head surface. This also selects the eyes and the hat.
- Select Deform \rightarrow Create Nonlinear \rightarrow Squash.
- Move the squashHandle down to the base of the head.

Squash deformer

2 Parent the deform handle

- In the Outliner window, click with your middle mouse button on the squashHandle and drag it to the head node. This action parents these together.

Animate stretching of head

You can now set keys on the squash attribute to complete the animation.

1 Set a key for frame 50

Since the box is itself a little squashed at frame 50, you will start here so that you can squash the head enough to make sure that the hat is not poking through the lid.

- Go to frame 50.
- With the squashHandle selected, click on the squash input node in the Channel box.
- Select the Show Manipulator tool.
- Click-drag on the squash manipulator to squash the head down.
- In the Channel box, click on the squash input node's Factor attribute's name to highlight it.
- From the Channel box menus, select Channels \rightarrow Key Selected.

Squash setting

2 Set a key at frame 80

To set the remaining keys, you will use Auto keying.

- Turn on Auto Key.

- Go to frame 80.
- Use the squashHandle manipulators to stretch out Jack's head.
A key is automatically set.

Squash at frame 80

3 Set more keys

- Now follow the animation and wherever Jack's head hits a peak in its bouncing, add some stretch, and wherever his head hits a low point, add some squash.
- Your final animation curve for the Factor attribute might look something like this.
- When you are finished turn Auto Key to off.

Squash factor curve

4 Save your work

Finishing touches

If you playback the animation at this point, you may be happy with some parts of the motion and unhappy with others. It is now up to you to complete the animation by tweaking the various keys to create the perfect animation.
Here are some examples of what you might want to do:

1 Make the head bounce for longer

Right now the head only bounces up and down for a short time. Extend these keys
beyond the point where the box stops deforming. You may even want to add a few more bounces.
Remember that if you edit the timing of the Locator's extend attribute you must do the same for the squash's factor attribute since these work together.

2 Make the head flop around more

You may want to be more dramatic with where the Locator is positioned during the final bounces of the head. You could make these edits in the Graph editor or by setting new keys on top of old ones.

Conclusion

This lesson shows how time taken to add secondary animation to your work is very important to its success. Maya has many tools for adding these kinds of tweaks and adjustments and you should learn to use them effectively. Becoming an expert with the Graph editor is an important step to becoming a master animator.

11 Rendering

In this lesson，you will set up materials，textures and lighting for Jack．You will explore the make－up of a typical shading group including its material node and any texture maps．

This lesson will make extensive use of Maya＇s Interactive Photorealistic renderer（IPR）．This tool allows you to create one rendering of the scene that can then be used to interactively update changes to the lighting and texturing of your scene．You will see how fast and intuitive it is to texture in Maya＇s IPR world．

The Jack in the box
In this lesson you will learn the following：
－How to set up and tweak multiple lights to a scene
－How to set up an Interactive Photorealistic Rendering
－How to add bump and specular maps
－How to make connections in the Hypershade panel
－How to texture map a deforming object
－How to create a texture reference object
－How to set up camera attributes

CREATE A SIMPLE SET

To create a backdrop for Jack, you will build a simple set with some props. These will all be built with primitives and will get their look from texture maps.

Create a three sided backdrop

You will create a cube then remove some of the faces to create a backdrop. Two walls and one floor surface is all you need to create a simple set for your action.

1 Create and position a primitive cube

- Select Create \rightarrow NURBS Primitives \rightarrow Cube.
- Set the cube's \mathbf{Y} translate to $\mathbf{0 . 5}$.

New cube
2 Set the cube's pivot

- Select the Move tool.
- Press the Insert key so that you can edit the cube's pivot point.
- Use grid snapping to move the cube's pivot point back to the origin.

Now you will be able to scale the cube from its base.

Pivot location
3 Scale the cube to desired size

- Press the Insert key again.
- Scale the cube until it is big enough to cover a fairly large area round Jack.

Scaled cube

4 Remove the three unwanted faces

- Press 5 to turn on hardware shading.
- Select the top face and the two front faces and press the Backspace key.

Three sides removed

Add some props

To add some extra detail to the scene, you will add some primitive shapes to act as props.

1 Create a ball

- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- Move and Scale the sphere and place it to the left and behind the jack-in-the-box.
- Rotate it off its axis so that it looks more interesting when you texture it later.

Ball

2 Create some blocks

- Create another primitive cube.
- Position it to the right of the jack-in-the-box.
- Duplicate the box three times and create a stack of blocks.

Blocks

A Directional Light

Before you can start rendering your scene, you will need some light. The easiest light to set up is a directional light which works with parallel rays of light much like the sun.

1 Create a directional light

- From the Rendering menu set, select Lights \rightarrow Create Directional Light.
- Click in your perspective panel with your middle mouse button then press the $\mathbf{7}$ key to turn on hardware lighting.
At first, only the sides of your objects are illuminated because of the light's default direction.

Directional light

2 Position and Orient the light

- Select the Show Manipulator tool.
- Click drag on the light manipulator handle to move the light up and to the left.

Repositioned light

Camera setup

To see how you rendering will look when rendered, you can set up some display tools that will help guide your action.

1 Set up resolution gate

- From the perspective panel menus, select View \rightarrow Camera Settings

[^2]This sets up a bounding box to show you what will get rendered.

2 Adjust the camera's overscan

- From the perspective panel menus, select View \rightarrow Select Camera.
- Press Ctrl a to open up the Attribute editor.
- In the Film Back section of the perspShape node, set the following:

Film Fit to Vertical;
Overscan to 1.2.
Now you can see more of the scene.

Resolution gate

Note: If your panel was more vertical then your Film Fit would have to be set to Horizontal.

3 Set up display guides

- From the perspective panel menus, select View \rightarrow Camera Settings \rightarrow Safe Action.
This shows a second bounding box that defines the area that would be visible if you rendered to video.

Safe Action box

4 Set up a view for rendering

- From the perspective panel menus, select View \rightarrow Select Camera.
- Press Ctrl a to open up the Attribute editor.
- In the Camera attributes section of the perspShape node, set the following:

Focal Length to 28;

This adjusts the Angle of view and lets you see a more wide angle view of the scene.

- Tumble. Track and Dolly into the view to get a nice view of the Jack-in-the-box extended. Scroll in the time slider to check your view at different times.

New view

IPR

You are now ready to render your scene. To give you access to interactive updating capabilities, you will set up an IPR (Interactive Photorealistic Rendering) rendering.
An IPR rendering creates a special image file that stores not only the pixel information about an image but also information about the surface normals, materials and objects associated with each of these pixels. This information is then updated as you make changes to your scene's shading.

1 Panel setup

- Set up a four view panel layout and set up the panels to include a Hypershade, Perspective view, Render View and a Top view.

2 IPR setup

- From your Render view panel, select IPR \rightarrow IPR Render Globals.
- From the Anti-aliasing quality section, set Presets to Production quality.
For IPR, you can use the best settings if desired. Your initial IPR rendering will be slower but the interactive updates will still be fast.
- Close the Render globals.

3 Create an IPR rendering

- From your Render view panel, select IPR \rightarrow IPR Render \rightarrow persp.

Now what seems to be a regular rendering of the scene appears. You will learn how to work with this rendering interactively.

- Click drag to select an area of the IPR rendering that includes both walls and the floor. This is the area that will be updated as you make changes.

Initial IPR rendering

4 Create two new materials

- In your Hypershade panel, create a new Lambert material node by dragging from the Create \rightarrow

Materials section of the visor to the working area.

- Name it wall and change its color.
- Create a new Phong material.
- Name it floor and change its color.

New material nodes

5 Assign the materials

- With your middle mouse button, click-drag the floor material onto the floor surface in the Render View panel within the selected area.
In the Render View, the new color is updated quickly.
- Repeat for the wall material. Be sure to assign it to both wall surfaces.

Drag material into bounded area

IPR update

6 Edit the Floor material's color

- Open the Attribute editor. Click on the floor in the IPR window. This loads the floor's material into the Attribute editor.
- Click on the Color swatch and in the Color wheel, start trying out different colors.

As you click-drag around the color wheel, the IPR window will update automatically.

Click to load shader in Attribute editor

Updated color

7 Refresh the IPR image

- Click on the Refresh the IPR image button.

Now the color and material changes are visible on the whole scene.

IPR update

Lighting

You can also use the IPR window to explore different lighting possibilities. You will now set up three light sources with shadows to make the scene more interesting.

1 Change the existing light type

- From the Rendering \rightarrow Lights section of the Hypershade visor, double-click on the Directional light icon.
- In the Attribute editor, change the Type to Spotlight.
In the IPR update area, you will see that the light is now restricted to a cone angle. This is one of the key properties of a spotlight.

Spotlight in IPR window
2 Edit the light properties

- In the Attribute editor, change the Cone Angle of the light to $\mathbf{6 0}$.
- Open the Shadows section and turn Use Depth Map Shadows to On.
You will notice that the cone angle adjustment did update in the IPR window but the shadows did not. Some attribute changes may require that you redo the rendering. This takes longer than a refresh.
- Select IPR \rightarrow Redo Previous IPR Render.
Now the shadows are visible.
- Re-select an update area for your IPR view.

Updated IPR window

3 Edit the Shadow position

- Zoom out in the perspective view panel.
You will notice that this does not update in the IPR update area. View changes are not reflected until the rendering is redone. This can be a good thing since you can change views temporarily to edit lights without losing your rendering.
- Select the spotlight then select the Show Manipulator tool.

Perspective view

- Move the light around until you get a lighting view that you like in the IPR window. You may need to click
on the Refresh button from time to time to get an overall view of the changes.

Perspective view

- When you are finished, be sure to click in the perspective panel with your middle mouse button then press the [key to undo your view changes to get back to your chosen render view.

4 Edit the Shadow properties

- View the spotlight in the Attribute editor and set the following values: In the Spot Light Attributes section:

Penumbra Angle to 5.

In the Depth Map shadow attribute section:

Dmap Filter Size to 3.

These settings soften the edge of the spotlight and the shadow.

Note: Be careful of setting the Dmap Filter Size too high. It slows down rendering time significantly.

Updated IPR window
5 Add a second spot light

- Select Lights \rightarrow Create Spotlight.
- With the Show Manipulator, set up the light to look up at Jack from the ground.

Front view

6 Edit the light

The shadows from this low light will look dramatic on the back wall.

- Turn on Depth Map shadows for this light.
- Redo your IPR rendering.
- Set the light's Intensity to about 0.75 then play with its light attributes to get the look that you
want for the light. Use the IPR update area to assist you.

Two lights

TEXTURE MAPS

You are now going to add texture maps to some of your materials. Starting with the walls and the floor, you will see how to create color maps that add detail to your rendering.

Texturing the wall

You are going to add a simple checker pattern to the wall using one of Maya's procedural textures. A procedural texture gives you a node that has attributes for you to adjust. You can also edit the positioning of the texture to get a more interesting pattern.

1 Add a texture to the wall

- In the Hypershade, select Graph \rightarrow Clear View to remove everything from the view.
- From the Rendering \rightarrow Materials section of the visor, drag the wall shader to the work area.
- From the Create \rightarrow Textures section of the Hypershade's visor, use your middle mouse button to
drag a checker texture onto the wall material.
- When you release the mouse, select color from the pop-up menu.
The texture is now added to the material node in the Hypershade panel and you can see it in the update area of the IPR view.

Textured material node

2 Update the textures attributes

The checker texture is a procedural texture that has editable attributes. You can change the color of the opposing parts of the checker.

- Double click on the checker icon in the Hypershade to open up the Attribute editor.
- Click on the Color1 swatch and change the color as you see fit.
- Repeat for Color2.

Updated colors
3 Reposition the texture

- In the Hypershade panel, click on the checker node to select it then click on the Show Upstream Connections button. This displays the texture's placement icon.

Textured material node

- Double click on the place2Dtexture icon in the Hypershade to open up the Attribute editor.
- Set the following:

Repeat U to 4;
Repeat V to 12;
Rotate UV to 45.
In the IPR update area, you will see the effect that these changes have to the pattern.

Textured material node

Texturing the floor

To texture map the floor you will use a file texture of a wood pattern. While procedural textures give you a lot of flexibility, a painted or scanned texture can add significant realism to a scene.

1 Create a file texture

- Open the Attribute editor.
- Click on the floor in the IPR update area to place this material in the Attribute editor.
- Click on the map button next to Color.
- Select File from the 2D Texture section of the Create Render Node window.
- In the Attribute editor, click on the folder icon next to Image Name and choose the wood.iff file from the sourceimages directory.
Now you have this texture mapped to the floor.

Textured material node

2 Position the texture

- In the Hypershade panel, click on the checker node to select it then click on the Show Upstream Connections button. This displays the texture's placement icon.
- Click on the place2Dtexture icon and in the Attribute editor, set the following:

Repeat U to 2;
Repeat V to 2;
Rotate UV to 45.

Incorrectly positioned texture

3 Texture the props

- Now use the technique you have just learned to add texture maps to the ball and the blocks. Try out different texture types.
Remember to move the IPR update area to preview the texture changes.

Correctly positioned texture

TEXTURING THE BASE

You are now going to texture map the base of the jack-in-the-box. You will accomplish this with a projected texture map. Projection maps are positioned using a 3D placement icon instead of sitting directly on the surface. You will set up this map type then explore the implication for the base surface which is a deforming surface.

Projection mapping

To set up a projection map, you must first set up the material then place the texture in relation to the surface.

1 Set up IPR window

- Go to frame 1.
- Select IPR \rightarrow Redo Previous IPR Render. Select an update area.

2 Texture map the base's color attribute

- Drag boxShader to workspace.
- Double click to open up the Attribute editor.
- Click on Map button next to color.
- Set 2D Textures to As projection.
- Click on File.
- In the Attribute editor, click on the folder icon next to Image Name and choose the box.iff file from the sourceimages directory.

Texture icons

3 Position the texture

- In the Attribute editor, make sure that you are looking at the projection node and set the following:

Set Projection Type to TriPlanar.

This map type will project your texture along all three axes.

- Click on the Interactive placement button then click on the Fit to BBox button.

Now the texture is surrounding the base of the box.

Positioning icons
In the IPR window, you will see that the texture is now mapped to the sides of the box.

Rendered texture

Texture Reference Objects

While the projected texture works for frame 1, it will not necessarily work later when the box begins to squash and stretch. You therefore need to set up a non-deforming object as a reference for the texture.

1 Test the texture at frame 55.

- Go to frame 55.
- Redo the IPR rendering.

You can see that the texture is not following the surface. The stars are not bulging and the top bar of the texture has disappeared. This is because it is using the texture placement node to determine the projection.

Positioned texture

2 Create a texture reference object

- Go to frame 1.
- Select the base surface.
- Select Shading \rightarrow Create Texture Reference Object.
- Go back to frame 55.
- Redo the IPR rendering.

Now the texture is working with the surface. What Maya has done is to use a hidden surface to reference the texture. When you deform a surface, there is a hidden undeformed surface that is being referred to during deformations.

Your projection is now being applied to that hidden object instead of the deforming one.
You are now ready for the final rendering.

Positioned texture

3 Save your work

- From the File menu, select Save Scene As...
- Enter the name jack_final next to the file's path.
- Press the Save button or press the Enter key.

Rendering the animation

Once you are happy with your test rendering, it is time to render an animation. This will be accomplished using Maya's batch renderer. In preparation, you will add motion blur to your scene to simulate the blur generated in live action film and video work.

1 Set the Image output

To render an animation, you must set up the scene's file extensions to indicate a rendered sequence. You must also set up the Start and End Frames.

- From the Hotbox, select Window \rightarrow Render Globals...
- From the Image File Output section, set the following:

File Name Prefix to jack;
This sets the name of the animated sequence.
Frame/Animation Ext to:
name.\#.ext (for NT)
name.ext.\# (for IRIX);
This sets Maya up to render a numbered sequence of images.

Start Frame to 1;

End Frame to 120;
By Frame to 1.
This tells Maya to render every frame from 1 to 120.

2 Turn on motion blur

- In the Render Globals Motion Blur section, click on the Motion Blur button to turn it on.
- Set the Motion Blur Type to be 2D.

3 Batch render the scene

- Press F5 to change to the Render menu set.
- Use the hotbox to select Render \rightarrow (Save) Batch Render...
- Enter the name jack_anim next to the path.
- Click on the Save/Render button.

4 View the resulting animation

After the rendering is complete, you can preview the results using the fcheck utility.

On NT

- Open the fcheck utility by clicking on its icon.
- Select File \rightarrow Open Animation.
- Navigate to the projectTwo \images folder.
- Select one of the frames of your animation then click Open.

On IRIX

- In a shell window, set your current directory to the maya/projects/ learningMaya/projectTwo/images directory.
- Type the following:
fcheck jack.iff.

Conclusion

You are now finished the Jack-in-the-box lesson. Maya's IPR has helped speed up the creative process and allowed you to explore a number of lighting and texturing very quickly.
You are now finished with this project. Next you will build two spaceships and send them into battle.

LESSロN 12

PロLYGロNAL SPACESHIP

LESSロN 13
NURBS SPACESHIP

LESSロN 14 ANIMATING THE SHIPS

LESSロN 15 Visual Effects

PRロ」ECT THREE

Pravect Three

In this project, you will explore how to model with both NURBS and polgygonal geometry. This will give you a chance to explore some of the possibilities inherent in the two types of geometry. You will then animate the ships along two path curves so that you can easily build and edit a space animation.
You will then create a rendered image of a space scene to use as an animated backdrop. You will then add OptiF/X thrusters, digital photon torpedoes and explosions. Particles will also be used for some effects.

1. A spaceship tries desperately to escape the pursuit of an approaching fighter ship.

2. A quick, last second dodge barely clears the resulting explosion.

3. The fighter shoots one photon torpedo at the fleeing ship.

4. The spaceship breaks away with a trail of smoke emitting from her wing.

12
 Polygonal Spaceship

In this lesson, you will build and texture map a polygonal spaceship. Starting with a polygonal cube, you will extrude Poly Faces until you have a completed ship. You will then be able to edit the construction history of the modeling actions to update the model and edit the results.

You will then apply texture projections in order to create UV coordinates on the polymesh. These will let you texture map the ship using a series of texture maps imported as file textures.

Polygon spaceship
In this lesson you will learn the following:

- How to model using polygons
- How to smooth a polygonal mesh
- How to work with procedural modeling attributes
- How to model using lattices
- How to work with procedural modeling attributes
- How to set up files for referencing

Initial set-up

You will use an existing project directory which contains all of the required texture files for the next few lessons.

1 Set the current project

- Select File \rightarrow Project \rightarrow Set...
- Locate and select the projectThree directory in the learningMaya directory.
- Click Set Project.

2 Set up the modeling panels

- Start a New Scene.
- In the view panel menu bar, select Panels \rightarrow Saved Layouts \rightarrow Edit Layouts...
- In the Panels window, open the Edit Layouts tab.
- Set the Configuration to 4 Pane Left Split.
- Set the large panel to the Perspective view with the Top, Front and Side view panels along the side.
- Open the Channel box.

Recommended layout for this tutorial section

Starting the ship

This spaceship will be built starting with a simple polygonal cube. The Poly Faces will then be extruded to create a more complex shape.

1 Place and position a primitive cube

- Select Create \rightarrow Polygon Primitives \rightarrow Cube.
- Set each view to Smooth Shade All.
- Select the Scale tool.
- Click-drag on the Scale handles to create the following shape:

Scaled primitive polygon cube

2 Turn on backface culling

During the process of modeling the polygonal spaceship, it is important that you do not accidentally select and modify Poly Faces that are on the opposite side of the object. To prevent this, backface culling can be turned on so that the Poly Faces that are facing away from the view are not displayed and cannot be selected.

- Select Display \rightarrow Custom Polygon Display - \square.
- In the option window, Set Backface Culling to On.

3 Select the two side faces of cube

- Press F8 to go into Select by Component mode.
- Turn off the Points selection mask.
- Turn on the Faces selection mask.
- Select the facet handle on the right side of the cube.

Polygon facet selected

- Tumble the view to the other side of the cube.
- Press the Shift key and Select the opposite facet handle.

Opposite polygon facet selected

4 Extrude and scale Poly Faces

- Select Polygons \rightarrow Extrude.

A manipulator appears which gives you access to translation, rotation and scaling all at the same time.

- Tumble the view to get a better view of the manipulator.
- Click-drag on the blue Move handle to extrude a new facet.

Opposite Poly Faces extruded

- Click-drag on green Scale handle to taper the edges.

Extruded Poly Faces scaled in one direction

Note: When you manipulate the handle associated with one facet, the other facet reacts equally. Both extrusions are working based on the normals of the original Poly Faces.

5 Add wing base

- Press the \mathbf{g} key to reactivate the Extrude tool and start a new extrusion.
- Click-drag on the green Scale handle to create a long, thin polygon centered about the edge facet.

Thin facet extruded as the base of the wing
6 Extrude and shape wing

- Press the g key.
- Click-drag on the blue Move handle.
- Click-drag on red Scale handle.

Wing tip extruded and scaled

- Click-drag on red Move handle.

Wing tip scaled and moved into position

7 Add a top wing

- Select the facet handle belonging to the top surface of the shape.
- Press the \mathbf{g} key.
- Click-drag on red Scale handle to create a long thin polygon centered in the top facet.

Thin facet extruded as the base of the fin

- Press the \mathbf{g} key.
- Click-drag on the blue Move handle.
- Click-drag on green Scale handle.

Fin extruded and scaled

- Click-drag on green Move handle.

Fin moved back

Air intake ports

In addition to extruding out, you can use the extrusion tool to push a polygonal facet into a surface to create an opening. For the ship's air intake ports, this technique will be used.

1 Create the front of the ports

- Select the facet handle belonging to the side thruster port.
- Press the Shift key and Select the opposite facet.

Two Poly Faces selected to create thruster ports

- Press the \mathbf{g} key to re-evoke the Extrude tool and start a new extrusion.
- Click-drag on the green Scale handle to create a little lip at the edge of the top and bottom of the thruster ports.
- Click-drag on red Scale handle to create a similar lip at the side edges of the thruster ports.

Front edge of the thruster ports

2 Add a lip to the ports

To give the thruster a little bit of an edge, you will next create a little lip using the extrude tool.

- Press the \mathbf{g} key.
- Click-drag on green Scale handle to create a little lip at the top and bottom edges of the thruster ports.
- Click-drag on red Scale handle to create a similar lip at the side edges of the thruster ports.
- Click-drag on blue Move handle to push this extruded facet back a little.

Lip added to the thruster ports

3 Extrude the hole

- Press the \mathbf{g} key.
- Click-drag on blue Move handle to push this facet back deep into the spaceship.

Hole extruded for thruster port

4 Add the rear thruster

- Tumble the view around to see the back of the ship.
- Select the facet handle belonging to back facet of the ship.
- Press the \mathbf{g} key.
- Click on one of the Scale handles.

The center of manipulator changes to a Scale manipulator.

- Click-drag on the center Scale handle to create the edge to the exhaust port.
All four sides scale to the same value and proportion.

Front edge of exhaust port

- Repeat the steps used to create the front thruster ports to finish the back exhaust hole.

Hole extruded for exhaust port

The front cockpit

You can now continue to use the extrude tool to pull out a cockpit area for the spaceship.

1 Pick the front facet

- Tumble around to see the front of the ship.
- Select the facet handle belonging to front facet of the ship.

Front facet to be extruded for the cockpit

2 Extrude the front facet twice

- Press the \mathbf{g} key.
- Click-drag on blue Move handle to pull this facet out.
- Press the \mathbf{g} key.
- Use blue Move handle to pull a second facet out.

Facet extruded twice

3 Scale and rotate the facet

- Use the green Scale handle to scale the front facet down.
- Use the red Scale handle to scale this facet in.
- Use the green Move handle to move this piece down.

Front facet scaled and moved down

Creating a more organic look

At this point, you might be thinking that this will be a very simplistic looking spaceship. You will now apply a smooth node on the polygons to create a more organic look and improve the look of the ship. You will then apply a lattice and deform the lattice points to achieve a more streamlined look.

1 Smooth the spaceship

The whole polyset can be smoothed into a more organic shape.

- Press F8 to go back to Select by Object Type mode.
The facet handles are no longer visible, and the object is now selected.
- Select Edit Polygons \rightarrow Smooth.

The planar polymesh that was created out of the series of extrusions is now smoothed and rounded

Smoothed polymesh spaceship
2 Edit the extrude history
The smooth has been applied as an input node to the polymesh. All of the original extrusions have been recorded in a series of polyExtrudeFacet nodes that you can find in the Channel box.
By selecting one of these input nodes and invoking the show manipulator tool, you can edit the history of the extrusion.

- In the Channel box, Select the polyExtrudeFacet1 node.
- Select the Show Manipulator Tool.

The manipulator for the first extrusion is displayed.

- Use the blue Move handle to move the extrude in towards the center.
Both the extrude history and smooth action update, as the exhaust ports become more narrow.

Note: Any of the other extrusions can be adjusted by selecting the relevant input node and using show manipulator, or by editing the values in the Channel box. This is a good example of Maya's procedural modeling capabilities.

3 Edit the smooth history

Since the smooth action is also saved as an input node, you can edit a parameter on this node to increase the smoothness of the ship's surface.

- Select the polySmoothFacet1 input node in the Channel box.
- Set Divisions to 2.

The detail and smoothness of the spaceship increases.

Level of smoothness increased

4 Add a lattice

- Change to the Animation menu set.
- Select Deform \rightarrow Create Lattice.
- In the Channel box, set the following under the ffd1LatticeShape node:

S Divisions to 4;
T Divisions to 2;
U Divisions to 6.

Lattice applied to the spaceship

Note: A warning appears in the Command line which indicates that one of the selected items was skipped. This is because you had the polySmooth1 input node selected. A lattice cannot be applied to this node, so it was applied to the shape node - which is what you want anyway.

5 Edit the lattice points

To reshape the spaceship, you will use the lattice by editing the lattice points. By editing the simple lattice frame, you can easily make edits to the polymesh surface.

- Press F8 to go into Select by Component Type mode.
- Turn on the Points selection mask.

The Poly Faces selection mask should turned off.

- In the Top view, use the Shift key and click-drag to Select the twelve control points near the tips of the wings as shown.

Selection of lattice points

- Select the Scale tool.
- Click-drag on the red Scale handle to scale the points out.

6 Move the tail

- In the Perspective view, Select the six control points closest to the tail.

Make sure that you do not select any of the control points at the bottom of the lattice.

Control points selected

- Select the Move tool.
- Use the green and blue handles to Move the control points up and towards the back.

Tail area raised

7 Move the lower back edge down

- In the Side view, Select the four control points at the back lower edge.
- Move these points down.

8 Move the wings tips down

- In the Front view, Select all the control points on the right and left sides of the lattice.
- Move these points down.

Wing tips moved down

9 Curve the nose forward and down

- In the Side view, Select the front two rows of control points.
- Move these points forward and down.

Cockpit area moved forward and down

- Select the front row of the control points.
- Move these points forward and down.

Finishing the model

Now that you are happy with the shape of the ship, you can delete history. This will remove the input nodes. You could keep them around, but they can add extra complexity to the model which is not required.

1 Delete history

- Press F8 to go back to Select by Object Type mode.
- Select the spaceship.
- Select Edit \rightarrow Delete by Type \rightarrow History.
The lattice and the input nodes are deleted and the history of the polymesh spaceship can no longer be adjusted.

2 Rename the polymesh

- Rename the polymesh polyShip.

History deleted on spaceship

3 Save the file

- Select File \rightarrow Save Scene As...
- Save the file as polyShip.

TEXTURING THE SHIP

You now have a polygonal mesh that requires texturing. Since polygons do not by default have UV parameters, onto which textures can be applied, you can use special polygon tools to assign these kinds of values to the ship.

Creating the polyShip shading
The polyShip will be textured using a single shading group that contains several texture maps. The method of positioning the texture on the surface will be accomplished using the polygon texturing tools.

1 Set up view panels

- Select Panels \rightarrow Saved Layouts \rightarrow Four View.
- Select Display \rightarrow Grid to hide the grid in the view panels.

This will help you see the texture projection planes.

Recommended layout for this tutorial section
2 Create and assign a new shading group

- Open the Hypershade window.
- Create a Blinn Material node.
- Assign the Blinn Material to the polymesh object.
- Rename the material node polyShipBlinn.
- Rename the blinn1SG node to polyShipSG.

3 Turn on hardware texturing

If you can use hardware texturing, then it will be a useful tool in this lesson.
Otherwise, you will have to test render the model after key steps in the lesson.

- Turn on hardware texturing in each view panel.

The display of the model does not change because there are no textures assigned.

4 Map an image file to the color

- Open the attributes for the polyShipBlinn node.
- Map the Color attribute with a 2D File texture node.
- Rename the file1 node polyColor.
- Click on the Folder Icon button next to Image Name.
- In the sourceimages directory of the projectTwo project, locate the polyColor.sgi image file.
- Click See Image.

The image file is a bitmap image that was created in a paint package.

Bitmap file to be used as color texture map

- Close the image and click Open.

If you are using hardware texturing, the polymesh surface changes to a transparent hatching. This is because the polymesh surface does not yet have a UV coordinate system to position the color texture.

Hardware texturing without UV coordinates

Note: Polygon primitives as well as all NURBS primitives and surfaces have inherent UV coordinates which allow textures to be positioned on a surface. Polymesh surfaces require the UV coordinate system to be projected onto the 3D Poly Faces of the object.

Projecting the texture

The texture you are mapping onto the spaceship has been created as a sort of decal sheet. You will be using the polygon projection methods to map the parts of the decal sheet to different parts of the ship. Shown below are the main parts of the ship labeled. Later, you will see how the decal sheet will work.

Ship color texture

1 Turn off backface culling

In order to properly project the texture map onto the polymesh object, it is necessary to be able to select the Poly Faces on opposite sides of the object at the same time. This can be done by turning off backface culling.

- Return to the Modeling menu set.
- Select the polyShip.
- Select Display \rightarrow Custom Polygon Display- \square.
- Set Backface Culling to Off.

2 Select all the Poly Faces

The Poly Faces of the polymesh surface must be mapped with a projection to create UV coordinates on the polymesh.

- Select the polyShip.
- Click on the ship with the RMB, and select Face from the pop-up marking menu.
- Click-drag a selection box around the entire object to Select all of the poly faces.

It is important that you do not miss any Poly Faces. The color of the Poly Faces turn slightly yellow when selected.

Selection of all the Poly Faces of the polymesh

3 Create planar mapping

- From the main menu bar, make sure that Edit Polygons \rightarrow Texture \rightarrow Assign Shader to Each Projection is turned off.
- Select Edit Polygons \rightarrow Texture \rightarrow Planar Mapping.
A large projection plane icon appears in the in front of the object which projects the texture map from the front of the object. The texture is mapped onto the surface which can be seen with hardware texturing.

4 Rotate the direction of planar projection

- Dolly the Top view out.

The entire texture projection plane should be within view.

- In the Channel box, set Rotate \mathbf{X} to -90 and the Rotation Angle to 180.
The texture is now projected onto the surface from above.

Top view of rotated projection plane

5 Position the planar projection

- Click-drag on the thin green line of the manipulator to move the projection plane along the Z-axis.

The center of the projection plane should be positioned over the approximate center of the polyShip.

- Click-drag on the red and green Scale handles to scale the projection plane to slightly larger than the polyShip.
With hardware texturing, the color texture moves across the surface with the projection plane.

Projection plane moved and scaled

> Note: If the projection manipulator disappears, reselect the polyShip, click on the polyPlanProj1 input node in the Channel box and select the show manipulator tool.

6 Open Texture View

- Select Edit Polygons \rightarrow Texture \rightarrow Texture View...
The window opens with the mapped Poly Faces of the polyShip visible, shown from the view of the texture projection.
- From the Texture View menus, select View \rightarrow Grid to hide the grid in the window.

Texture View window

Note: The view of the mapped Poly Faces and the loaded texture are both initially displayed in the Texture View window with a square proportion - regardless of the proportion of the planar projection positioned in the 3D space of the model and the proportion of the texture image file.

7 Position texture icon

You can now move the texture icon to position it properly in relation to the surface. You have the option of using the manipulator in the workspace or the Texture View window.

- Dolly in the Texture View until you see the full extent of the positioning manipulator.
- Use the green box handle to scale the proportion of the polyShip profile.
- Use the green arrow to move the profile into position.
The polyShip outline should be centered on the texture, with the red box covering the tip of the nose, the
wings stretching between the horizontal red bands, and the vertical black lines should overlap the back edge of the wings.

Outline positioned correctly over the texture

8 Examine the texture positioning

- Press the F8 key to change selection mode.
- Click in one of the view panels to deselect the polyShip.
You can now see the texture more clearly.
- Tumble in the Perspective view to see the position of the texture on the polyShip surface.

Overall texture positioned on surface

Note: To make any refinements to the texture positioning, select the polyPlanProject1 input node and select show manipulators.

Mapping the fin

The projection of the map down onto the ship does not let you map the fin from the side.
You can create a separate projection to these
Poly Faces to map the fin with the ship's logo.

1 Select the fin Poly Faces

- Press the F8 key to return to component selection mode.
- Click on the polyShip to display the Poly Faces.
- In the Side view, click-drag to Select the Poly Faces that form the main area of the tail.
By click-dragging, you select the Poly Faces on both sides of the fin.

Fin Poly Faces selected for secondary mapping
2 Map the fins with a planar projection

- Select Edit Polygons \rightarrow Texture \rightarrow
Planar Mapping.

A small projection plane manipulator is positioned in front of the selected Poly Faces, which are outlined with a heavy line. The texture is projected from the front of the polyShip.

Projection plane positioned in front of the Poly Faces

3 Position mapping manipulator

- In the Channel box, set Rotate \mathbf{Y} to 90.

The texture is now projected from the side, and the texture pattern repeats several times across the Poly Faces.

- Click-drag on one of the red horizontal lines of the manipulator to move the projection plane.
It should be at the approximate center of the outlined Poly Faces.

Projection plane rotated and centered

- Scale the projection plane.

It should cover the outlined Poly Faces.

Projection plane scaled to cover facet area

4 Position Texture View

- Dolly the Texture View out so that the entire placement icon is visible.
- Use the blue Scale handle to scale the placement icon down.
- Use the Move handles to position the icon over the red area in the top right corner of the texture.
- Refine the scale and position of the placement icon.

The Poly Faces should be completely within the red area of the texture and the black and white logo should be centered on the tail profile.

Refined position of fin projection on the texture

5 Evaluate the second projection

- Deselect the polyShip.
- Tumble the Perspective view to see the effect of the second projection.

Second projection on fin

Mapping the cockpit

You may be wondering why the cockpit portion of the texture was not part of the original projection. Since the projection goes right through the ship, you didn't want the cockpit appearing on the top and bottom. You
will now remap the cockpit onto the top of the ship only.

1 Select nose Poly Faces for cockpit

- Select the polyship.
- Click with RMB over the polyship and select Face.
- In the Side view, click-drag to Select the Poly Faces on the top part of the nose.
Use the Shift key to make multiple selections.
Make sure that you do not select Poly Faces that are mapped with red areas of the texture.

Side view of Poly Faces selected for cockpit

Note: If you do not have hardware texturing, you can see the selected Poly Faces displayed with a yellow hatching in the Texture View window. Make sure that the selected Poly Faces do not overlap with the red bands of the texture.

2 Create planar mapping

- Select Edit Polygons \rightarrow Texture \rightarrow Planar Mapping.

Projection plane positioned in front Poly Faces

3 Position the projection plane

- Click on the red line handle at the bottom corner of the manipulator.
The manipulator changes to move, scale and rotate handles.
- Click-drag on the circular blue rotate handle to rotate the projection plane.
The plane should be roughly parallel to the top face of the cockpit area.

Rotating the projection plane

- Use the green Move handle to move the projection plane up along the nose.

It should be positioned so that the projection covers the outlined Poly Faces of the cockpit.

Side view of projection plane in position

4 Position texture view

- In the Texture View window, Scale and Move the positioning icon, so that it is centered over the cockpit area at the top left corner of the texture.
- Refine the position and scale.

The outline of the Poly Faces encompasses all the cockpit details of the texture.

Texture View of cockpit Poly Faces position

5 Examine the three texture projections

You have now used three different planar projections to map one file texture on the Poly Faces of the polymesh of the spaceship. This mapping can be seen in the Texture View window and, if you have hardware texturing, you can examine the results in the Perspective window.

- Press the F8 key.
- Dolly out of the Texture View window to see the mapping of the three projections on the texture.
- If the projections are not visible, Select the polyShip object.

Texture View of final projection mapping

- Deselect the polyShip.
- Tumble the Perspective view to examine the areas where one projection meets another.
The texture colors should be consistent around the fin and cockpit projection areas.

Perspective view of combined projection mapping

Note: To modify any texture mapping, select the appropriate polyPlanProj input node in the Channel box and select the show manipulator tool.

Rendering the ship

To confirm that the texturing is working correctly, you can now render the scene. If you don't have hardware texturing, then this will be your first preview of the results. To render, you will have to add some lights.

1 Add directional lighting

- Change to the Rendering menu set.
- Select Lights \rightarrow Create Directional Light.
- Move and Rotate the light so that it is pointing towards the front of the polyShip from above.
- Select Window \rightarrow Attribute Editor...
- Set the Color to a light yellow.
- Open the Shadows, and then the Depth Map Shadow Attributes sections.
- Turn on Use Depth Map Shadows.

Depth Map Shadows set for directional light

- From the Perspective panel menus, select Lighting \rightarrow Use All Lights.

Hardware rendering with directional light

2 Add ambient lighting

- Create an Ambient Light.
- In the Attribute Editor:

Change the Color to blue;
Reduce the Intensity to 0.3;
Set Ambient Shade to 0.2.
By reducing the ambient shade, the light will slightly illuminate surfaces that are facing away from the source.

Ambient light attributes

3 Set Render Globals

- Open the Render Globals window.
- Open the Anti-aliasing Quality section.
- Set the Presets to Intermediate Quality.

4 Render the scene

- Set up the Perspective view.
- Open the Render View window.
- Render the Perspective view.
- Keep the image.

Rendering of texture projected onto polyShip

Adding different texture maps

You can now begin refining the shading group to include other types of texture maps. A reflection map for the cockpit, a bump map for the grooved joints, and a specularity map for the different material effects.

1 Map the bump attribute with a file

The next texture map you are going to use is a bump map that raises and lowers parts of the model.

- Open the Attribute Editor for the polyShipBlinn material node.
- Map the Bump Mapping attribute with a File 2D texture node.
- Click the file2 tab.
- Rename the node polyBump.
- Click the Folder Icon browse button.
- In the sourceimages directory, open the polyBump.sgi file.

Bitmap file for material bump map texture

Note: Because the color texture map used the default texture placement node settings, you will not need to adjust the values of the placement nodes for the other file textures.

2 Refine the bump map

To create a high quality bump, you should set the depth to define how deep the bump is going to be, and set the filter to define the sharpness or softness of the bump map.

- Open the bump2d tab.
- In the 2d Bump Attributes section:

Set the Bump Depth to $\mathbf{0 . 2 5}$.

- In the Effects section:

Set Bump Filter to 0.2.
This setting makes sure that the map is sharp instead of blurred.

3 Map specularity

The next map is going to be used to map the specularity on the surface. Darker areas will produce less specularity while lighter areas produce more.

- From the Attribute Editor menus, select Focus \rightarrow polyShipBlinn.
This returns the window to the material node attributes.
- In the Specular Shading section set:

Eccentricity to 0.2;
Specular Roll Off to 0.9.

- Map the Specular Color attribute with a File texture node.
- Rename the file node polySpec.
- Connect the polySpec node to the polySpec.tif image file.
- In Render View Render \rightarrow Redo Previous Rendering.

Bitmap file for material specularity texture

4 Map reflectivity

The reflectivity map is quite simple. Where the map is black, you will not get reflections - but where the map is white, you do. This map will not show you any results until you either raytrace the scene or add a reflection map.

- Return to the attributes for the polyShipBlinn node.
- Hold down the right mouse button on the Reflectivity attribute.
- Select Create New Texture... from the pop-up menu.
- Create a File texture node.
- Rename the file node polyReflect.
- Connect the polyReflect node to the polyReflect.tif image file.
- In Render View select Render \rightarrow Redo Previous Rendering.

5 Add dirt to the spaceship color

The spaceship textures render to show a clean surface as if the spaceship just left the factory floor. You will now map a 3D fractal map to the color map's Color Gain attribute to roughen up the look of the ship.

- Navigate to the attributes for the polyColor file texture node.
- Open the Color Balance section.
- Map the Color Gain attribute with a Solid Fractal 3D texture.
- In the Solid Fractal Attributes section, set:

Threshold to 0.2;
Amplitude to 0.75 .

Solid fractal set to add dirt to the color map

6 Scale the 3D texture placement

You need to scale the icon to scale up the effect of the fractal on the surface.

- Click on the place3dTexture1 tab.
- At the bottom of the Attribute Editor, click on Select.
This selects the 3D placement node in the modeling views.
- In the Perspective view, Scale the placement icon to half the size of the polyShip.

Solid fractal 3D texture placement icon scaled

7 Parent the texture placement node

Right now, if you were to animate the spaceship, the dirt would stay behind. You need to parent the node to the ship so that if the ship moves then the texture moves too.

- Press the Shift key and Select the polyShip.
It is important that the icon was selected first, ahead of the ship. This means that the icon will be parented to the ship.
- Select Edit \rightarrow Parent.

This parents the placement node into the hierarchy of the polyShip. When the polyShip is animated in a later lesson, the placement node will also be animated. This is necessary so that the fractal dirt does not move on the surface.

8 Render the scene

- In Render View select Render \rightarrow Redo Previous Rendering.
Notice the effect of the bump map, and the difference in the specular qualities between the main color areas of the surface. The layer of grime that is produced by the solid fractal texture is also clearly visible.

Rendering of polyShip with textures and dirt

Note: The effect of the reflectivity texture will not be seen until later in the project, when an environment map of a starfield will be used as the reflected color instead of using raytraced rendered reflections.

9 Save your work

You should save this file as polyShip. You will reference this file into another file in a future lesson.

Conclusion

In this lesson, you have learned how to model a complete spaceship out of a primitive cube. In the process, you used polygon modeling tools to create the form. Each tool created an input node that you were able to edit later to change the construction history of the ship. In the next lesson, you will model another spaceship using NURBS geometry. This will let you compare the two modeling techniques. Later, you will animate the two ships in a space battle.

13 NURBS Spaceship

In this lesson, you will build a second spaceship using NURBS surfaces. You will start by drawing spline curves that will be used to construct the surfaces. Your model will be built out of several pieces that will then be combined to make the final ship.
In the end, you will apply shading groups. For some parts of the spaceship, you will use projection map textures to achieve the desired look.

In this lesson you will learn the following:

- How to draw a spline curve
- How to build a revolved surface
- How to build a birail surface
- How to build a lofted surface
- How to attach surfaces
- How to rebuild a surface
- How to use projection maps

Initial set-up

To create this spaceship, start a new file where you can focus on the new model.

1 Create a new file

- Make sure that your polyShip is saved then select File \rightarrow New.

2 Set the display options

- Select Options \rightarrow General Preferences...
- Click on the Display tab.
- In the Nurbs section, set the Shaded Divisions to 4.
Now your surfaces will have a higher surface smoothness and you don't have to press the 3 key every time you create a surface.

Main thruster

The first part of this spaceship is the main thruster. This will be built by revolving a curve around the Z-axis.

1 Draw the revolve profile

- Select the Modeling menu set.
- Select Create \rightarrow CV Curve Tool.
- In the Side view, track the view to the left.
- Press and hold the \mathbf{x} key to use grid snapping and click on the Z-axis line to start drawing a curve.
- Release the \mathbf{x} key to stop using grid snapping and draw the next six CVs as shown in the following:
The curve is shown with a box icon representing the first CV and a U icon representing the direction of
the curve. Just like X, Y and Z are used to represent spatial dimensions, U is used to represent measurements along a curve.

2 Revolve the curve

- Select Surfaces \rightarrow Revolve - \square. In the option window, set the following:

Axis Preset to Z.

- Click Revolve then Close.

The curve has now been used to generate a revolved surface.

- Use the $\mathbf{5}$ key to set smooth shading in the Perspective view.

Construction history

The shape of the surface is dependent on the shape of the curve. You can therefore edit the shape of the surface by editing the curve.
The end of the thruster comes to a point. You will now fix the tangency at the end of the curve to smooth out the revolved shape's end point.

1 Change your Side view display

- In the Side view panel, select Show \rightarrow None then Show \rightarrow Curves.
Now you can focus on the curve and then preview the shaded surface as it updates in the Perspective view.

2 Get the curve editing tool

- Select Edit Curves \rightarrow Curve Editing Tool.
- Click on the curve in the Side view.

A manipulator appears with several handles used to edit your curves. These include the following: the parameter handle which lets you move the editor to a particular point on the U direction of the curve; the position handle that lets you move the chosen point of the curve and the CVs will update to suit;
the tangent and tangent scale handles let you scale and position the curve's tangent; and the axes lines can be used to snap the tangent handle to either the X, Y or Z axes.

Curve editing tool

- Click-drag on the yellow parameter handle to move the manipulator to the left end of the curve.

Edited parameter handle

3 Align the end of the curve

- Click on the dotted axis line as shown in the following diagram.

Tangent aligned to axis
The handle's tangent line snaps to align with the axis. In the shaded view, you can see that the end of the shape is more rounded.

4 Scale the length of the tangent handle

- In the Perspective view, click on the tangent scale handle to make it active.
Click-drag with your middle mouse button to edit the length of the tangent.

Scaled tangent handle

- Press Enter to accept the edits.

5 Delete the construction curve

- Select the curve in the Side view.
- Press the Backspace key to delete it.

6 Create a new layer and template the main thruster

- Create a new layer called mainBody.
- Select the revolved surface.
- Rename it mainThruster.
- Assign mainThruster to the new layer.
- Template the mainBody layer.

7 Save your work

- Select File \rightarrow Save Scene As... and name the file nurbShip.

THE HULL

The hull of the spaceship will be created by using the birail tool. This tool creates a surface by tracking one or more profile curves along two rail curves.

Drawing character curves

To build the shape of the spaceship's hull, you will start with character curves. These curves will define the shape of the surfaces. When working with NURBS models, the quality of your surface is dependent on the character curves.

One approach for creating efficient curves is to start with simple single span curves. When working with NURBS curves, the fewer CVs you have the easier it is to control the curve. You can then insert more spans if you need more complexity.
For now, you will only be building half of the spaceship. Once completed, you will mirror the other half and join together the surfaces.

1 Draw main character curve

- In the Side view panel, select Show \rightarrow All.
- In the Side view, dolly out to see about 25 units on each side of the main Y -axis line.
- Select Create \rightarrow EP Curve Tool.
- Click and hold in the Side view. Now as you drag, you can use the feedback line to help you place the following points using approximately the values shown below:

Edit point curve

2 Edit the shape of the curve

- Press Enter to complete the curve.
- Press F8 to go into component selection mode.
- Select the middle two CVs.
- Move them up and to the left.
- Press F8 to go back to object selection mode.

Moved CVs
3 Create the lower rail curve

- Use the method outlined in the last two sections to create the following rail curve:

Second rail curve

4 Duplicate and move the curves

- Select the two curves.
- Select Edit \rightarrow Duplicate.
- Move the curves about 11 units along the X -axis.

Duplicated curves

5 Scale the new curve CVs

- Press F8 to go into component selection mode.
- Select all of the CVs on the two curves.
- Scale them along the Y-axis to scale them down a little.

- Select the end CVs on the two curves.
- Scale them along the Y-axis to scale them down a little.

6 Reshape the new curve

- Select the first two CVs on the new curves.
- In the Top view, Move the CVs about 4 units toward the main axis line.

Moved CVs

- Select the first CV on the new curves.
- In the Top view, Move the CVs about 2 units toward the main axis line.

Moved end CV

- Press F8 to go back to Object selection mode.

Profile curves

You now have four rail curves defining half the spaceship body. The next step is to connect the rails with profile curves. You will be creating three surfaces: a top surface, side surface, and bottom surface.

1 Add the top profile curve

- Select Edit Curves \rightarrow EP Curve Tool.
- In the Perspective view, press and hold the c key to temporarily use curve snapping.
- Click and drag onto the back of the center rail curve.
- Drag until this point stops at the end of the curve then release the mouse button.
- Repeat to place a second edit point at the end of the second rail curve.

New edit point curve

- Press Enter to complete the curve.

Tip: By using curve snapping, you are sure that the new curve is touching the two rail curves. This is important to successfully use the birail tool later.

2 Edit curve tangency

To ensure surface tangency at the centre, of the spaceship, you will use the curve editor

- Select Edit Curves \rightarrow Curve Editing Tool.
- Click-drag on the top handle and drag towards the center axis until it stops at the end of the profile curve.
- Click on the X-axis crosshair (red line) to modify projection.

Aligned curve

- Select the Move tool.
- Press F8 to go into component selection mode.
- Move the third CV on the curve to reshape the curve.
Don't touch the second CV.

Edited CV position

3 Add the front profile curve

- Use the steps outlined above to add a second profile curve to the front of the rail curves.
- Adjust the curve tangency as outlined above as well.

Second profile curve

Birail surface

A birail surface is created using the two profile curves and the two rail curves. The rails define the sides of the surface while the cross sections are derived from the two profile curves. A birail surface can only be built if all the curves are connected.

1 Create top birail surface

The top surface is now defined by two rail curves and two profile curves. You can now use these to build a birail surface.

- Select Surfaces \rightarrow Birail 2 Tool.
- Click on the four defining character curves in the following order:
back profile curve;
front profile curve;
center rail curve;
side rail curve.
- A surface is created along the top of the spaceship.

Birail surface showing selection order of curves

Note:

If no surface is produced, the profile curves may not be touching the rail curves. Should this be the case, undo your surface creation then go back and rebuild the rails. Also note that you must have Show \rightarrow Surfaces on for your view panels to see them correctly.

- If the surface looks correct, press Enter to accept the surface.
- Select the first surface and the four creation curves.
- Select Display \rightarrow Hide \rightarrow Hide Selection.

2 Create bottom birail surface

- Create two profile curves for the bottom of the spaceship using the techniques taught for the first two rail curves.
- Create a birail surface using these curves.

Second birail surface

- Select Display \rightarrow Show \rightarrow Show Last Hidden.

The side surface

The side of the ship will again be built using a birail surface. This time, you will use three profiles in order to control what the surface looks like at the beginning, middle and end.

1 Create a side profile curve

- In the Perspective view, dolly into the end of the spaceship.
- Select Curves \rightarrow EP Curve Tool
- In the Perspective view, press and hold the c key to temporarily use curve snapping.
- Click-drag onto the back of the top rail curve.
- Repeat to place a second edit point at the end of the second rail curve.

Profile curve

2 Project tangent for profile curve

Before creating the side birail surface, you will create a tangency from the top and bottom surface to the side profile curve.

- Select the top surface and the side profile curve.
- Select Edit Curves \rightarrow Project Tangent.
- Repeat these steps using the bottom surface and the profile curve.
- You will notice that the profile curve is now projecting with a tangency from the top and bottom surface.

Curve projected on both ends

3 Edit tangency scale

Since the projected tangency curve has history, you can edit the project tangent attributes using the input node and the show manipulator tool.

- Select the profile curve on its own.
- In the Channel box, click on projectTangent1.
- Select the Show Manipulator Tool.
- Click-drag on the Scale handle until the Tangent Scale is set to about 2.0.

Scaled tangent handle
As you modify this manipulator handle, you can see the value change in either the Channel box or the Coordinate Feedback line.

- Use the same workflow to edit the Tangent Scale for projectTangent2 to about 2.0.

4 Insert CVs to the back side profile curve
You will add two more isoparm spans to this profile curve. This will let you create a more complex profile.

- Press F8 to go into component selection mode.
- Click with RMB over the profile curve and select Curve Point from the pop-up menu.
- Click on the profile curve about one third of the curve down to place a curve point.
- Press the Shift key and click on the curve to place a second curve point.

Curve points

5 Insert knots

- Select Edit Curves \rightarrow Insert knot.

6 Move the middle curve points

- Select the middle two CVs.
- Move the CVs in towards the center axis of the ship.

Edited CVs

- Press F8 to go back into object selection mode.

7 Create the front profile curve

- Draw a single span edit point curve at the front of the ship using curve snapping.
- Use Project Tangent to make the curve tangent to the existing surfaces.

Projected edit point curve

8 Create a middle profile curve

- Draw a single span edit point curve in the middle of the ship using curve snapping.

Curve snap new curve

- Use Project Tangent to make the curve tangent to the existing surfaces.

9 Create the side birail surface

- Select Surfaces \rightarrow Birail 3+ Tool.
- Click on the three profile curves to select them.
- Press Enter to accept these curves.
- Select the outer edges of the existing surfaces as the rail curves.
The birail surface is created.

Birail surface

Aligning surfaces

When you projected the profile curves off the top and bottom surfaces, you started to build
a tangential relationship for the middle surface. Between the profile curves, this relationship is broken. To fix this, you will align and attach the surfaces to make them more continuous.

1 Align and attach surfaces

- Select the top surface first, and with the Shift key select the side surface second.
- Select Edit Surfaces \rightarrow Align Surfaces - \square and make sure that the following options are set:

Attach to On;

Modify Position to Second;
Modify Tangent to Second.

- Press Align.

The top and side surfaces are one surface now.

Aligned and attached surfaces

- Select the bottom surface first, and the middle surface second.
- Select Edit Surfaces \rightarrow Align Surfaces
All three surfaces are now one complete surface.

Aligned and attached surfaces
2 Duplicate and mirror the surface

- Select the new surface.
- Press Ctrl-d to Duplicate it.
- Enter -1 in the Scale \mathbf{X} field in the Channel Box.

Mirrored surface

3 Align and attach the two halves

- Save your work before this next step.
- Select the two surfaces.
- Select Edit Surfaces \rightarrow Align Surfaces.

You may have noticed that the seam of the two surfaces is on top of the ship. You can control this by selecting the edges that you want to align and attach.

Aligned surfaces with seam on top

4 Undo the last align

- Undo your last step or revert to your last saved.

5 Select the edge isoparms

- Select the new surface.
- Click on the new surface with your right mouse button and select Isoparm from the pop-up menu.
- Click-drag on one of the longitudinal isoparms and drag to the edge of the surface.
- When you release your mouse button, a yellow line will indicate your selection.

Selected isoparm

- Click on the other surface with your right mouse button and select Isoparm from the pop-up menu.
- Press the Shift key and click-drag on one of the longitudinal isoparms and drag to the edge of the surface.
- When you release your mouse button, a yellow line is placed at the newly selected edge.

Second selected isoparm

6 Align and attach the two halves

Now that you have chosen which edges are to be aligned, you will get the proper results.

- Select Edit Surfaces \rightarrow Align

Surfaces - \square and make sure that the following options are set:

Attach to On;
Modify Position to Both;

- Press Align then Close.

The seam will now appear at the bottom of the ship.

7 Close the surface

You will now close the surface so that the edges are connected properly.

- Select the nurbs ship.
- Select Edit \rightarrow Surfaces \rightarrow Open/ Close Surfaces.

8 Delete history

- With the surface selected, select Edit \rightarrow Delete by Type \rightarrow History.
- In the Side view, select Show \rightarrow None then Show \rightarrow Curves.
- In this view, Select the various profile curves.
- Press the Backspace key to delete the curves.

TRIM SURFACES

The surfaces you have built so far have all been created so that you can add them together. If you want to cut a section out of your surface, then you will need to trim it.

Trimming requires that you define a trim region on the surface using curves on surface. In an earlier lesson, you made the surface live and then drew the curve on surface directly. In this lesson, you will create curves on surface by intersecting existing surfaces.

The back surface

Slightly recessed from the back of the ship's hull, you will next need to place a surface. This surface will intersect the hull and the thruster. You will create curves on surface and then trim.

1 Untemplate and move the thruster

- Untemplate the thruster layer.
- Move the thruster until it intersects the top of the ship's hull.

Untemplated thruster

2 Create and place a primitive plane

- Select Create \rightarrow NURBS Primitives \rightarrow Plane.
- Move the plane along the Z-axis to the back of the ship.
- Scale the plane along the X and Z axes to make it about the same size as the ship.
- Rotate the plane 90 degrees around the X-axis.
- Move it until it is intersecting the end of the hull.
- Select Edit \rightarrow Delete by Type \rightarrow History.

New plane intersecting main body

3 Intersect the plane and the body

- Press the Shift key and select the ship's hull.
- Select Edit Surfaces \rightarrow Intersect Surfaces - \square and set the following options:

Create Curves for to First Surface;

Curve Type to Curve on Surface.

- Click Intersect then Close.

Intersecting curve on surface
4 Intersect the plane and the thruster

- Select the plane then press the Shift key and Select the thruster surface.
- Select Edit Surfaces \rightarrow Intersect Surfaces.

Second curve on surface
5 Trim the plane surface

- Select the plane.
- Select Edit Surfaces \rightarrow Trim Tool.

The surface is displayed with its trim regions identified. This lets you choose which areas to keep or discard.

- Click in the middle area to place the trim indicator. This means that this area will be kept.

Trim regions

- Press Enter.

Trimmed surface

6 Increase the surface smoothness

You will now increase the smoothness so that the surface will look better in the interactive view panels.

- Select Display \rightarrow NURBS Smoothness \rightarrow Custom - a and in the Shaded section, set the following:

Surface Div per Span to 8.

- Click Apply then Close.

Increased surface smoothness
7 Increase the surface tessellation
While the smoothness will look good interactively it may not render properly. You must set the surfaces tessellation to ensure that the trimmed surface will render nicely.

- Press Ctrl-a to open the Attribute Editor.
- Click on the trimmedSurfaceShape1 tab in the Editor.
- Open the Tessellation section, and set the following:

Display Render Tessellation to On

Smooth Edge to On

You can now see the effect that the smooth edge has on the surface. You do not need to have the Display Render Tessellation set on to have it render with the settings. This is only a visual feedback

- Set Display Render Tessellation to Off.

8 Intersect the body and the thruster

- Select the hull and then the thruster surface.
- Select Edit Surfaces \rightarrow Intersect Surfaces.

This creates a curve on surface. Right now you won't trim the hull surface back. You will wait until later when you have other curves on surface; and therefore more trim regions to choose from.

New curve on surface

A circular fillet

You will now create a circular fillet to define a softer look for the front of the ship. The fillet will be created between a primitive plane and the hull surface.

1 Create and place a primitive plane

- In the Perspective view, tumble until you see the front of the ship.
- Select Create \rightarrow NURBS Primitives \rightarrow Plane.
- Rotate the plane in \mathbf{X} to 70 degrees.
- Move, and Scale the plane until it is intersecting the end of the ship body at a slight angle.
- Select Edit \rightarrow Delete by Type \rightarrow History.

New plane
2 Fillet the two surfaces

- Press the Shift key and add the main ship body to the selection.
- Select Edit Surfaces \rightarrow Surface Fillet \rightarrow Circular Fillet - \square and set the following options:

Create Curve On Surface is On;
Radius to 0.5 .

- Click Fillet but do not close the option window.
Oops! The fillet is going the wrong way. You need to redo the fillet so that it lies within the two surfaces.

Fillet surface

- Press the \mathbf{z} key to undo the fillet.
- In the Circular Fillet options window, set the following:

Reverse Secondary Surface Normal to On.
And if the fillet is in front of the plane, then also set:

Reverse Primary Surface Normal to On;

- Click Fillet then Close.
- Press the $\mathbf{4}$ key to go into wireframe mode where you can see the new filleted surface.

Corrected fillet

3 Trim the center piece

- Select the plane.
- Select Edit Surfaces \rightarrow Trim Tool.
- Click in the middle area to place the trim indicator.

Trimmed region

- Press Enter.
- Select Display \rightarrow NURBS Smoothness \rightarrow Custom.
- Use the method taught earlier to edit the Tessellation Criteria in the Attribute Editor.
Again, you will wait to trim the surface of the ship until all curves on surface have been placed.

The photon recess

To create an area for the ship to shoot photon blasts, you will create a recess at the bottom of the hull using a primitive sphere. You will intersect this shape and then trim both the surfaces.

1 Create and place a primitive sphere

- In the Perspective view, Tumble until the bottom of the ship is in view.
- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- Rotate the sphere 90 degrees around the X -axis.
- Move and Scale the sphere to place it as shown below:

Primitive sphere

- Select Edit \rightarrow Delete by Type \rightarrow History.

2 Intersect the two shapes

- Press the Shift key and add the ship's body to the selection.
- Select Edit Surfaces \rightarrow Intersect Surfaces - \square and set the following options:

Create Curves for to Both Surfaces;
 Curve Type to Curve on Surface.

- Click Intersect then Close.

3 Trim the sphere

- Select the sphere surface.
- Select Edit Surfaces \rightarrow Trim Tool.
- Click on the area at the top of the sphere to place the trim indicator.

Trim indicator

- Press Enter.

4 Trim the ship's body

- Select the ship's body surface.
- Press the \mathbf{y} key to get the last tool.
- Click on the area in the middle of the surface to place the trim indicator.

Trim indicator

- Press Enter.
- Select Edit \rightarrow Delete by Type \rightarrow History.

Trimmed surfaces

5 Template the surfaces

- Select all of the surfaces.
- Assign the surfaces to the mainBody Layer.
- Template the mainBody layer.

6 Save your work

Building the wing

Like the main body, character curves will be created. This time the curves will act like the ribs of the surface which will then be connected using the loft tool. Construction history will then be used to tweak the surface by editing the curves.

1 Draw a primitive circle

You will start with a primitive circle which is simply a premade curve.

- In the Side view, select Show \rightarrow All.
- Select Create \rightarrow NURBS Primitives \rightarrow Circle.
- In the Channel box, set the following:

Rotate \mathbf{Z} to 90 ;
Scale Z to 12;
Scale X to $\mathbf{0 . 8 5}$.

- Move the circle to back of the ship as shown below:

Moved Circle profile curve

2 Reshape the circle

- Press F8 to go into component selection mode.
- Select the middle 6 CVs.
- Scale the CVs out to push then closer to the edge of the profile to create a rounded square shape.

Scaled CVs
3 Move the profile's pivot location

- Press F8 to go back to object selection component mode.
- Press the Insert key to go into edit mode.
- Move the pivot along the Z-axis to the end of the profile.
- Press the Insert key to exit edit pivot mode.

Relocated pivot

4 Duplicate and move the new profile curve

- Select Edit \rightarrow Duplicate
- Move the new profile along the Xaxis to about 2 times the width of the ship.

Repositioned profile curve
5 Loft the two profile curve

- Select both curves.
- Select Surfaces \rightarrow Loft.

Lofted surface

6 Use construction history to modify surface

- Select the outside profile curve at end of the wing.
- Scale the curve in Z to 7.5.

With construction history, the surface will update as you are modifying the curve.

7 Rebuild the surface

You will be modifying the end of the wings even further. For more control, this will require more density of isoparms. You can achieve this by rebuilding the surface with more isoparms while retaining the shape.

- Select the wing surface.
- Select Edit Surfaces \rightarrow Rebuild Surfaces - \square, and set the following:

Number of Spans \mathbf{U} to 4;
Number of Spans V to 10

- Press Rebuild.
- Delete the two profile curves.

8 Bend the end of the wings

You will be modifying CVs by rotating them to curl the end of the wing upward.

- Select the wing surface.
- Press F8 to go into component mode.
- Select the end three rows of CVs.
- Select the Rotate Tool.
- Press the Insert key to enter edit pivot point mode.
- In the front window, Move the pivot point in X until it is in line with the third row of CVs.
- Move the pivot point in Y until it is just above the top row of CVs.

Repositioned pivot point
9 Rotate the selected CVs

- Press Insert to exit edit mode.
- Rotate the CVs around Z until the end of the wing is pointing 45 degrees.

Rotated CVs

10 Deleting history

- Press F8 to go back to object mode.
- Select the wing surface and choose Edit \rightarrow Delete by type \rightarrow History.

11 Duplicate and mirror the wing

- Select the wing surface.
- Select Edit \rightarrow Duplicate.
- Scale X to -1 to mirror.

Details

To finish off the spaceship, you will add several details that will add to the look of the spaceship. To give you a chance to work on your own, you will build these elements yourself.

1 Create the wing thrusters

- Untemplate the mainBody layer
- Create two wing thrusters just above the wing. You can build these by either duplicating the existing thruster and scaling it down or by revolving new shapes from scratch.

New thrusters

2 Add two wing torpedoes

- Create two wing torpedoes using either elongated spheres or revolved surfaces.

3 Create a cockpit

- Create a cockpit surface in the center of the hull. You can use a half sphere and edit the CVs or you can revolve a profile.
This surface does not have to be trimmed because it will properly intersect with the hull surface when rendered. Only use trimming when it is required visually.

Cockpit surface

Deleting history

To animate this spaceship, you will not be needing any of the construction history. While it is possible to maintain and even animate history, it is not required for this
sequence. History can slow things down somewhat, and therefore should be deleted.

1 Delete history on the surfaces

Even though you have removed history from some of the surfaces, you can make sure by deleting history from all of the surfaces at the same time.

- Select all of the ship surfaces.
- Select Edit \rightarrow Delete by Type \rightarrow History.

Grouping the shapes

You will now organize the ship surfaces into a hierarchy. While only the root node will be used during the animation, it is a good idea to organize your work so that others can understand your models later on.

1 Group the thruster pieces

- Select all three of the thruster surfaces.
- Select Edit \rightarrow Group.
- Rename the new group thrusters in the Channel box.

Thruster group

2 Group the hull pieces

- Select the parts of the hull and cockpit excluding the thrusters.
- Select Edit \rightarrow Group.
- Rename the new group hull in the Channel box.

Hull group

3 Group the wing pieces

- Select the two wing surfaces and the two torpedoes.
- Select Edit \rightarrow Group.
- Rename the new group wing in the Channel box.

Wing group

4 Group the various groups

- Click on the Select by hierarchy button, then click on the Select by hierarchy: Root button (the fourth icon in the row).

This will make sure that you are picking the top node of each group.

- Click-drag a selection box around the parts of the ship.
- Select Edit \rightarrow Group.
- Rename the new group nurbShip in the Channel box.
- Open the Hypergraph to see the results. You can double-click on the group nodes to collapse them and make the graph easier to read.

5 Add a selection handle

- Make sure that the nurbShip node is selected.
- Select Display \rightarrow Object Components \rightarrow Selection Handles.
This handle will make it easier to select the whole hierarchy later.

TEXTURING SURFACES

You are now going to texture the NURBS surfaces using projection maps. Projection maps use an external texture placement node to place the texture in relation to the surfaces. Your map will then be projected onto the surface based on your chosen projection technique.

Texturing the thrusters

You will start by texturing the thrusters with a basic colored shading group.

1 Create a blinn shading group

- Open the Hypershade.
- Create a Blinn material node
- Press the Show Downstream Connections button to see the Shading Group node.
- Rename the Shading Group thrustersSG.
- Change the Color to red.

2 Assign it to the thruster surfaces

- Press F8 to go back into object selection mode.
- Select the three thruster surfaces and the two torpedo surfaces.
- Select Shading \rightarrow Assign Shading Group \rightarrow thrustersSG.

First shading group assigned

Texturing the cockpit

The cockpit will be textured using another simple color material.

1 Create a blinn shading group

- Create a Blinn material node, and name the Shading Group cockpitSG.
- Change the Color to black.

2 Assign it to the cockpit surfaces

- Select the cockpit surface.
- Select Shading \rightarrow Assign Shading Group \rightarrow cockpitSG.

Cockpit shading group assigned

Cylindrical projection map

To texture map the hull of the ship, you will use a cylindrical projection map. Because you want the texture to cover the main hull, the circular fillet and the front face a projection map is required.
A cylindrical projection is similar to wrapping a label around a tin can. The texture will be aligned with the length of the ship.

1 Create a blinn shading group

- Create a Blinn material node and name it hullBlinn.
- Name the Shading Group hullSG.

2 Apply a projected color map

- Open the Attribute Editor for the new Blinn Material node.
- Click on the Map button next to Color.
- In the 2D Textures section, click on the As projection option and click on the File button.
- Click on the projection1 tab in the Attribute Editor.
- Set Proj Type to Cylindrical.
- Click on the file1 tab.
- Click on the folder icon button next to Image name.
- Click on the file named hull.sgi, then click on the See Image button next to Image name.
This lets you see what the texture looks like in 2D.
- Click on the file named hull.sgi, then click on the Open button.

3 Assign the shading group

- Select the main hull surface, the circular fillet surface and the front face of the ship.
- Select Shading \rightarrow Assign Shading Group \rightarrow hullSG.
- If you have hardware texturing, press the $\mathbf{6}$ key to preview the results. Press the 3 key to increase the surface display.

Shading group assigned
4 Position the projection icon

- Select Shading \rightarrow Assign Shading Group \rightarrow hullsG - ㅁ.

This opens the material node in the Attribute Editor.

- Click on the Map button next to Color.
- Click on the place3DTexture1 tab.
- Under Transform Attributes, set the following:

Translate to 0, 0, 3;
Rotate to -90, 0, 0;
Scale to 28, 28, 14.
This places the projection icon so that it surrounds the spaceship surface. If it is not quite right for your model, tweak the values interactivley or enter different numbers.

Texture placement icon

Note: You will notice that the placement icon has manipulator handles. For this lesson, the coordinate entry was used because the handles were too small.

5 Add a directional light
 - Select Lights \rightarrow Create Directional Light.

- Rotate the light until the light is looking down at the ship from the front.
- If you have hardware texturing press the $\mathbf{7}$ key.

Directional light

6 Test render the surface

Now that you have a light, you can render the scene using software rendering.

- Open a Render View panel.
- In the Render View panel, select Render \rightarrow Render \rightarrow persp.

Rendered surface

7 Parent the 3D placement node

You will now parent the place3dtexture node to the hull surface so that it moves with the ship when it is animated later.

- In the Hypershade, Hypergraph, or Outliner, select the place3dtexture projection placement node.
- Select the main hull surface.
- Select Edit \rightarrow Parent.

Now the icon will move with the ship when it is transformed.

Planar projection map

Another projection technique is planar mapping where the placement of the texture is a plane that is then projected down onto the surface.

1 Create and blinn shading group

- Create a Blinn material node and name it wingBlinn.

2 Apply a projected color map

- Press Ctrl-a to open the Attribute Editor.
- Click on the Map button next to Color.
- In the 2D Textures section, click on the As projection option then click on the File button.
- Click on the projection2 tab in the Attribute Editor.
- Set Proj Type to Planar.
- Click on the file2 tab.
- Click on the Folder icon button next to Image name.
- Click on file named wing.sgi then click on the See Image button next to Image name.

Wing texture map

- Click on the Open button.

3 Assign the shading group

- In the perspective window, press 6 for shaded view.
- Click-drag with MMB the wingBlinn material node from the Hypershade to over the left wing in the perspective window and release the button.
- Repeat for the right wing.

4 Position the planar projection

- Open the Attribute Editor for wingBlinn.
This opens the material node into the Attribute Editor.
- Click on the arrow icon button next to Color.
- Click on the place3DTexture2 tab.
- Under Transform Attributes, set the following:

Rotate to 90, 0, 0.

- Click on the Fit to group bbox button in the 3D Texture Placement attributes section.

Projection icon
5 Test render the surface

- Open a Render View panel.
- Select Render \rightarrow Render \rightarrow persp.

Rendered wings
6 Parent the place3DTexture node
You will now parent the placement node to the wing surface so that it moves with the ship when it is animated later.

- Select the place3DTexture node for wingBlinn.
- Select the wing surface.
- Select Edit \rightarrow Parent.

Now the icon will move with the ship when it is transformed.

7 Reuse textures as bump maps

- Use techniques taught in earlier lessons to reuse the projection node textures as bump maps. You can use either the Hypershade or the Hypergraph to help you.

8 Save your work

Conclusion

You now know how to begin working with NURBS modeling tools. You can lay down character curves and then use these to generate surfaces. You have also learned how to use construction history to edit your shapes after creation.

In the next lesson, you will animate the two ships along motion paths.

14 Animating the Ships

In this lesson, you will animate two spaceships using path animation. You will also add an image plane to the scene to help create a setting for the battle. The planets will be created using simple primitives. These ships will then be exported out so that they can be detailed in later lessons.

Space battle sequence
In this lesson you will learn the following:

- How to render a starfield with planets
- How to use the rendered space scene as an image plane
- How to create a reference to the ship files
- How to use path animation
- How to update the path markers
- How to shape the path to edit the animation

STARS AND PLANETS

To create a context for your spaceships, you will render a scene that contains a starfield and several planets. This simple space scene will then be rendered and used as an image plane backdrop for your duelling spaceships.

Initial set-up

You are going to create a new file in which you will create the starfield image plane.

1 Start a new scene

- Make sure that your NURBS spaceship has been saved.
- Select File \rightarrow New Scene
- Set up four panels containing the Perspective view, two orthographic views and the Hypergraph.
In this lesson, the Hypergraph will be used to select various nodes of the shading groups that are to be created. This method of working with shading groups will be shown as an alternative to the Hypershade.

Suggested view pane layout for this lesson

Create the starfield

To create a starfield, you will use a procedural texture map as an image plane.

1 Set up the Perspective view

- Click on the Perspective view panel to make it the active panel.
- From this view panel, select View \rightarrow Select Camera.
- Press Ctrl-a to open the Attribute Editor.
- In the Camera Attributes section of the Attribute Editor:

Reduce the Angle of View to 20.

The narrow view angle will create less distortion in the shapes that appear in the view.

- In the Film Back section, set:

Overscan to 1.4.

- In the Display Options section, set:

Display Resolution to On.
You can now see what your final render size will be with some room around to help you position things.

Perspective view set up with overscan

2 Create an image plane

The starfield will be created as an image plane. Image planes are backdrops that stay behind the camera, as the camera moves around. You can place and render objects in front or behind the image plane. For this lesson, you want to place some planets in front of the plane.

- In the Attribute Editor, open the Environment attributes section.
- Click on the Create button next to Image Plane.
This creates a new image plane node which is displayed as a yellow outline and cross lines in the Perspective view.
- In the Placement section for the new node, click on Fit to Resolution Gate.
The image plane is now set to the same size and proportion as the rendering resolutions.

Image plane in Perspective view
The image plane is positioned in the 3D space of the scene and can be seen in the orthographic views. Its position in space is based on where the camera is looking.

Camera and attached image plane in side view
Note: Everything between the camera and the image plane will be rendered with the image plane as a backdrop.

3 Map a leather texture to the image plane

A 3D leather texture parameter can be used to create a star background.

- In the Image Plane Attributes section, click on Map next to Texture.
- In the 3D Textures section, select the Leather texture.
A 3D texture placement icon is positioned at the origin.

3D placement icon for leather texture

4 Edit the leather texture

The leather texture is edited to produce a random star pattern.

- In the Leather Attributes section, set:

Cell Color to white;
Crease Color to black;
Cell Size to 0.001;
Density to 0.015 .
When you render later, these settings will create a starry pattern. Maya's procedural textures can often be used to produce your desired effect.

Leather texture modified to produce the starfield

Creating three planets

To populate the space scene, you will need three planets placed around the starfield.
These planets will act as the backdrop for the final scene.

1 Create three planets

- Create 3 Primitive NURBS Spheres.
- Rename the spheres as follows:

planet1

planet2
planet3

- Scale and Move the spheres as shown below.
The relative size and position of the spheres in the 3D space of the scene is not important because they will be rendered into a 2D image plane later. Set them up so that their perceived relationships create the desired look in the Perspective view.

Spheres scaled and positioned as planets

Creating the planet textures

You will now texture the planets. You will use various procedural textures to refine a
particular look, and then connect these to a shading group. In some cases, you will use a special window called the Connection Editor to make a direct connection between two attributes.

In previous lessons, you used the Hypershade to visualize how a shading group works. This time you will use the Hypergraph to work with these nodes.

1 Create and assign the first planet shading group

You will now create and assign a shading group using the Hypershade.

- Select Window \rightarrow Hypershade...
- In the Hypershade, select Create \rightarrow Materials \rightarrow Lambert.
- Click in the Hypershade's work area to drop down the material.
- Rename the material node planetLambert
- Click-drag with MMB planetLambert onto planet1.

2 Display and rename the nodes

You can use the Hypergraph to see the shading group and material nodes.

- In the Hypergraph, select Rendering \rightarrow Show Shading Groups.
- Select the lambertSG node.
- Click on the Graph \rightarrow Up and Downstream Connections button.

You can see the material node and the sphere surface connected to the shading group

- Rename the shading group node planetSG.

Shading group hierarchy
3 Map the material's color
To create the surface of the planet, you will use a solid fractal texture.

- Select the planetLambert1 node.
- In the Attribute Editor, click on the Map button next to the Color attribute.
- In the 3D Texture section, select a Solid Fractal node.
- Rename the texture node color1.

The Solid Fractal Attributes can remain set to the defaults.

Solid fractal used as color map

4 Remap the color of the fractal

Currently, the fractal is only a grayscale image. You will use the Color Remap option to add color to the fractal.

- Open the Effects attributes section.
- Click on the Insert button next to Color Remap.
A RemapRamp node is connected between the texture and the material nodes. The different positions on the ramp represent the grayscale values of the original texture. By changing the color on the ramp at the different values, you are setting a color on the original texture.
- In the Ramp Attributes section, set the ramp Selected Colors and Selected Positions as shown.

Click on the top round icon and set the following:

Selected Position to 0.65;
RGB to $\mathbf{0 . 5 7}, \mathbf{0}, \mathbf{0 . 2 2}$.
Click on the middle round icon and set the following:

Selected Position to 0.48;
RGB to 0.37, 0.01, 0.17.
Click on the bottom round icon and set the following:

Selected Position to 0.24;
RGB to 1, $0.55,0.17$.

Remap ramp of fractal

5 Map the material's bump

You now want to create a bump map node.
This node will be used later to reconnect the color remap node as a bump.

- Open the planetLambert material node in the Attribute Editor.
- Click on the Map button next to Bump Mapping.
- In the Create Render Node window, open to the Utilities tab.
- Under General Utilities, select a Bump 3d node.
- In the 3d Bump Attributes section:

Set Bump Depth to -1.0

- In the Effects section:

Set the Bump Filter to 0.5.

6 Connect the remap node to the bump

To connect the remap node to the bump, you need to drag the texture onto the bump node. This will open the Connection Editor which lets you make the connection yourself.

- In the Hypergraph, drag with MMB the RemapRamp1 node over the bump3d1 node.

Connecting remap ramp node to 3D bump node The Connection Editor opens. When Maya isn't sure which connection is most desired, it opens this window for you to complete the connection.

- Under Outputs, highlight Out Alpha.
- Under Inputs, highlight Bump Value.
This connects the Remap of the Solid Fractal node to the 3D bump for the sphere.
- Close the Connection Editor.

Connection Editor with connection to Bump
Value

Note: The nodes are now connected in the Hypergraph. You can move your cursor over the arrow lying between the nodes, and the connected attributes will be highlighted.

7 Map the material's incandescence

- Open the attributes for the planetLambert material node.
- Map the Incandescence attribute with a Solid Fractal 3D Texture.
- Rename the texture node clouds1.
- In the Solid Fractal Attributes section set:

Threshold to 0.5;
Amplitude to 0.8;
Ratio to 1.0;
Ripples to 1.15, 5.0, 2.0

- In the Color Balance section:

Set Color Gain to a pale yellow.

- In the Effects section:

Turn on Invert.

Solid fractal settings for incandescence map

Create more planet shaders

To texture map the remaining planets, you will duplicate the first shading group, then edit the various texture nodes to produce different effects.

1 Duplicate the planet's shading group

- In the Hypergraph, Select the planetSG1 node.
- From the main menu, select Edit \rightarrow Duplicate - \square, and in the Duplicate Option window:

Turn on Duplicate Upstream Graph;

Click on Duplicate.

A duplicate copy of the network of nodes that make up the shading group is made.

Tip: \quad This is the same as selecting Duplicate \rightarrow Shading Network from the Hypershade's Edit menu.

2 Assign the new Shading Group

- Click-drag with MMB planetSG1 from the Hypergraph onto Planet2 in the view panel.

Duplicate shading group assigned to planet2

3 Change the color of planet2

Modifying the fractal, as seen in the Texture Sample, will create different planet images.

- In the Hypergraph, select Rendering \rightarrow Show Textures.

All of the texture nodes in the scene are displayed. Notice that all of the texture nodes for the planet shading group have been duplicated.

Hypergraph view of the texture nodes in the scene

- Select the color2 node.
- In the Attribute Editor, change the values for Threshold, Amplitude and Ratio to whatever you like.
- Select the RemapRamp2 node.
- Change the Colors and Positions to produce a new map.

Fractal and remap nodes modified for planet2

Tip: \quad Remember that the value of the remap colors will be used by the bump map.

4 Change the clouds for planet2

- Select the clouds2 node.
- Change the Threshold, Amplitude, Ratio and Ripples attributes to produce new cloud formations.
- Change the Color Gain to a different color.

Fractal cloud node modified for planet2

Tip: \quad The fractal clouds for the other planets should have more detail to account for the smaller size. This could also be done by adjusting the scale of the 3D texture placement icon.

5 Modify the shading group for planet3

- Repeat the steps outlined above to create the shader appearance of planet3.

Fractal and remap nodes modified for planet3

Render the scene

You will now render the space scene to create a bitmap image. This is the image that you will use later as an image plane in the final battle scene.

1 Place lights in the scene

- Create a Directional Light.
- Rotate the light so that the direction is coming from the left of the view and from above.
- In the Attribute Editor, set the Color to a pale yellow.
- Create an Ambient Light.
- Set the Color, Intensity and Ambient Shade attributes.
Both lights should approximately match the lights created for the polyShip scene.

Hardware rendering of positioned lights

Note: When adding lights, plan ahead to determine how the lights will be positioned in the final scene. Keep in mind that they should be consistent with the lighting of the background image.

2 Increase sphere tessellation

- Select the sphere for the largest planet.
- Open the Tessellation section of the Attribute Editor.
- Set the Display Render Tessellation button to On.
- Set the following:

Set Curvature Tolerance to Highest Quality
Set U Divisions Factor to 2;
Set V Divisions Factor to 2;

- Set the Display Render Tessellation button to Off.

Depending on their size in relation to the overall view, you may want to increase the tessellation of the other two spheres.

3 Render the background image

－Select Window \rightarrow Render Globals．．．
－In the Resolution section set the Render Resolution to 640x480
－In the Anti－Aliasing Quality section， set the Presets to Production Quality．
－Open the Render View window．
－Select Render \rightarrow Render \rightarrow Persp．

Rendered background image

4 Save the rendering

－From the Render View window， select File \rightarrow Save Image．．．
－Name the image background and save it into the sourceimages directory．

5 Save your Maya file

－Save the file as planets in the scenes directory．

THE SPACESHIP SCENE

You will now start to create and animate the duelling spaceship scene．You will start with
the polygonal spaceship from the last lesson． Then you will animate a proxy object for the NURBS spaceship．Lastly，you will import and animate the background image as an image plane．

Creating a reference

You are now going to start a new file，then create a reference to the first spaceship．By referencing the file，you begin to create a situation where files can be shared by multiple users．

1 Create a new file

－Make sure that your planets file has been saved then select File \rightarrow New．

2 Create a reference to the polyShip

－Select File \rightarrow Create Reference．．．
－Select the polyShip file from the file window then click Reference．
－Select File \rightarrow Reference Editor．．．
－Click on the arrow to see that the new file is a reference in the new scene．

Reference Editor showing polyShip file
－Close this window．

Path animation

Path animations are created by assigning an object or series of objects to a path．This creates a special motionPath node that allows you to key its motion along the path．

1 Scale the spaceship

- Select the polyShip surface. Be sure not to select either of the lights that were referenced with the ship.

In the Channel box, you will see that the name of the ship is polyShip_polyShip. This is because the file's name has been used as a prefix for all referenced nodes. This helps recognize referenced nodes and prevents name conflicts.

- Select Edit \rightarrow Group.
- In the Channel box, rename the group as polyShipAnim.
- Select Display \rightarrow Object Components \rightarrow Selection Handles.
- Scale the selected node to 0.3 in all directions.

Imported spaceship

2 Draw a path animation curve

- Select Create \rightarrow EP Curve Tool.
- Click three times to draw a curve diagonally across the ground grid then press the Enter key.

Path curve

3 Attach the ship to the path

- Change the Time slider range to 120 frames.
- Select the polyShipAnim node using its selection handle and then press the Shift key and select the path.

Note: In order to create a path animation, the path must be picked last. The last object picked is indicated in green.

- Go to the Animation menu set.
- Select Animate \rightarrow Paths \rightarrow Attach to Path.
- Play back the results.

Note: If you want to preview the correct playback timing, remember to set your playback speed to normal in the General Preferences window.

4 Edit the motion path input node

The ship is moving down the path but it is not aimed in the correct direction. You can change this using the motionPath input node.

- In the Channel box, click on the motionPath input node.
- Press Ctrl-a to open the Attribute Editor. In this window, set the following:

Follow to On;
Front Axis to \mathbf{Z};
Up Axis to Y.

- Close this window.
- Play back the results.

Spaceship with follow

5 Edit the path's shape

You can edit the shape of the path using the curve's control vertices and the object will follow the path.

- Select the path curve.
- Press the F8 key to go into component select mode.
- Select the middle CV.
- Move it down along the Y-axis.

Edited path curve

- Press the F8 key to go into object select mode.
- Play back the results

> Tip: You can press the Alt key and tumble in the Perspective window as the animation is playing back. This lets you preview the shape of the path from different angles.

6 Key the path's U value

You can set a key on the motionPath's U value to add more markers to the path.

- Go to frame 40.
- Select the polyShipAnim node using its selection handle.
- In the Channel box, click on the motionPath input node.
- In the Channel box, click on the \mathbf{U} Value channel name to highlight.
- With your right mouse button, select Key Selected from the popup menu.
A new marker is placed where the new key is set. You are setting a key on the position of the ship along the U direction of the curve. The value represents the parameter of the curve.

7 Key a second value

This time you will key the U value using the show manipulator tool and Auto Key.

- Go to frame 80.
- Select the Show Manipulator tool.

A manipulator appears with handles for positioning the object along the path and twisting. You will use the middle handle to move the ship along the path.

- Click on the Auto Key button at the right end of the Time slider to turn it On.
- Click-drag on the yellow manipulator handle to drag the ship back. Be sure not to click-drag on the arrow.
- Another path marker is placed on the curve.

New path marker

Tip: It is always good to remember that input nodes may have manipulators which you can access using the show manipulator tool.

8 Edit the path marker's position

The position of the markers can be moved to edit the animation of the ship.

- Click on the Auto Key button to turn it Off.
- Select the path marker that is labeled as 40 . Click on the number without touching the curve to select the marker on its own. It will be colored yellow when selected.
- Select the Move tool.
- Move the marker past the marker labeled as 80 .
The marker is constrained to the curve as you move it.

Edited path curve

- Play back the results.

The ship animates up to the 40 marker, then goes backwards to the 80 marker, and then forward to the end of the curve. The position of the ship at these key frames can be set using the markers.

9 Edit the timing

Since the marker points are simply keys set on the U Value of the motionPath node, you can edit the timing of the keys in the Graph Editor.

- Select the ship using its selection handle, then click on the motionPath input node in the Channel box.
- Open a Graph Editor panel.
- Move your cursor into the Graph Editor window and press a to frame all into the panel.
The position of the attached object in the U direction of the curve is mapped against time. You can see that a key has been set for each of the path markers.
- Select the key at frame 80.
- In the Graph Editor's Stats area change the time from $\mathbf{8 0}$ to $\mathbf{1 0 0}$.
- In the Graph Editor, select Tangents \rightarrow Flat.
You can edit the effect of the inbetween frames for path keys using the same techniques as you have used for set keys.

Edited path curve
You can see that the path marker is now labeled as 100 in the view panel.

Edited path curve

10 Remove the middle two markers

While the markers have shown you how to make the ship move back and forth, this is
not how you want the spaceship to animate. You will remove the middle markers to return to a two marker path.

- Select the markers that are labeled as 40 and 100. Make sure that no other objects are selected.

Tip: You can select the keyframes from the Graph Editor to delete them as well.

- Press the Backspace key on your keyboard.

Animate a second ship

You will now animate the NURBS spaceship along a second path.

1 Create a reference to the nurbShip

- Select File \rightarrow Create Reference.
- Select the nurbShip file from the file window.
Now this file is also referenced into the scene. Just like the polyShip, it is also too big right now.

2 Scale the NURBS ship down

- Select the nurbShip using its selection handle.
- Scale the ship down by 0.15 in all directions.

NURBS spaceship scaled down

3 Draw a second path curve

- Select Create \rightarrow EP Curve Tool.
- Click five times to draw a curve that snakes diagonally across the ground plane in the opposite direction from the first curve. Press the Enter key.

New path curve

- Press F8 to go into component select mode.
- Select the middle CVs and Move them up so that this curve passes over the first curve.

Edited path curve

- Press F8 to go back to object select mode.

4 Attach the ship to the path

- Go to the Animation menu set.
- Select the nurbShip using its selection handle.
- Press the Shift key and Select the path curve. Remember that the path must be selected last.
- Select Paths \rightarrow Attach to Path \square.
- In the option window set:

Follow to On;
Front Axis to \mathbf{Z};
Up Axis to \mathbf{Y};
Bank to On.

- Click Attach then Close.
- Select Display \rightarrow Grid to turn off the ground grid.
- From the Perspective view panel, select Show \rightarrow Curves and Show \rightarrow Lights to turn these object types off.

Now you can preview what the ships look like on their own.

- Play back the results.

With banking turned on, the nurbShip tilts to the side as it grounds the corners of the path.

NURBS spaceship with banking

5 Save your work

- From the File menu, select Save Scene As...
- Enter the name spaceScene next to the file's path.
- Press the Save button or press the Enter key.

Setting up the image plane

You are now going to import the background image plane. This plane will be used behind the spaceships to help compose the final shot. Once it is in place, you will edit the paths to suit the final scene.

1 Create a new camera

You will create a new camera to hold the image plane.

- Select Create \rightarrow Camera.
- This places a camera at the origin.
- Select Show Manipulator tool.
- Edit the look at and the eye points of this camera to look at the ships from the front.

New camera placement

2 Set up your panels

- In one of the orthographic panels, select Panels \rightarrow Perspective \rightarrow camera1.
- Press 5 or 6 to shade the camera1 panel.
- Dolly, tumble and track in the camera1 panel until you can see both spaceships.
- From the camera1 view panel, select View \rightarrow Camera Settings \rightarrow Resolution Gate.

Resolution gate

3 Add the image plane

- From the camera1 view panel, select View \rightarrow Select Camera.

This selects the nodes of the camera.

- Press Ctrl a to open the Attribute Editor.
- Open the Environment section of the cameraShape1 node, then click on the Create button next to Image Plane.
- In the image plane node, click on the Folder button next to Image Name.
- Choose the background image file from the sourceimages directory.

This is the image file that you rendered earlier in the lesson.

Image plane in place

4 Set up the image plane

- In the Placement section, set the following:

Size to 2.83, 1.9;
Depth to 500;
Offset to -0.5, -0.1.
The size setting doubles the size of the image in relation to the resolution gate, the depth setting
moves it away from the camera and the offset changes the position in relation to the film back.

New image plane placement

5 Key the image plane

- In the Time slider, go to frame 1.
- In the Placement section of the Attribute Editor, click on the name Offset with the right mouse button and select Set Key.
The two offset fields should turn green to indicate that they have been keyed.
- In the Time slider, go to frame 120.
- In the Placement section, set the following:

Offset to 0.1, 0.1.

- Again, click on the name Offset with the right mouse button and select Set Key.
- Play back the results.

The image plane is now animating from one position to another. This will give the impression that the camera is moving in space.

6 Save your work

Edit the path curves

You are now going to edit the animation of the two ships to create the final sequence.

1 Edit the curve shape for both curves

- Edit the CVs on the two path curves to create an animation where the nurbShip moves up and over the polyShip.
You can set the shape of the curve to anything you desire. The key is to make sure that at frame 50, the nurbShip is above the polyShip so that it can shoot a photon torpedo in the next lesson.

Tip: Changing the display mode of the Image Plane can make it easier to see the objects in your scene when working.

2 Edit the position marker

If required, change the position of the path markers to refine the animation along the paths.

Updated paths

3 Save your work

4 Playblast the final sequence

- In the camera1 view panel, select View \rightarrow Camera Settings \rightarrow No Gate.
- Select Window \rightarrow Playblast.

Play back the sequence using the Movie Player controls.

Playblast preview

Conclusion

You now have the two ships animated along two paths. In the next lesson, you will add visual effects to the scene as the nurbShip shoots photon torpedoes at the polyShip. You will then render the scene with the effects in place.

15 Visual Effects

In this lesson, you will add visual effects to your spaceship scene. The first few effects will use Maya's Digital OptiF/X capabilities. These effects include the photon blasts that are being shot at the polyShip, the photon's explosion and the nurbShip's thruster flame.

Visual effects
First you will add a particle thruster flame and then you will add smoke to the polyShip's wing after it is grazed by the OptiF/X explosion.

In this lesson you will learn the following:

- How to create an OptiF/X fog light thruster
- How to create an OptiF/X photon torpedo
- How to create an OptiF/X explosion
- How to create a particle-based thruster for the polyShip
- How to add particle smoke to the polyShip wing

Initial set-up

You will continue this lesson using the space scene saved in the last lesson. You will add visual effects to the two animated spaceships. You will set keys on these effects in order to integrate them with the existing sequence.

1 Set up your view panels

- Create four view panels.
- Place the panels as shown below.
- In the Perspective view, select Show \rightarrow Cameras to turn off the display of camera1 and its image plane.

Hypershade view Perspective view

View panel layout
In the Hypershade, you will see all the shaders belonging to the scene. You may remember that some of these nodes are part of referenced files - in this case, the nurbShip and polyShip files. You can edit attributes for these shaders and assign them to other objects if required. Just remember that the original shader is part of another file.

CREATING OPTIF/X

OptiF/X are visual effects that you can add to your lights. These include, fog, glows and halos. Each of these effects generates nodes with attributes that you can animate.

To start, you will create a thruster for the nurbShip using a fog light. This light will use an animated fractal texture to give it a more interesting look. You then use animated glows to create a photon torpedo and an explosion.

Building a thruster light

The thruster flame is going to be built using a spot light. You want the light to be positioned on the nurbShip so that it is pointing out of the rear thruster.

1 Place spot light in scene

- Go to the Rendering menu set.
- Select Lights \rightarrow Create Spot Light.
This places a spot light at the origin.

New light at the origin

2 Parent the light into the nurbShip

- Press the Shift key and select the nurbShip using its selection handle.
- Select Edit \rightarrow Parent - \square and set the following;

Preserve Position to Off.

- Click on Parent then Close.
- Select the Move tool.

The move manipulator is currently oriented to the world space grid. You need it to move in the local space of the light.

- Double-click on the Move tool icon or select Modify \rightarrow Transformation Tools \rightarrow Move \square and set the following option:

Move to Local.

- Click Close.

Now the orientation of the move manipulators are aligned with the ship group.

Local move manipulator

3 Position the light

You can now position the light using the local axis to keep yourself aligned with the nurbShip.

- Move the light so that it sits in the center of the thruster.

Positioned light

- Scale the size of the light.

The light cone should now protrude outside of the thruster. This will make it easier to select.

Scaled light icon

4 Change the spot light color

- Open the Attribute Editor and in the Spot Light Attributes, set the following:

Color of the light to a bright orange using values of RGB values of about $\mathbf{1 . 0}, \mathbf{0 . 3 3}, \mathbf{0 . 1 5}$.
Decay Rate to Cubic;
Cone Angle to 60.
Penumbra to 2.0

5 Save your work

- Select File \rightarrow Save Scene As and enter the name SpaceScene2.

Adding the fog effects

You will now add fog to the spot light in order to create the thruster flame effect. You will set the fog attributes then test render the effect.

1 Add fog to spot light

- Open up the Light Effects section in the Attribute Editor and click on the Map button next to the Light Fog.

2 Rescale the light

The fog adds a coneshape icon to the spot light to show the extent of the fog. You may want to scale the light back down to shorten the fog's coneshape icon.

- Scale the coneshape icon until the icon is closer to the ship.

Fog coneshape icon
3 Adjust the spot light shape node

- In the Attribute Editor, click on the spotLightShape tab and in the Light Effects section set the following:

Fog Spread to 0.5;
Fog Intensity to 5.0.

4 Test render the effect

You will be using the IPR feature in the Render View window to fine tune the look of the thruster fire.

- Select a closeup view of the backside of the ship.
- In the Render View, select IPR \rightarrow IPR Render \rightarrow Persp.
This will generate an IPR file.
- Click-drag select a region around the thruster for fine tuning

Selected region
You will be adjusting some of the attributes in the Attribute Editor and the IPR render will update instantly.

Animate the fog effect

To create a thruster flame that has an animated effect, you will apply a 3D fractal texture. You will then animate the position of the fractal to give the fog some motion.

1 Add a fractal map to the fog

- Click on the lightFog tab in the Attribute Editor.
- In the Light Fog Attributes section of this new node, click on the Map button next to Color.
- Select a Solid Fractal 3D texture.
- Hide the 3D texture icon.

You should notice that the IPR render has updated to reflect the change in fog.

- Fine tune the thruster fire to your liking.

Note: If you change the cone angle, it is recommended that you regenerate the IPR file.

Rendered region showing fractal map

2 Animate the fog effect

You do not actually have to do anything to animate the exhaust. Because the fractal map's placement icon is fixed at the origin, the look of the fog will change over time as the ship animates along its path.
In essence, the fog light is passing through the fractal effect as the ship animates. This makes sure that the effect is different for different frames.

Building a photon torpedo

You will now animate a point light shooting from the nurbShip to the polyShip.

1 Place a point light in scene

- Select Lights \rightarrow Create Point Light.
- Turn off the IPR updating by pressing the red button in the top right hand corner of the Render View window.

2 Animating the point light

- Go to frame 30.
- Move the point light up into the photon recess of the nurbShip.
You may need to use different orthographic views to place the light correctly.
- Press Shift-w to set keys on the three translation channels.

Point light position at frame 30

3 Set a second key for the light

- Go to frame 70.
- Move the point light until it sits just in front of the left wing of the polyShip.
Again, you will need to use different views to position this where you want it to go. This position is meant to represent a near miss as the torpedo grazes the polyShip's wing.
- Press Shift-w to set keys on the three translation channels.
- Play back the results in the camera1 view.

The point light should remain stationary until frame 30, then it will move to its second position at frame 70 .

Point light position at frame 70

4 Animate the light's visibility

You only want to see the light from frame 30 until frame 85.

- Go to frame 1.
- In the Channel box, change the Visibility to Off.
- Click on the Visibility channel with your right mouse button and select Key Selected from the menu.
- Go to frame 30.
- In the Channel box, change the Visibility to On.
- Click on the Visibility channel with your right mouse button and select Key Selected from the menu.
- Play back the results in the camera1 view.

5 Adjusting the light glow

- Go to frame 55.
- Create an IPR render and select a region around the light.
- Press Ctrl-a to open the Attribute Editor.
- Click on the Map button next to Light Glow.
- In the opticalFX node, change the following attributes:

Glow Type to Linear;
Radial Frequency to 1.0.

- In the Glow Attributes section:

Glow Color to a bright blue using RGB values of about 0.0, 0.465, 1.0;

Glow Intensity to $\mathbf{1 . 5}$;
Glow Spread to 0.66;
Glow Noise to $\mathbf{0 . 2}$.

IPR Rendered region

Animate the effect

You will now set keys on some of the optical effect attributes belonging to the point light.

1 Animate the light attributes

- Go to frame 30.
- Click with your right mouse In the Attribute Editor on the following
attribute names, one at a time, and select Set Key:

Radial Frequency;
Glow Spread;
Glow Noise.

- Go to frame 70 and set another set of keys for the same attributes.
- Go to frame 50.
- Set the following:

Radial Frequency to 0.5;
Glow Spread to 0.5;
Glow Noise to $\mathbf{0 . 0}$.

- Set keys for these attributes.

2 Fade out the photon light

- Go to frame 70.
- In the Attribute Editor, open the Optical FX Attributes section of the opticalFX node.
- Set a key for the Glow Intensity attribute.
- Go to frame 80.
- Set the Glow Intensity to 0.0.
- Set a key on this attribute.

You will see the results of these settings later when you render the scene.

Building an explosion

Using a new point light, you will set keys for a number of light attributes to create the effect of an explosion which will occur at the tip of the polyShip's wings.

1 Create a new point light

- Select Lights \rightarrow Create Point Light.

2 Animate point light coming into scene

- Go to frame 70.
- Move the light to the same position as the first point light.

New point light

3 Edit the point light attributes

- Create an IPR render and select a region around the light.
- In the Attribute Editor, open the Point Light Attributes section and set the following;

Color to bright orange;
Decay Rate to Linear.
In the Light Effects section:
Fog Type to Linear;
Fog Radius to 2.

- Click on the Map button next to Light Fog.
- In the new fog node, click on the Map button next to Color.
- Select a Solid Fractal 3D texture.

4 Scale the fractal map

- In the Perspective view, select the green 3D texture icon.
- Press Shift-r to set keys for the scale attributes.
- Go to frame 80.
- Scale the icon by 2 units in all three axes.
- Press Shift r to set keys for the scale attributes.

Scaled texture icon

- Go to frame 70.
- Click-drag with your middle mouse button in the Time slider to go to frame 90.

The middle mouse button lets you use the attribute values from frame 70 for your new frame.

- Press Shift-r to set keys for the scale attributes.

5 Animating the light Intensity

- Select the explosion point light and in the Attribute Editor, click on the pointLightShape tab.
- Go to frame 70.
- In the Point Light Attributes section, set the Intensity to 0.0 and set a key.
- Go to frame 90.
- Set another key on the Intensity attribute.
- Go to frame 80.
- Set the Intensity to 2 and set a key.

6 Test render the effect

- Go to frame 80.
- From the Render View panel, select Render \rightarrow Snapshot \rightarrow camera1.
- Click-drag a selection box around the new point light.

Selected region

- Select Render \rightarrow Region.

7 Adding and animating halo

- In the Attribute Editor's Light Effects section, click on the Map button next to Light Glow.
- In the new opticalFX node, set the following:

Glow Type to None;
 Halo Type to Linear.

- Go to frame 70.
- Set the Halo Intensity to $\mathbf{0}$.
- Set a key on this attribute.
- Go to frame 90.
- Set another key on this attribute.
- Go to frame 80.
- Set the Halo Intensity to 15.
- Set a key on this attribute.

8 Test render the effect

- Go to frame 80.
- From the Render View panel, select Render \rightarrow Region.
The effect extends beyond the region but the general look can be easily evaluated.

Updating the polyShip animation

At the moment, the polyShip is flying right past the explosion as if nothing is happening. You will now set keys on the path animation's twist attribute to animate the ship reacting to the explosion.

When you set keys on the motionPath node's twist attribute, you will create new orientation markers that will work similar to the position markers which you learned about in the previous lesson.

1 Select the polyShip's path node

- Select the polyShip using its selection handle.

This should pick the node's polyShipAnim node.

- In the Channel box, click on the motionPath input node.

2 Unlock the front twist node

The three twist nodes are currently locked. You can see this because their value fields in the Channel box are highlighted in gray.

- In the Channel box, click on the Front Twist node name with the right mouse button and select Unlock Selected from the pop-up menu.

3 Set a key on the twist

- Go to frame 70.
- In the Channel box, click on the Front Twist attribute name with the right mouse button and select Key Selected from the pop-up menu.
- Go to frame 90.
- Set another key.

These keys place orientation markers onto the path. These markers can be edited using similar methods used on the position markers you learned about in the last lesson.

Orientation marker

4 Set a key on the twist at frame 80

- Go to frame 80.
- Highlight the Front Twist attribute in the Channel Box.
- In the camera1 view, click-drag with the MMB to twist the polyShip about -40 degrees.
- Set a key on the Front Twist attribute.

Twisted ship

- Playback the results

PARTICLE EFFECTS

You will now add software particles to the polyShip. You will first create thruster plasma for the second ship and then you will add smoke to the wing after it is hit by the explosion.

Create a particle emitter

You will start with a particle emitter that will be used for the polyShip's thruster. You need to create the emitter and then parent it to the polyShip just as you did with the light and the nurbShip.

1 Set up your Perspective view

- Set up one of your panels in Perspective view.
- Select Show \rightarrow None then Show \rightarrow Meshes, Show \rightarrow Handles, Show \rightarrow Dynamics and Show \rightarrow Curves.

Now you can preview only the elements needed for this section of the lesson.

- Move your cursor into the Perspective view panel and press the spacebar to pop it to full screen. This will make things run a little faster.

2 Create an emitter

- Go to the Dynamics menu set.
- Select Particles \rightarrow Create Emitter.
- Play back the animation.

The particles are emitting, but are not moving with the ship. You need to parent the emitter into the ship.

Unparented emitter

3 Parent the emitter to the polyShip

You will now parent the emitter to the ship in order to get them moving together.

- Press the Shift key and select the polyShipAnim node using its selection handle.
- Select Edit \rightarrow Parent.

The Preserve Position option should still be set to Off and the emitter will move to the center of the node.

- Select the Move tool. The Move option should still be set to Local.

Parented emitter

- Move the emitter along the local Zaxis to move it into the polyShip's thruster space.

- Play back the scene.

Now the particles are being emitted out of the thruster space.

Particles being emitted along path
4 Set the emitter direction

- Go to frame 1.
- Make sure that the emitter is selected.
- In the Channel box, change the following attributes:

Direction \mathbf{X} to $\mathbf{0}$;
Direction \mathbf{Y} to $\mathbf{0}$;
Direction Z to $\mathbf{1 ;}$
Spread to 1;
Speed to 5;
Emitter Type to Directional;

- Play back the scene.

Updated particle emission

Particle attributes

Now that you have particles being emitted in the desired direction, you can start to look at the particle node attributes. These attributes would include lifespan and color.

1 Set particle attributes

- Select the particle node by selecting any of the emitted particles.
- Open the Attribute Editor.
- Click on the particleShape tab.

2 Add a lifespan attribute

Right now, the particles are remaining on the screen indefinitely. You can use a
lifespan attribute to limit how long the particles live.

- In the Attribute Editor, open the Add Dynamic Attributes section and click on the Lifespan button.
A Particle Lifespan window will be displayed.
- Click on Add Per Object Attribute.
- Click on Add Attribute.

Notice that a new attribute called Lifespan has been added to the Render attributes of the particle node.

3 Edit the lifespan

- Set the Lifespan to 0.5;
- Play back the results.

Particles with shorter lifespan

Rendering the particles

You now want to set up the particles for rendering. In Lesson 4, you used hardware rendered particles to add a spark effect to the bouncing ball and software rendered particles for the ring of fire.

For this lesson, you will again use software rendered particles. These will give you
particles which will render with your other objects during the batch rendering process.

1 Change the render type

- With the particleShape tab active in the Attribute Editor, go to the Render Attributes section and set Particle Render Type to Cloud (s/w).
The (s / w) label means that this render type will render with software rendering. This offers a different kind of effect than hardware rendered particles.
- Play back the animation to about frame 55 and stop to see the particle display.

Cloud render type display

2 Add render attributes

Render attributes can be added to the node to help you set up the look of the particles.

- In the Render Attributes section, next to Add Attributes for, click on the Current Render Type button.

This adds three new attributes to the node.

- Set the following:

Radius to 0.5;

3 Map the particle color

You now want to map the particle with a particle shading group. This will let you define the rendered look of the particles.

- In the Hypershade, select Create \rightarrow Materials \rightarrow Volumetric \rightarrow Particle Cloud.
- Click in the Hypershade workspace.
- Rename the Material node polyThrusterCloud.
- Open the Attribute Editor for polyThrusterCloud.
- Press the Map button next to Life Color.

By using the Life Color instead of Color, it will be connected directly with the lifespan attribute.

- Click on Ramp.
- Set Relative Age to On in the ParticleAgeMapper.
- In the Hypershade highlight the ramp node to see it in the Attribute Editor.
- Adjust the ramp to be from yellow at the bottom to red at the top.

polyThrusterCloud in the Hypershade

4 Make the particles fade out

You will now add transparency to the particles. As they get older, they will become more transparent.

- Open the Attribute Editor for polyThrusterCloud.
- Press the Map button next to Life Transparency.
- Click on Ramp.
- Set Relative Age to On in the ParticleAgeMapper.
- In the Hypershade highlight the new ramp node to see it in the Attribute Editor.
- Adjust the ramp to be from black at the bottom to white at the top.

5 Assign the shading group

- Highlight the polyThrusterCloud node in the Hypershade.
- Select the particles in the view panels.
- In the Hypershade, with RMB over the polyThrusterCloud node, select Assign Material To Selection.
The particles turn green to indicate that a shading group has been applied.

6 Test render the particles

- Use Render \rightarrow Region to test render the particles coming out of the ship.
Once you finish, you can return and tweak the various attributes to get the look you want, then test render.

Particle smoke

The next effect is going to be particle smoke that will be emitted from the polyShip's wing after being grazed by the explosion. This will be created in a similar manner to the last section, except that now you must set the particles to start emitting after frame 80.

1 Create the emitter

- Select Particles \rightarrow Create Emitter.

2 Parent the emitter

Again the emitter must be parented to the ship in order to move with it.

- Parent the emitter to the polyShip.
- Move the emitter in local space to just above the wing of the spaceship as shown in the following:

Parented emitter

3 Set keys on the emission

You will now set keys on the rate of emission so that the emitter starts with no particles, then starts up after frame 80.

- Go to frame 80.
- In the Channel box, click on the emitterShape input node and set the Rate to 0.
- Use your right mouse button to select Key Selected for the Rate.
- Go to frame 85.
- Set the Rate to $\mathbf{1 0 0}$.
- Set another key.

Now the particles will begin emitting right after the explosion.

Particles after frame 85

4 Set the particle attributes

You will again use a cloud Render Type. The steps will be almost identical to the thruster particle set-up.

- Select the particles and open the Attribute Editor.
- Add lifespan to the node and set it as follows:

Lifespan to $\mathbf{0 . 7 5}$.

- Set the Render Type to Cloud(s/w) then add the render attributes and set them as follows.

Radius to 0.25 ;
Threshold to 0.75.

Particle render type
5 Test render the particles

- Use Render \rightarrow Region to test the particles at around frame 90.

RENDERING

You are now going to batch render the scene to preview the results. You are going to create a very low quality test of this animation, in order to test all of the cool effects you have integrated into the scene.

It is always a good idea to preview a low resolution/low quality test before committing to a longer rendering. While still image tests may offer you some idea of how the scene may appear, it is always best to see if the sequence animated properly.

Setting the Render Globals

You have already used the Render Globals window to set up some test renderings. This window is where you make your final decisions before sending a rendered animation off to the batch renderer.

1 Open the Render Globals window

- Select Window \rightarrow Render Globals...

2 Set the Image File Outputs
 - Set Frame/Animation Ext to name.ext.\#.

- Set the Start Frame to 1, and the End Frame to 120.
- Turn Alpha Channel (Mask) to off.

3 Set the Anti-Alias Quality

- Open the Anti-Alias Quality Section.
- Set the Presets to Preview Quality.

4 Set the size

- Open the Resolution Section.
- Set the Render Resolution to 320×240.

5 Save your work

- Select File \rightarrow Save Scene As. Enter the name spaceSceneComplete and press Save.

6 Batch render the scene

- Select Render \rightarrow (Save) Batch Render.
- Enter the name spaceSceneTest1 and click on the Batch Render button.
Refer to the Feedback line in the lower right to follow the progress of the rendering.

7 Previewing the animation

Once you have completed the animation, you can view your work as a Playblast animation or by using fcheck.
If you are happy with the results, then you can do another test at a slightly higher quality.

Movie Player preview

The final rendering

While there is no need to create a final high quality rendering of this lesson, it is worthwhile to think about some options:

1 Rendering the whole scene

The first option is to create a finished animation of the whole scene with all of the parts working together. This seems at first to be the easiest solution because it means you would render just once to get the final result.

2 Rendering the scene in layers

The other option is to render each part of the scene separately. These different render passes can later be composited. For this lesson, you might render the following layers:

- background space scene
- nurbShip
- polyShip
- photon torpedo OptiF/X
- explosion OptiF/X
- nurbShip thruster OptiF/X
- smoke particles
- polyShip thruster particles

These passes put each key object onto their own layer when you composite. You also avoid rendering the scene with an image plane background which is more easily accomplished in a compositing package.
Now, if changes are to be made to one of the elements - say, a texture map to be modified for one of the ships, or one of the glows to be intensified - then only that layer has to be updated. Also, color corrections can be made to each layer if desired.

Should you want to render these passes separately, then you will need to hide the other objects and render with the Mask option turned on in the Render Globals. To render the OptiF/X and particle layers, you may need to apply a special Use Background material so that the mask is more accurate. Refer to the Using Maya: Rendering guide to find out more about this shading group type.

Resetting the move tool

Earlier you changed the Move tool options to Local. You should change it back to Global to make sure that upcoming lessons work properly.

1 Change the Move tool options to world

- Double-click on the Move tool icon or select Modify \rightarrow Transformation Tools \rightarrow Move \square and set the following option:

Move to World.

Conclusion

You have now touched on the visual effects offered by Maya's OptiF/X features such as fog and glow, while comparing these to Maya F/X's particle effects.

In the next lesson, you will create a walking biped character called Primitive Man. You will then apply character deformations to make Primitive Man's elbows tuck and his arms bulge.

LESSON 16 Primitive MaN

LESSON 17
Animating a Walk cycle

PRDJECT

 FaபR

PRロJECT FロபR

In this project，you are going to model，texture and animate a walking character－Primitive Man．This character will be built using skeleton joints that are controlled using IK solver handles．Expressions and constraints will then be used to create a rolling foot motion．

The surfaces of this character will be built using primitive shapes．These surfaces will then be bound into the skeleton． Character deformers known as flexors will then be added to control the bending of the knee and elbow，and the bulging of the upper arm．

1．The camera follows as Primitive Man walks in his primitive world．

3．He is slightly distracted by something happening high to his left．

2．As he explores his surroundings，he bends down to check his footing．

4．Satisfied，Primitive Man strolls forward with confidence．

16 Primitive Man

In this lesson, you will build a character out of skeleton joints and primitive shapes. The character's motion will be established using IK chains on the arms and legs while expressions will help you control the roll of the foot.

You will then bind the primitives into the skeleton in order to get skeletal deformations. In cases where the surface is not suited for being bound directly, you will apply a lattice and bind the lattice instead. You will then use joint and bone flexors to further refine the surface deformations.

In this lesson you will learn the following:

- How to create skeleton joints with IK handles
- How to create a rolling foot hierarchy
- How to bind surfaces and lattices into skeleton joints
- How to edit the membership of a cluster set
- How to use flexors to tuck and bulge a surface

Initial set-up

You will now create a new project then create the files from scratch.

1 Create a new project

- Select File \rightarrow Project \rightarrow Set...
- From the learningMaya directory, set the name to projectFour.
- Click OK.

2 Set up a four view panel layout

- Select File \rightarrow New...
- Set up a four view panel layout that shows the three orthographic views and a Perspective view.

BUILDING A CHARACTER

Building a character usually involves building the character's surfaces, drawing skeleton joints to match the surfaces. The surfaces are then bound to the skeleton and deformations are applied.

For this lesson, you will build the skeleton first, then build surfaces to suit. This will let you explore skeletal issues before worrying about the surfaces.

Drawing a skeleton leg

You will start by creating the skeleton's legs. This will involve creating the joints and later you will add IK chains.

1 Draw the leg joints

- Set your Grid to default settings by selecting Display \rightarrow Grid.
- Go to the Animation menu set.
- In the Front view, track the view to place the X -axis line at the bottom of the view.
- Select Skeletons \rightarrow Joint Tool.
- In the Front view, press the \mathbf{x} key to use grid snapping, then click three times to place the following leg joints:

Skeleton leg joints

- Now click two more times using grid snapping to place the following foot joints:

Skeleton foot joints

- Press the Enter key to accept the joints.

2 Rename the joints

- Open a Hypergraph view panel.
- Dolly and track to see the new joints.
- Rename the joints as shown below. Use the names as labelled in the last two diagrams:

Renamed joints

Note:

In this skeleton, the ankle joint has been left out. To simplify this example, you will rotate the foot around the heel instead.

Adding IK chains to the leg

To control the leg, you will need two IK chains - one running from the hip to the heel and another from the heel to the ball of the foot. These chains will be used to control the motion of the leg.

1 Draw the initial IK chain

- Select Skeletons \rightarrow IK Handle Tool.
- Click on the hip joint.
- Click on the heel joint to create an IK chain.
This chain uses a rotate plane IK solver which offers more control than the single chain solver.

First IK chain

2 Draw the second IK chain

- Press the y key to repeat the last tool.
- Click on the heel joint again.
- Click on the ball joint to create a second IK chain.

Second IK chain

In the Hypergraph, you can see the end effectors connected into the hierarchy and the IK handles to the side. The end effectors and the IK handles are connected along with the appropriate joints at the dependency node level. When you control the handles, you control the whole IK chain.

Nodes in Hypergraph

3 Group the IK handles

Since you generally want these two IK handles to work together, you should group them and use the group to control the IK chain movement and rotation.

- Select the two 1 K handles.
- Select Edit \rightarrow Group.
- In the Channel box, change the name of the group to rfootc.
This is meant to represent "right foot control" but has been shortened to make it easier when you write expressions later.
- Select Display \rightarrow Object Components \rightarrow Selection Handles.

You will be able to use this handle easily to select the group later.

4 Test the movement of the group

- Move the control group to move the foot.

You can see that the foot moves while the hip stays in places.

- Press \mathbf{z} to undo this move.

Moved group

Rolling the foot

Right now, this group can be used to control the movement of the foot, and also to control the rolling of the foot. This way, you are able to direct what happens as the heel of the foot touches the ground, and as it rolls onto the ball of the foot.

You should note that this foot assembly will be built to only handle the forward motion of primitive man. If you wanted to have him turn a corner, then you would have to build an assembly that takes into account rotations in all directions.

1 Rotate the group

- Rotate the group around the Z-axis using the rotate manipulator.

When you rotate in foot backwards, the foot raises as a group which is correct. When you rotate in the forward direction, the foot rotates down below the ground which is not what you want.

Rotated group

- When you are finished, press \mathbf{z} to undo until your foot is back to the starting position.

2 Create an expression for the group

You are now going to write an expression that sets the location of the group's pivot point based on its rotation around Z .

- Select Window \rightarrow Expression

 Editor...- In this window, set the Expression name to roll1, then in the Expression: field enter the following expression:
//expression to control //roll of the right foot

```
if ( rfootc.rz >= 0 )
```

 rfootc.rotatePivotX = 0 ;
 else
rfootc.rotatePivotX = 3;

- Click on the Create button.

3 Rotate the group

You can again rotate the group to see the effect on the feet joints.

- Rotate the group around the Z-axis using the rotate manipulator.

When you rotate in the backward direction, the foot raises as a group just like the last time around. When you rotate in the forward direction, the foot rotates around the ball of the foot, since the pivot has been translated by the expression. This effect is getting closer to what you want.

Rotated group with expression

- When you are finished, press \mathbf{z} to undo until your foot is back to the starting position.

Orienting the toe

You now want the toe to stay straight when the foot rotates back, then stay aligned with the ground when the foot rotates forward. You will accomplish this with an orientation constraint and an expression.

1 Create a null node

- Select Edit \rightarrow Create Empty Group.

It is called null1 and is placed at the origin.

- Rename it ballNull.

2 Point constrain the null node

- In the Hypergraph, select the ball joint node on its own.
- Press the Shift key and click on the ballNull node.

You need to pick this last if you want to constrain it.

- Go to the Animation menu set.
- Select Constrain \rightarrow Point.

Now the null node will move with the ball of the foot.

Selected nodes
3 Orient constrain the foot's ball joint

- In the Hypergraph, reselect the ballNull joint node on its own.
- Press the Shift key and click on the ball joint node.

This time you picked the ball joint last since it is going to be constrained.

- Go to the Animation menu set.
- Select Constraints \rightarrow Orient.

Now the toe will be aligned with the null node which is, by default, aligned with the world space axis.

Selected nodes

4 Rotate the group

- Select the rfootc group.
- Rotate the group around the Z-axis using the rotate manipulator.

When you rotate in the positive direction, the foot raises as a group - except now the toe is pointed forward, which you don't want. What will work is when you rotate in the negative direction, so that the foot rotates around the ball of the foot and the toe stays straight.

Rotated group with constraints When you are finished, press \mathbf{z} to undo until your foot is back to the starting position.

Note: With this set-up, the knee may flip if you rotate the foot too far. This flipping can be corrected by working with the Rotate Plane IK solver's Pole Vector. For now, just make sure you don't rotate the group far enough to flip.

5 Add another expression

You will be creating an expression to turn the Orient Constraint off when the heel is rotated backwards.

- Select Window \rightarrow Expression Editor...
- In this window, set the Expression name to toe1, then in the
Expression: field enter the following expression:
//expression to control
//orientation of the right toe

```
if ( rfootc.rz <= 0 )
ball_orientConstraint1.nodeState
= 0;
else
ball_orientConstraint1.nodeState
= 2;
```

- Click on the Create button.

6 Rotate the group

- Select the rfootc group.
- Rotate the group around the Z-axis using the rotate manipulator.
When you rotate in the positive direction, the foot raises as a group - except now the toe is pointed forward, which you do want. When you rotate in the negative direction, the foot rotates around the ball of the foot and the toe stays straight which is correct.

Backward rotation
 Forward rotation

Rotated group with new expression

- When you are finished, press \mathbf{z} to undo until your foot is back to the starting position.

Creating geometry

The purpose of creating skeleton joints is to drive the movement of geometry that you can either group or bind to the joints. You will now create a half-sphere to use as the foot and a cylinder to use as the leg.

1 Create the foot using a halfsphere

- Go to the Modeling menu set.
- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- In the Channel box, name this surface rightFoot.
- In the Channel box, set the following attributes for the sphere's transform and input nodes:

Rotate X to $\mathbf{- 9 0}$;
End Sweep to 180.

- Scale and Move the sphere to until it covers the foot joints of the skeleton.

Half-sphere placed and scaled

2 Create the leg using a cylinder

- Select the skeleton's hip joint node.
- Move it up to straighten the leg.
- Select Create \rightarrow NURBS Primitives \rightarrow Cylinder.
- In the Channel box, rename this surface to rightLeg.
- Scale and Move the cylinder to point where it covers the leg joints of the skeleton.

Cylinder covering leg joints

3 Select isoparms on the cylinder

This cylinder is not complex enough to bend properly when you bind it later. You are now going to insert isoparms onto the surface to make it complex enough to deform.

- Click on the cylinder with your MMB and select Isoparm from the marking menu.
- Click-drag on the bottom round isoparm and drag it up to about the area of the knee.

Cross section isoparm selected

- Press the Shift key and add more isoparms to the selection by again click-dragging on the base isoparm.
- Use the Shift key to select two isoparms around the knee joint, and then two others separating the thigh and calf areas.

Selected isoparms

4 Insert isoparms on the cylinder

The selected isoparms can now be inserted onto the surface. These lines will be used to subdivide the existing cylinder.

- Select Edit Surfaces \rightarrow Insert Isoparms.

Now you have 6 spans along the length of the cylinder. This will help with the deformation of the cylinder later.

Inserted isoparms

5 Delete history

You are now going to delete history on the two primitives. This will remove the input nodes before you bind the surface.

- Select the half-sphere and the cylinder.
- Select Edit \rightarrow Delete by Type \rightarrow History.

Binding the geometry

To get the surfaces to deform properly, you must bind them to the skeletons. In the case of the sphere, you will apply a lattice and use that object to bind to the joints. You can bind many different object types to skeletons.

1 Add a lattice to the foot

Since the half-sphere has isoparms that meet at a point in the middle of the foot, you may not get the deformations you require. Rather than rebuilding the sphere, you can add a lattice that can be more cleanly bound to the joints.

- Select the half-sphere surface.
- Go to the Animation menu set.
- Select Deform \rightarrow Create Lattice.
- In the Channel box, set the following shape node attributes:

S Divisions to 5;
T Divisions to 2;
U Divisions to 2.
The lattice is now oriented along the length of the foot. The lattice points will now bind nicely into the skeleton.

Lattice applied to half-sphere

2 Bind the cylinder and the lattice

- Select the lattice and the cylinder.
- Press the Shift key and select the leg skeleton's hip joint node.
- Select Skinning \rightarrow Bind Skin - \square and set the following option:

Color Joint to On.

- Click Bind then Close.

The joints and bones are now colored differently. This helps you later when you check the membership of CV and lattice points to the bind sets.

3 Test the results

- Activate the Front pane and press 5 to smooth shade that view.
- Select the two surfaces and press 3 to increase the surface smoothness.
- Select the rfootc node using its selection handle.
- Move the group to see the effect on the surfaces.
The foot surface is bending at the back with the leg. Also, the inside of the knee is pinching.
You can fix both of these deformation effects to refine the results of the bind.

Deforming surfaces

Editing the sets

When you bound the lattice and the cylinder to the joints, sets were created. One set is created for every bound joint. As you move and rotate joints, the sets react accordingly.
In the case of the back of the foot surface, some of the lattice points are associating themselves with the knee joint instead of the heel joint. You will now move these points into the heel joint set to get the expected results.

1 Edit the set membership on the foot

With the knee in the bent position, select the heel joint.

- Select Deform \rightarrow Edit Membership tool.
The lattice points associated with the heel are highlighted in yellow. Other points on the cylinder and the lattice are displayed with other colors that match the coloring placed on the skeleton by the bind tool.

Highlighted CV and lattice points

- Press the Shift key and with the left mouse button, Select the lattice points that make up the heel of the foot.

Once you select the points using this method, they become part of the heel joint set and are removed from the knee joint set.

Edited membership of points

2 Test the results

- Select the rfootc node using its selection handle.
- Move the group to see how the foot reacts now.
- When you are finished, Move the group back to the origin.

Adding a flexor

The other problem you encountered with the deformations was with the back of the knee. You can fix this using a lattice flexor.
A flexor is a deformer that is automatically bound into a joint hierarchy while being applied to the associated surface.

1 Add a flexor to the knee

- Select the knee joint.
- Select Skin \rightarrow Edit Rigid Skin \rightarrow Create Flexor...
- In the Create Flexor window, set the following:

Flexor Type to lattice;
Joints to At Selected Joints.

- Click Create then Close.

Flexor on knee

2 Test the motion

- Select the rfootc node using its selection handle.
- Move the group to see how the foot reacts now.
You are getting a more subtle effect on the inner side of the knee while the outer part of the knee becomes more rounded.

Flexor with moved foot

- Rotate the group to see how the foot reacts now.

You can now see how the foot lattice is bending the foot to align with the toe bone.

Flexor with rotated foot

- Move and Rotate the group to the starting position.

Creating the second leg

You will now create a second leg by duplicating all of the existing hierarchies and their connections. This will give you a second deforming leg.

1 Move the first leg

You will move the hip joint and the foot group to one side of the $X Y$ plane.

- Select the hip joint of the skeleton.
- Press the Shift key and select the rfootc node using its selection handle.
- Move these two to the character's right side by about 3 units.

Leg moved to the right side

2 Duplicate the first leg

- In the Hypergraph, select all of the pieces built so far.

Selected hierarchies

- Select Edit \rightarrow Duplicate - \square and set Duplicate Upstream Graph to On.
- Click Duplicate then Close.
- Move the new group by selecting the duplicated hip1 and rfootc1 to the character's left side.

Second leg moved to the left

Note: DO NOT rename any of the new nodes. Renaming could break one of the duplicated expressions.

3 Test the motion on the left leg

- Select the rfootc1 node using its selection handle.
- Move and Rotate the group to see how the foot reacts now.

Second leg tested

- Move and Rotate the group to the starting position.

Create the torso and head

To create the character's head and torso, you will start with a hierarchy of joints that will be used to attach a cube for the body and a sphere for the head. In this case, you will not use any IK chains to control the character. Joint rotations will offer sufficient control for the character's spine.

1 Draw the spine joints

- Select Skeletons \rightarrow Joint Tool.
- In the Front view, press the \mathbf{x} key to use grid snapping, then place 5 joints as shown below. When you finish, rename the joints as labelled:

Spine joints

- Press the Enter key to finish.

2 Create a head and a body

- Create a Nurbs primitive sphere for the character's head and a Nurbs primitive Cube for the body.
- Scale and Move these pieces to suit your joints.

New surfaces scaled and positioned
These surfaces should be positioned as shown below.

New surfaces

- Select the surfaces and press the 3 key to increase their surface smoothness.
- Select Edit \rightarrow Delete by Type \rightarrow History.

3 Place a lattice on the cube

- Select the cube. In object mode, you will pick one of the cube's faces.
- Press the up arrow to go to the root nurbsCube node.
- Select Deform \rightarrow Create Lattice.

4 Bind the lattice and the sphere

- With the lattice already selected, press the Shift key and select the head sphere.
- Press the Shift key and select the root node of the spine skeleton.
- Select Skin \rightarrow Bind Skin \rightarrow Rigid Bind.

5 Test the binding

- Select one of the middle nodes of the spline skeleton.
- Rotate to test the quality of the bound surfaces.

Rotated spine joints

- When you are finished, rotate the joint back to 0 in all three directions.

6 Connecting the legs to the body

- Select Show \rightarrow Surfaces.
- Select the right leg's hip joint.
- Press the Shift key and select the bottom pelvis joint of the spine skeleton.
- Select Skeletons \rightarrow Connect Joint - \square and set Mode to Parent Joint.
- Click Connect.
- Repeat for the other leg, then Close.
Now the legs are connected to the spine chain.

Connected joints

Building arms

You will now build arms for your character. The arms will be built out of cylinders that will again require a joint flexor to handle the bending in the elbow. You will also add a Sculpt object flexor to the upper arm to put some bulging into the arm.

1 Create skeleton joints

- Select Skeletons \rightarrow Joint Tool.
- In the Front view, place 3 joints off to the side as shown below. When you finish, rename the joints as labelled:

Arm joints

- Press Enter to finish.

2 Add an IK chain

- Select Skeletons \rightarrow IK Handle Tool.
- Click on the shoulder joint.
- Click on the wrist joint to create an IK chain.

Arm IK chain

3 Move the arm into place

- Select the shoulder joint.
- In the Front view, Move the arm back to the body.
- In the Side view, Move the arm to the side of the body.

Positioned arm

4 Create a cylindrical surface

- Select the arm's IK handle.
- Move it down to straighten the arm.
- Select Create \rightarrow NURBS Primitives \rightarrow Cylinder.
- In the Channel box, rename this surface to rightArm.
- Scale and Move the sphere to until it covers the arm joints of the skeleton.

Arm cylinder

5 Insert isoparms

- Use the same method you learned with the leg to Insert isoparms onto the arm to divide the surface.

Inserting isoparms

6 Bind the surface

－With the cylinder already selected， press the Shift key and select the shoulder joint．
－Select Skin \rightarrow Bind Skin \rightarrow Rigid Bind．

7 Test the motion

－Select the Move tool．
－In the Perspective view，press the Ctrl key on the Z－axis handle．
Now the middle manipulator is constrained to move only along the X －and Y －axis plane．
－Click－drag on the center manipulator to test the arm．

Testing the motion
－When you are finished，return the arm to the character＇s side．

Tuck and bulge

You will now use flexors to set the tuck of the elbow using a lattice and the bulge of the upper arm using a sculpt object deformer． You will then use Set Driven Key to link the rotation of the arm to the scale of the sculpt object．

1 Create a joint flexor

－Select the elbow joint．
－Select Skin \rightarrow Edit Rigid Skin \rightarrow Create Flexor．．．
－In the Create Flexor window，set the following：

Flexor Type to lattice； Joints to At Selected Joints．
－Click Create then Close．
－Select and Move the IK handle to test the deformation of the elbow area．

－To create a sharper elbow，select the flexor and，in the flexor input node in the Channel box，set：

Rounding to 10.

2 Create a muscle flexor

- Move the arm to an extended position beside the body.
- Select the shoulder joint.
- Select Skinning \rightarrow Create Flexor...
- In the Create Flexor window, set the following:

Flexor Type to sculpt;
Bones: At Selected Bone to On;
Joints: At Selected Joint to Off

- Click Create and Close.

A sculpt object is placed on the cylinder and is deforming the surface to create a bulge in all directions.

3 Scale the sculpt object

When the arm is straight, you don't want it to be bulging. You will therefore scale it down to minimize the deformation.

- Select the sculpt1Sphere node.
- Scale it down along the X and Z axes.

Scaled sculpt object

4 Set Driven Key

You will now drive the shape of the sculpt object with the rotation of the elbow joint.

- Select Animate \rightarrow Set Driven Key \rightarrow Set -
- Click on Load Driven to load the sculpt object.
- Click on the scale \mathbf{X}, \mathbf{Y} and \mathbf{Z} attributes from the right column.
These are the attributes that you want to drive.
- Select the elbow joint.
- In the Set Driven Key window, click on Load Driver.
- Click on rotate \mathbf{Z} in the right column, and click the Key button.

Set Driven Key options
Now the current rotation setting for the elbow is linked to the current scaling of the sculpt object.

Set Driven Key start position

5 Set a second key

- Select the hand's IK handle.
- Move the handle to raise the arm.

This automatically rotates the elbow joint.

- Select the scultp1Sphere node.
- Scale it out along the X-axis.
- Click on Key button.

This sets the finish position for the Set Driven Key.

Set Driven Key finish position

- Close the Set Driven Key window.

6 Test the results.

- Select the hand's IK handle.
- Move the handle to watch the upper arm bulge.

Duplicate the arm

Now just like the leg, you will need to duplicate the arm, the IK handle, the surface, and any connected nodes.

1 Select the parts

- In the Hypergraph, Select only the skeleton and IK handles.

Selected nodes

2 Duplicate

- Select Edit \rightarrow Duplicate - \square and make sure that Duplicate Upstream Graph is set to On.
- Click Duplicate then Close.
- Move the new group to the character's left side.

3 Connect the joints

- Select the right arm's shoulder joint.
- Press the Shift key and select the bottom collar joint of the spine skeleton.
- Select Skeletons \rightarrow Connect Joint - \square and set Mode to Parent Joint.
- Click Connect then Close.
- Repeat for the other arm.

Now the arms are connected to the spine chain.

Connected joints

4 Save your work

Conclusion

You now have a biped character all hooked up for a stroll. You can roll the feet and deform the surfaces using the skeleton to control the motion.

While this character doesn't seem very sophisticated, the binding and deformation techniques would be very similar in a more complex model. Your cylindrical arms could easily be sculpted surfaces while the binding and flexors would be similar.
In the next lesson, your Primitive Man will evolve into a walking figure. This will involve setting keys on the IK handle groups and some of the joints.

17 Animating a Walk Cycle

You have now built a character who can be animated walking and moving his arms. In this lesson, you will animate a full walk cycle complete with body movements and hand gestures.

To animate the walk cycle, you will build up the motion one piece at a time. When you start, the motion will seem mechanical. However, once you layer in the roll of the feet, the twist of the pelvis, and the rotation of the spine, Primitive Man will be walking with more character.

In this lesson you will learn the following:

- How to animate the forward movement of the character
- How to animate the feet going up and down
- How to animate the twist of the character's pelvis
- How to animate the roll of the foot
- How to animate the character's torso and arms
- How to animate a two-node camera

Initial set-up

For this lesson, you will animate Primitive Man walking. You should start with the file you saved in the last lesson.

1 Display selection handles

- In Perspective view, select Show \rightarrow Surfaces and Show \rightarrow Deformers to turn these off.
- Select the pelvis joint, the spine joint, the left arm IK handle, and the right arm IK handle.
- Select Display \rightarrow Object Components \rightarrow Selection Handles.

2 Lower the pelvis

- Select the pelvis joint and lower it until Primitive Man's knees are slightly bent.

3 Edit the handle positions

- Press F8 to go into component mode.
- Select the selection handle pick mask.
- Move the pelvis and the spine handles so they are outside and behind the character.

Selection handles labelled

- Press F8 to go back to object selection mode.

4 Set up your view panels

- Set up a Perspective view panel and a Front view panel.
- In the Front view, select Show \rightarrow None then Show \rightarrow Handles and Show \rightarrow Joints.

This panel will be used to watch the movement of the joints.

- In the Perspective view, select

Show \rightarrow None, then Show \rightarrow
Surfaces, and then Show \rightarrow Handles.

This panel will be used to watch the movement of the surfaces.

View panel layout

Animate the pelvis

To create a walk cycle，the beginning and end point of the forward movement of the entire skeleton should be established．This is done by keying the positions of the skeleton＇s pelvis joint．

1 Set a key on the pelvis

－Open the Animation Preferences window，and set the following in the Keys section：

Default In Tangent to Linear；
 Default In Tangent to Linear．

This will set your tangents in the animation curve to react in a more rigid fashion．You will refine these later in the lesson．
－Go to the Animation menu set．
－Select the skeleton＇s pelvis joint．
－Go to frame 1.
－In the Channel box，click on the Translate X channel to select it．
－Click with your right mouse button and select Key Selected from the menu．

For now，you are only going to key the forward motion of the character．

First pelvis position

2 Move pelvis and set a second key
You will now key the end location of the pelvis to create the linear motion of the skeleton body．
－Go to frame 90.
－In the Front view，Move the pelvis joint about 60 units along the X － axis．

The pelvis moves while the character＇s feet try to stay in their initial position．You will correct the position of the feet later．
－Set another key on the Translate \mathbf{X} channels．

Second pelvis position

Animate the feet sliding

You will now key the horizontal positions of the feet to establish their forward movement, in relation to the forward movement of the pelvis. This will result in a sliding motion on the feet.

1 Position feet and set a key

You will key the starting position of the two feet in the position of a full stride.

- Go to frame 1.
- In the Perspective window, select the foot selection handle for the left leg.
- Move the handle forward along the X-axis.
The joint at the knee should not flatten and the ankle joint should remain with the pivot point.
- Press Shift w to set a key on all the Translate channels of the group.

Left leg position

- Select the right IK handle foot group.
- Move the right group back along the X -axis.
The skeleton should be in a walking position as shown below.
- Press Shift w to set a key on translate channels.

Right leg position

2 Move Time slider

You will now use the forward movement of the pelvis to help you place your joints.

- Slowly move the current frame indicator in the Time slider forward.

The left leg straightens as the pelvis moves forward and the right leg separates from the IK handles.

- Continue to move the Time slider until the left leg has almost straightened.

Time slider moved to frame of first step

3 Move right foot and set keyframe

You will now move the right foot so that the right leg is in front of the body.

- Move the handle to the right.
- Position the foot at the end of the first step. The leg should be almost straight.
- Press Shift w to set translation keys.

Right foot moved to first step

4 Pick left foot and set a key

A key must now be set on the left foot so that it remains planted while the right foot is moving.

- Select the left foot using its selection handle.
- Press Shift w to set a key.

Note: This key is very important to ensure that the one foot stays on the ground while the other foot moves.

5 Move Time slider

You will now move the Time slider to the frame that corresponds to the end of the second step.

- Slowly scrub forward in the Time slider.
Watch the movement of the skeleton.
- Stop at the frame when the right leg has almost straightened.
This should be the position of the back right leg at the end of the second step.

Time slider moved to timing of second step

6 Move left foot and set a key

You will position the left foot at the end of the second step.

- Move the left foot along the X-axis to position the handle at the end of the step forward.
Again, the left right leg should be almost straight, with the heel touching the axis.
- Press Shift w to set a key.

Left foot moved to position of second step

7 Save your work

- Select File \rightarrow Save Scene As... and save your work as walk01.

8 Set keys for the remaining steps
Use the same workflow to continue sliding the feet forward while planting the other foot. You will need to set the finished step positions so that the feet keep up with the animated movement of the pelvis. The repeated workflow is as follows:

- Select the other foot.
- Press Shift w to set a key.

As mentioned, this set key is very important because it plants the foot properly.

- Scrub in the Time slider to the end of the character's next step.
- Move the foot along the X-axis until it is almost straight.
- Press Shift w to set a key.
- Continue these steps to frame 90.

Completed stepping cycle

Note:
Make sure to set keys at the beginning and end of each step for each foot.

Edit the animation curves

To refine the in-between motion of the feet, you can use the animation curves to view and change the tangent options for the feet.

1 View the curves in the Graph Editor

You will edit the animation curves produced by the keys in the Graph Editor.

- Select both of the feet.
- Open a Graph Editor panel.
- In the Graph Editor, select View \rightarrow Frame All.

The step pattern of the keys should look as follows.

Forward step curves in Graph Editor
－Play back the animation to see the motion．
With linear tangents，each foot remains planted while the other moves，but the resulting motion is a little＂robotic．＂

2 Change the curve tangents

The tangent curves can be changed to soften the motion of the walk．
－In the Graph Editor，select the two Translate X curves for the feet．
－Select Tangents \rightarrow Flat．

Forward step curves using flat tangent
－Play back the animation to see change in the motion．

Animate the feet（up and down）

You will now key the vertical raising and lowering of the feet to establish the stepping action．

1 Turn on Auto Key

You will now use Auto Key to help you with the raising of the feet．
－Click on the Auto Key button in the
 right side of the Time slider to turn it on．
－Open the Animation Preferences window，and set the following in the Keys section：

Default In Tangent to Spline；
 Default In Tangent to Spline．

You now want your curves set more smoothly．

2 Raise the right foot at midstep

Key the high point of the raised foot at the appropriate frame．
－Go to frame 1.
－Pick the IK handle for the right foot．
－Move the Time slider to the frame at the midpoint of the first step．
－Click－drag the foot along the Y－axis using the manipulator handle．
This sets a new key for the Y－axis channel of the foot using Auto Key．

Raised step for right foot
3 Set keys for left and right foot
You will now set keys for the vertical movement of the feet for each step.

- Move the Time slider to the midpoint of the next step for the right foot.
Pass over the full step of the right foot. You will key these steps later.
- Move the foot up along the Y-axis. Again a key is automatically set.
- Use the same process to keyframe the raised steps of the left foot.
- Play back the results.

Playback of raised feet

4 View the animation curves

The horizontal and vertical animation of the feet can be viewed in the Graph Editor.

- Select both IK handles.
- Press the Ctrl key and click on the Translate \mathbf{Y} channels for both feet.

This selects only the Translate Y curves.

Step curves in Graph Editor

- Play back the animation in the Time slider.

5 Save your work

You are now going to animate the character's pelvic motion. Afterwards, you will return to the foot to add the heel rotation.

Animate the pelvic rotations

To create a more realistic action, the pelvis' position and rotation will be set to work with each step. You can again set keys for the translation and rotation of the pelvis using Auto Key.

1 Key the Y translation of the pelvis

 When the character walks, the pelvis will raise as each foot is raised then lower as the both feet touch the ground.－Select the pelvis joint using its selection handle．
－Go to frame 1.
－In the Channel box，click on the Translate \mathbf{Y} channel name．
－Click with the right mouse button and select Key Selected from the menu．

Now keys can be set on this channel using Auto Key．You must always have at least one key set for Auto Key to recognize a channel．

2 Auto Key Y translation of the pelvis

－Move the Time slider to the point where the first leg is fully raised．
－Select the Move tool．
－Click－drag on the Y translate manipulator handle to raise the pelvis slightly．You won＇t need dramatic movement in the pelvis for the walk to look good．

－Move the Time slider to the point where both feet are on the ground．
－Click－drag on the Y translate manipulator handle to lower the pelvis slightly．

Lowered pelvis

－Continue raising and lowering the pelvis in a similar manner．Raise it every time either foot is raised and lower it when both feet are on the ground．
－Play back the results．

Note：It would be very easy to write an expression that links the Y translation of the hip to the average of the Y translation of the two feet．You haven＇t done this since an expression might give a robotic motion．By using interactive transformations－then setting your own keys－you will introduce a randomness that will seem more natural．

3 Key the rotation of the pelvis

You will now animate the pelvis rotation to give the walk a little more motion．
－Go to frame 1.
－In the Channel box，click on the Rotate \mathbf{X}, \mathbf{Y} and \mathbf{Z} channel names．

- Click with the right mouse button and select Key Selected from the menu.
- Select the Rotate tool.

4 Auto Key rotation in Top view

You will now key the rotation in the Top view using Auto Key, which is still on.

- In the Top view, Rotate the pelvis, using the rotation handle, towards the right foot which is currently behind the body.
Another Auto Key is set at this pose.

Rotate pelvis toward right foot

- Move the Time slider forward until the left foot is behind the body.
- Rotate the pelvis in the opposite direction to rotate the body towards the left foot.

5 Set more Auto Keys

- Repeat these rotations keeping in mind that they should always orient the pelvis towards the lagging foot.
- Play back the motion.

6 Auto Key rotation in Side view

- Go to frame 1.
- Move the Time slider to the point where the first leg is fully raised.
- In the Side view, Rotate the pelvis using the rotation handle to rotate the hips so that the right hip is raising with the right leg.
Another key is set at this pose.

- Move the Time slider forward until the left foot is in front of the body.
- Rotate the pelvis in the opposite direction to rotate the hips up as the left foot raises.

Rotated pelvis with left foot raised

7 Set more keys

- Repeat these rotations to always orient the pelvis with the raised foot.
- Play back the motion.

8 Save your work

Animate the heel rotation

In the last lesson, you spent a great deal of time preparing the foot for the heel to toe motion that a foot goes through when walking. You are now going to use Auto Key to keyframe the foot rotations to take advantage of your work.

1 Set a key on the right foot's roll

- Go to frame 1.
- Select the right foot using its selection handle.
- Rotate the foot forward until it is pivoting around the ball of the foot.
- In the Channel box, click on the Rotate \mathbf{Z} channel name.
- Click with the right mouse button and select Key Selected from the menu.

Foot rotated forward

2 Auto Key the rotation

- Move the Time slider forward until the right foot has raised and has just lowered back to the ground.
- Rotate the foot back until it is pivoting around the heel of the foot.
Auto Key will set a second key for you.

Foot rotated back

- Now move the Time slider to the point where the right foot is about to raise from the ground.
- Rotate the foot forward until it is again pivoting around the ball of the foot.
- Repeat these steps until the rotation of the right foot is complete.

3 Set a key on the left foot's roll

- Go to frame 1.
- Select the left foot using its selection handle.
- Rotate the foot back until it is pivoting around the heel of the foot.
- In the Channel box, click on the Rotate \mathbf{Z} channel name.
- Click with the right mouse button and select Key Selected from the menu.

4 Auto Key the rotation

- Move the Time slider to the point where the left foot is about to raise from the ground.
- Rotate the foot forward until it is pivoting around the ball of the foot.
- Move the Time slider forward until the left foot has raised and has just lowered back to the ground.
- Rotate the foot back until it is again pivoting around the heel of the foot.
- Repeat these steps until the rotation of the right foot is complete.

5 Save your work

Setting keys for the spine

As Primitive Man walks along, you want his body to look up and down as if he is a tourist exploring an unfamiliar place. You will keyframe this motion using the rotation of the spine joint that you set up earlier with a selection handle.

1 Set keys on the joint rotation

- Go to frame 1.
- Select the spine joint using its selection handle.
- Press Shift e to set keys on the three rotation channels of this node.

Selected spine joint

2 Auto Key the rotation of the joint

- Go to frame 22.
- Rotate the spine joint so that the character appears to be looking down to his right.

Pose at frame 22

- Go to frame 36.
- Rotate the spine joint so that the character appears to be looking down and to his left.

Pose at frame 36

- Go to frame 61.
- Rotate the spine joint so that the character appears to be looking up and to his left.

Pose at frame 61

- Go to frame 90.
- Rotate the spine joint so that the character appears to be looking ahead in a normal position.

Pose at frame 90

3 Save your work

Keying the arm motion

As Primitive Man walks, he will likely be moving his arms to make gestures. You will now set keys on his arms to add these to the animation.

1 Key the arm IK handles

- Select the two arm IK handles using their selection handles.
- Press Shift w to set keys on their translation channels.
- Move the Time slider forward.
- Oops! The arms seem trapped. This is because you locked their position in world space. You need to find a way to make the arms work with the body.

Arms locked to keyed position

2 Group the arm IK handles

You will now group the handles so that they can be moved together.

- Go to frame 1.
- With the two handles selected, select Edit \rightarrow Group.
- Rename the group as arms.

3 Parent the group to the shoulder joint
To make the arms move with the body, you will parent the new group to the skeleton's shoulder joint.

- Press the Shift key and select the collar joint of the skeleton.

Parenting arm group to shoulder joint

- Select Edit \rightarrow Parent - \square and in the option window, make sure that Preserve Position is set to On.
- Click Parent and Close.
- Move forward in the Time slider.

Now the arms move with the body even though there are keys set on the handles. These keys will always remain under the arms node.

4 Auto Key the hand positions

You can now set keys on the arm IK handles and the resulting positions will remain with the body.

- Move the two handles to set up positions like those shown below.
Auto Key will set keys for the positions as you move the handles. Remember that Auto Key only sets keys for manipulators that you use.
Therefore, if you drag on the Y-axis handle, that is the only key set. If you want keys set for all three translation channels, then click-drag on the middle box manipulator which controls all the axis.

Possible arm position

Note: If you are having trouble getting the arm to raise above Primitive Man's head, or if you experience flipping, read the Rotate Plane IK Solver section on the next page.

As you move the arms, watch to make sure that you are not intersecting the torso cube.

Use all three axis handles to help with the positioning.

Possible arm position

5 Turn off Auto Key

- When you are finished, turn off Auto Key.

The rotate plane IK solver

When moving the arm IK handles, you will notice that you seem to have limited control over how the elbow moves. Also, at some point in your animation, the whole arm may flip to a different orientation. Since you created this IK handle using the rotate plane solver, you can use more manipulator controls to define how the whole arm works.

When you set up a rotate plane IK handle, the whole length of the chain is controlled by a plane that is defined by the handle vector which runs between the root joint and the end effector, and a secondary vector that is called the pole vector. By default, the IK handle will manipulate the chain so that it works within this plane.

Diagram of rotate plane
To get more freedom in the motion of the IK handle, you can redefine the plane's orientation using special manipulator handles.

How to work with rotate plane manipulators

The rotate plane attributes can be set in the Channel box or you can use the rotate plane manipulators.

- Select the IK handle for the arm.
- Select the Show Manipulator tool.
- You now get a few manipulator handles to help you control the arm.

Rotate plane manipulator handles
The pole vector axis handle lets you manipulate the whole rotate plane. By
positioning the handle, you change the orientation of the plane.
The twist handle lets you orient the arm off of the plane. This lets you move the elbows out away from the plane.

How to avoid flipping in the arm

Flipping occurs when the end effector is moved through the plane. If you experience flipping, you can use the pole vector axis handle to move the plane out of the way. You may need to set keys on this handle to control flipping in a more complex arm motion.
Try these handles to see how they help you position the arm. You can then Key Selected in the Channel box on the associated attributes.

Animating a two-node camera

You will now add a new camera to the scene and animate it so that you can follow Primitive Man as he walks.

Cameras can be created with one, two or three nodes. Most cameras only need one node which lets you key the camera's position and rotation. A two-node camera gives you nodes for both the camera point and the view point. Both these nodes can be keyed individually.

1 Set up your panel display

- In the Perspective view, select Show \rightarrow Cameras and Show \rightarrow Pivots to add these objects to the display.
You will need to see these in order to work with the camera.

2 Create a two-node camera

- Select Create \rightarrow Create Camera \square.
- Scroll down to the Animation Options section and set Nodes to Two.
- Click Create then Close.

3 Position the camera

- Select the Show Manipulator tool
- In the Perspective view, position the camera and view point handles to set up the camera.
- In the other view panel, select Panels \rightarrow Perspective \rightarrow camera1.
- From the camera1 view, select View \rightarrow Camera Settings \rightarrow Resolution Gate.

You can now position the camera using both of these panels. Put the view point of the camera in front of the character.

- In the Perspective view, select Show \rightarrow Surfaces then shade the view.

Camera manipulator handles

4 Set keys on the view point

You will now set keys on the view point to follow the character from frame 1 to 90.

- Go to frame 1.
- Select the Select tool.
- Select the view point on its own.
- Press Shift w to keyframe the position of the view point.
- Go to frame 90.
- Move the view point so that it is again in front of the character.
- Press Shift w to keyframe the position of the view point.

View at frame 90

5 Set keys on the camera node

The camera animation is now pointing at Primitive Man, but he is not always framed in the view as well as you'd like. You can set keys on the eye point node to fix this.

- Select the camera node by clicking on the camera icon.
- Go to frame 1.
- Press Shift w to set keys on the translation channels of the camera1 node.
- Go to frame 90.

Move the camera node in the Perspective view to the front of the character to frame the view.

Camera point position at frame 90

- Press Shift w to set keys on the translation channels of the camera1 node.
- Play back the results.

If you don't like the framing in the inbetween frames, then you can reposition the camera at either frame 1 or 90 and set new keys. Repeat this until you get the camera movement you want.

Props, color and lighting

On your own, build some props, add color materials to the surfaces, and then light the scene. You will complete these steps on your own to build the set that you want, with the lighting that you feel suits the walk cycle.

In the example shown below, several columns were built to accentuate the length of Primitive Man's walk and to give a frame of reference for his walking. At this point, you may want to edit your camera animation to suit your new scene.
Three lights were used to illuminate the scene. These include one spot light with
shadows on and an intensity of 1.0 , which is the main light placed above Primitive Man and to his right. A second light with an intensity of about 0.4 is used as a fill light and is placed up and towards Primitive Man's left. An ambient light with an intensity of 0.1 further fills in dark spots and is placed near the ground. You can play with your own three lights to illuminate the scene.

Props displayed with hardware lighting

Testing the motion

You can now Playblast the scene to test the motion. This will give you the chance to confirm the location of your props and whether or not you like the camera animation.

Playblast of animation

Rendering the animation

You can now render the scene. To render, you should consider the various issues taught

Animating a Walk Cycle
Rendering the animation

throughout this book. You need to set attributes on the surfaces themselves and in the Render Globals. Listed below is a checklist of some of the issues you should consider when rendering. Test them out when you render the Primitive Man scene.

Software render test

Note: You will have encountered most of these issues in earlier Learning Maya projects. This checklist offers a compiled list of those issues and some new ones.

OBJECT ISSUES

Some render attributes need to be set for your objects' shape nodes. You can set these attributes in the Render Flag window, in the shape node's Render section in the Attribute Editor, or in the Attribute Spread Sheet window. Below are some of the attributes you should consider when you render:

$\boldsymbol{\checkmark}$ Surface Tessellation

Set a NURBS surface tessellation that is appropriate to the scene. Larger and more prominent objects will require a larger tessellation than background elements. It is very important that you don't overtessellate.

You can also use the secondary tessellation controls to create a more dynamic tessellation suitable for animation. The Use Minimum Screen option let you set a pixel square (default 14 pixels) where your objects tessellation is generated by comparing the screen size of the surface to the pixel square to decide on an appropriate tessellation for the surface.

\checkmark Reflections and refractions

If you plan to raytrace, remember that you must decide which objects can be reflected by other objects. It is very important not to forget this step and render a scene that doesn't show any reflections.

\checkmark Motion blur

While you turn on motion blur in the Render Globals, you can also decide which objects will or will not use motion blur. If you have objects that are not moving or are barely moving, turn motion blur off to speed up rendering.

\checkmark Lights and shadows

Limit the number of lights casting shadows in your scene. If possible, use depth maps shadows which are a little faster. If you want to add a lot of lights to a scene then consider linking some of the lights to only those objects which need the illumination.

RENDER GLOBAL ISSUES

\checkmark Turn animation on!

If you want to render an animation, you must turn Animation on in the Render Globals. It is very easy to forget this and send off what you think is a long night of rendering frames, only to come in the next day to just a single frame.

\checkmark Renderable camera

Do you have the right camera set up for rendering? It is very easy to leave the default persp camera as renderable when in fact you want to render another camera.
It is also easy to forget to turn renderable off for the persp camera when you choose the second camera. If you forget, then you end up rendering both cameras which means lots of rendered frames that you don't need.

\checkmark Masks and depth masks

If you plan to composite your renderings later, you may want to use these settings to create a matte layer (mask) to assist in the compositing process.

\checkmark Render resolution

What is the render size that you want? Be sure that if you change the pixel size, then use the resolution gate in your view panel to make sure that the framing of your scene is preserved.

Raytrace

Do you want to raytrace some of your objects? Remember that Maya has a selective raytracer and only objects that require reflections, refractions or shadows will be raytraced.
Therefore, if you limit your reflective and refractive materials to key objects, then you can raytrace them knowing that other objects in the scene are using the A-buffer.
If you are raytracing, try to limit the number of reflections set in the globals. A setting of 1 will look good in most animations unless, for example, you have a chrome character looking into a mirror.

\checkmark Render quality

You may want to use the Recommended Defaults pop-up to suggest render quality options until you are familiar with the settings.

OTHER RENDERING ISSUES

Here are some other key rendering issues to consider.
$\boldsymbol{\sim}$ Test render, test render, test render
Don't start a major rendering unless you have test rendered at various levels.
Render the whole animation at a low resolution with low quality settings to test the motion. Render random full-size single frames to confirm that materials, lights and objects are rendering properly.
The more you test render, the less time you spend re-doing renderings that didn't work out the way you wanted.

\checkmark Command line rendering

You have learned how to batch render from within Maya. You can also render from the MS-DOS command line. Here is the basic workflow:

- Set up your Render Globals.
- Save your scene file.
- Type Render -help for a list of all the command line options.
- chdir into the directory with your file.
- Enter the Render command along with any flags followed by the file name, such as the start and end frames for the rendering as shown in the following:

[^3]
Conclusion

Congratulations! You have now completed your first walk cycle. Now you are going to animate Salty the seal. This final project takes you through a more complex character setup that includes the creation of special controls for Salty's eyes.

LESSロN 18 BUILDING SALTY

LESSIN 19

FACIAL DETAILS

LESSON $2 \square$ ANIMATING SALTY

LESSロN 21
BUILDING THE GET

LESSロN 22
TEXTURE MAPPING

LESSロN 23
BLINKING WITH MEL

PRロ」ECT FIVE

PRロJECT Five

In this project, you are going to model, texture and animate a complete character - Salty the seal. Salty will be built out of primitive shapes that will then be bound to skeleton joints and animated. This lesson integrates modeling, rendering and animating so that the lines between them begin to blur.

1. Salty begins by bouncing a ball on her nose, two times with ease.

2. Concerned, Salty follows the ball as it bounces out of her reach.

3. Suddenly, the ball is blown to the side of the stage and Salty loses control.

4. Dejected, Salty looks back at the audience unhappy that the ball got away.

18 Building Salty

This lesson shows you how to build your first Maya character - Salty the seal. Starting with a primitive sphere, you will edit the surface's control vertices to give the sphere a more complex, organic shape. You will also build flippers out of primitive cylinders. These surfaces can then be bound to skeleton joints to begin setting up fluid character deformations when Salty is animated in Lesson 20.

Salty
In this lesson you will learn the following:

- How to create a new layer
- How to work with selection modes and selection masks
- How to model a character using CV edits
- How to build skeleton joints
- How to bind the character's skin to the skeleton
- How to develop a shading group for the seal skin

File management

In this lesson, you will be working on a single file. In order to manage the parts of this file, you will use layers to help organize your work into manageable parts.

1 Set project

A project directory is needed that contains sub-directories for different types of files that relate to your project.

- Go to the File menu and select Project \rightarrow Set...
- Open the learningMaya directory and then click on projectFive
- Click on the Accept button to make projectFive your current project.
This existing project includes texture files to help you with your work.
- Select File \rightarrow New Scene.

2 Create a new layer

To keep all of the parts of Salty the seal together, you will use a layer dedicated to this character.

- Select Window \rightarrow Layer Editor...
- Press New Layer
- Double-click on Layer1 and rename it Salty.
- Click OK.

Building Salty's body

The first step in building Salty, is to build the body and head. You will create these out of a single surface by sculpting a primitive sphere. To create the sphere, you will edit its input node using the show manipulator tool.

1 Place a primitive sphere

- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.

2 Change the sphere's axis orientation

- In the Channel box, select the makeNurbSphere1 input node.

- Select the Show Manipulator tool.

Several manipulators appear that allow you to edit parts of the input node. In the case of the sphere, the manipulators control the position of the main axis of the sphere.

Sphere manipulators

- Press the \mathbf{x} key to temporarily turn on grid snap and click-drag on the center of the top manipulator.
- Drag this manipulator down to the ground plane and place it along the X-axis with the help of grid snap.

Redefined axis
Now the sphere's polar axis is pointing along the X -axis. This is the direction in which you are going to build Salty.

Note: You could have also rotated the sphere to realign the polar axis. By using the input node, you keep the rotate values in the transform node at 000 which may be helpful when animating later.

3 Edit, then delete construction history

- In the Channel box, go to the makeNurbSphere1 input node section and set the following:

Radius to 4;

Spans to 14.

This increases the size of the sphere and adds more isoparm spans. This will offer more flexibility when sculpting the surface into the shape of a seal.

- Select Edit \rightarrow Delete by Type \rightarrow History.

This deletes the sphere's input node. Since you are going to now pull CVs (control vertices) on the surface, the input node is no longer required.

Sphere

Note: Changing input node values after CV pulling is not recommended. Any changes to the number of spans later will negatively impact how your CV edits affect the surface.

Editing CVs

The sphere doesn't look very much like a seal at this point. You are now going to edit the positions of the surface's CVs to reshape the body.

1 Set up your view panels

While you can pull CVs using any view panel combination, it is a good idea to view the model from all four view types Top, Front, Side and Perspective.

- Select Panels \rightarrow Layouts \rightarrow Four.

Tip: Remember as you work, you can press the spacebar quickly to pop any of these panels to full screen and back for more detailed edits.

- Make the Perspective view the active panel and press the 5 key to turn on hardware shading.

Four panel layout

2 Shape the sphere

In order to begin working with the CVs, you need to be able to select them.

- Pick the Select tool. Remember that you can use the q key.
- From the status line bar, click on the Select by component icon.

Select component mask
The sphere's surface is now highlighted in blue and its CVs are visible.

- Click-drag a selection box around all of the CVs
- Select the Scale tool.
- Click-drag on the X-axis handle to scale the sphere into the following shape:

3 Edit the CVs on Salty's head

When you first select a group of CVs, a special pivot is placed at the center of the selection. In some cases, you may want to move that pivot location.

- In the Front view, click-drag a selection box around the first few rows of CVs at the right end of the sphere.

The scale pivot is located at the center of the current selection.

- Press the Insert key to make the pivot manipulator visible.
- Drag the pivot to the right edge of the surface.
This point will now act as the reference point for the scaling.
- Press the Insert key to return to the scale manipulator.
- Click-drag on the center scale handle to scale the head down to a smaller size.

By dragging on the center of the manipulator, you make sure that you scale the CVs in all three axes.

Scaled CVs

4 Edit the hulls on Salty's neck

- Click-drag a selection box around the sixth row of CVs.
- Click-drag on the center manipulator handle to scale this row down.
This time you don't need to reposition the pivot because the center of the selection is the desired scale point.

Neck CVs
This creates Salty's neck.

5 Taper Salty's body

- In the side view panel, dolly into the view to see all of the shape.
- Click-drag a selection box around the CVs shown below. Use the Shift key to select both diagonal rows.
- Use the Insert key to move the pivot point of the selection to the origin.

Selected CVs

- Press Insert again to exit edit mode.
- Click-drag on the Y-axis scale handle to scale these points down.
- Click-drag on the Z-axis handle to scale these points in.

Scaled CVs

Note: In this case, you did not use the center scale handle since this would have also scaled along the X -axis. When working in one orthographic view, you must be aware of how your action may affect how the shape appears in another view.

6 Flatten the tail

- In the front view panel, click-drag a selection box around the last few rows of CVs.
- Click-drag on the Y-axis scale handle to scale these points down.

Tail CVs

Positioning the CVs

You can further position the CVs by rotating them around the Z-axis. This will further define the shape of your character and begin to create a more seal-like shape.

1 Move all of the CVs

- Select all of the CVs.

- Select the Rotate tool.
- Use the Insert key to move the pivot point to the end of Salty's tail.
- Click-drag on the blue Z-axis handle to rotate the CVs up.
Check your other view panels to see if the rotation was successful.

Rotated CVs

2 Rotate the neck down

- Select all of the CVs on Salty's head.
- Use the Insert key to move the pivot point to the middle of Salty's neck.
- Click-drag on the blue Z-axis handle to rotate the head down.

3 Adjust the surface hulls

- Click in empty space to unselect the current selection list.
- In the selection mask bar, turn the points selection mask off and turn on the hulls selection mask.

Selection masks

- Click on the cross section hull near Salty's neck. Be sure not to select any longitudinal hulls.
- Rotate the hull around the Z-axis.
- Move the hull forward as shown in the following:

Edited hull

- Use the left/right arrow keys to move between the cross section hulls.
- Rotate, Move and Scale the cross section hulls until they create a more even distribution while creating a nice arch along the back.

Rotated hulls

4 Save your work

- From the File menu, select Save Scene As...
- Enter the name Salty1.

Finishing touches

The steps taken so far have been fairly mechanical. The result is a shape that resembles a seal, but lacks those extra details to really make it look right.
Pushing and pulling CVs is like sculpting a piece of clay and the best results come from those final tweaks. Now, you can use your own sculpting skills to finish Salty's torso.

1 Tweak the CVs

- Turn off the hull selection mask and turn on the points selection mask.

Selection masks

- In the Front view panel, Select and Move CVs to refine the shape of the character.
Try to adjust the various isoparms so that they are relatively perpendicular to the center axis of Salty's body. Also make sure that you are selecting CVs that are on both sides of Salty to keep your edits symmetrical.

Tweaked CVs

Tip: If you don't like an edit that you make, remember that you can Undo and Redo your changes.

2 Increase the surface smoothness

- Press F8 to go back to Select by Object mode.
Press the $\mathbf{3}$ key to display the surface with a higher smoothness setting to evaluate the surface.

Press the 1 key when you want to go back to a low smoothness for modeling.

Shaded view of surface

Building skeleton joints

To animate Salty, you need to be able to deform the surface in a realistic manner. Moving and keyframing CVs would be a possibility, but would be a very time consuming process.
Skeleton joints can be used to create a structure that can be bound to your surface for more controlled deformations.

1 Draw the joints

The joints can be placed to suit the existing surface's shape.

- Go to the Animation menu set.
- Select Display \rightarrow Joint Size \rightarrow 25\%.
- Select skeleton \rightarrow Joint Tool.
- Along Salty's spine and head, click eight times to place joints as shown in the image below.
- Press Enter to finish drawing the skeleton.

The joints are drawn as a series of small sphere's connected by the skeleton's bones.

2 Change your selection mask

- From the black arrow next to the selection mode icons, select All Objects Off.

Click here

Selection mask pop-up

- Click on the Select Joints icon to activate this selection mask.

Select joints mask on

- Select the fourth joint up along the skeleton.

Tip: You can select a joint by either clicking exactly on the joint icon or by clickdragging over the next bone.

Selected joint

3 Reroot the skeleton

- Select Skeleton \rightarrow Reroot Skeleton.

Bind the surface to the joints

1 Bind the skin

You must now bind the surface to the joints. Before you start, you need to change your selection masks to include surfaces.

- From the black arrow next to the selection mode icons, select All Objects On.

Tip: It is very easy to forget that you have set a particular selection mask. When you try to select a different object type, you are unable to pick anything.

The joints should already be selected.

- Press the Shift key and click on the surface to add it to the selection.
- Select Skin \rightarrow Bind Skin \rightarrow Rigid Bind.

2 Test the results

- Select the surface and press the 3 key to increase the surface smoothness.
- Select the first joint past the root.

- Select the Rotate tool.

When you rotate a joint, you can see how the surface is set up to bend and twist with the joints.

Rotating the neck joint

- In the Perspective view, click-drag the rotate manipulator to see how the bound skin moves with the joints.

Testing the movement
3 Return to the bind pose

- Select the skeleton.
- Select Skin \rightarrow Go to Bind Pose.

This sets the skeleton back to its bind pose.

4 Save your work

Templating objects

To build the next body part, you need the main surfaces visible, but you don't want them to interfere with your modeling. By
templating the existing surface, you can use it for reference without fear of selecting it.

1 Select the surface

- Pick the Select tool.
- Select the surface and the bones.

Selected pieces

2 Template the surface

- Assign the object to the Salty layer.
- Template the Salty Layer.

Now these objects are visible but cannot be selected using the object selection mode.

Templated objects

- Click on the Default layer to make it the active layer.

Building the front flipper

To build a flipper, you will now sculpt a primitive cylinder. The techniques are similar to manipulating the sphere except that now you have some extra details to model.

1 Place a primitive cylinder

- Select Create \rightarrow Nurbs Primitives \rightarrow Cylinder.

2 Edit, then delete construction history

- Select the makeNurbCylinder input node in the Channel box.
- Set the following:

Sections to 16;
Spans to 8;
Height Ratio to 7.

3 Flatten and move the cylinder

- Select the Move tool.
- Click-drag along the Z-axis to place the cylinder just outside Salty's body.
- Select the Scale tool.
- In the Side view, click-drag on the blue Z-axis handle to scale the cylinder by a factor of about 0.25 .

Flattened cylinder

4 Flatten the end of the cylinder

- Press F8 to go into component select mode.
- Click-drag a selection box around the last three rows of CVs.
- Select the Scale tool.
- Click-drag along the Z-axis to squeeze these CVs until the end of the cylinder is flat.

Squeezed CVs

The side shape

From the Front view panel, you can see the side of the flipper. You will now reshape this profile to make the cylinder resemble a flipper.

1 Move some CVs to add shape

- In the Front view, dolly until the cylinder fills the panel.
- Press the Shift key and with the left mouse button add the next two rows to the selection.
- Click-drag along the X-axis to scale the CVs out a little.

Edited CVs

2 Select the lower CVs

- Dolly in closer to the bottom five rows of CVs.
- Pick the Select tool.
- Click in empty space to deselect the current CVs.
- Click-drag a selection box around the lower middle two CVs as shown.
You are actually selecting four CVs. Two in the front of the cylinder and two in the back.

3 Move the CVs

- Select the Move tool.
- Click-drag along the Y-axis to move the CVs up a little.

4 Scale the top CVs down

- Dolly out to see the whole flipper.
- Click-drag a selection box around the top four rows of CVs
- Select the Scale tool.
- Click-drag along the X-axis to squeeze these CVs to tighten the top of the flipper.

Scaled CVs

- Click-drag a selection box around the top three rows of CVs.
- Click-drag on the Y-scale handle to scale these CVs apart.

5 Rotate the top CVs down

- Select the Rotate tool.
- Press the Insert key and in the Side view, move the pivot to a point in between the third and fourth rows of CVs.
- Again press the Insert key and, in the Side view, rotate the selection around the X -axis as shown in the following:

Rotated CVs

6 Rotate the bottom CVs up

- Select the bottom five rows of CVs.
- Press the Insert key and in the Side view, move the pivot to a point in between the fourth and fifth rows of CVs.
- Again press the Insert key and, in the Side view, Rotate the selection around the X -axis as shown below:

Refining the flipper

The rotations on the flipper are a little harsh. To improve the look of this profile, you can rotate and move the various rows of CVs to complete the shape.

1 Adjust the rows of CVs in the Side view

- Select the rows of CVs on the flipper one at a time.
- Move and Rotate them to create a more sculpted shape:

Refined CVs
Be sure to consider how the flipper is looking in other views such as the Front view or the Perspective view.

Perspective view
2 Untemplate the body surface

- Untemplate the Salty Layer.

Now, these parts are available for you to work with.

3 Move the flipper up to the body surface

- Press F8 to go to the Object select mode.
- Select the flipper surface.
- Move the flipper until its end is penetrating the side of the seal.
Use all four views to confirm the placement.

Four views of Salty

- Rotate the flipper around the Yaxis to angle it a little as shown in the following:

The back flipper

The back flipper will be created by editing a duplicate of the front flipper. It is useful to reuse pieces of geometry to make your sculpting easier.

1 Build a back flipper

- Select the front flipper.
- Select Edit \rightarrow Duplicate.
- Move the copy to the back of Salty.

Back flipper

- Rotate the flipper around the Yaxis to line it up with the body.

- Edit the CVs and position the flipper at the back of Salty.

Back flipper

Mirroring the flippers

Rather than build flippers for Salty's left side from scratch, you can duplicate and mirror the existing flippers. A mirror can be achieved by scaling with a factor of -1 .

1 Group, then duplicate the flippers

- Select the two flippers.
- Select Edit \rightarrow Group.
- Select Edit \rightarrow Duplicate.

2 Scale to - 1

- In the Channel box, enter - 1 in the Scale Z channel.

Mirrored flippers

3 Save your work

- Select File \rightarrow Save Scene.

Add joints for the flippers

To connect the flippers to the rest of the body, you will build skeleton joints and then bind in the new surfaces.

1 Draw joints for the front flipper

- Select the front and back flippers and assign them to the salty Layer.
- Select the bones. From the default layer's menu, select Assign selected.
- Template the Salty Layer.

Now you have templated the surfaces without the bones.

- Go to the Animation menu set.
- Select Skeleton \rightarrow Joint Tool.
- In the Side view along Salty's front right flipper, click five times to place joints as shown in the following:

New joints

2 Move the third joint into place

- Select the second joint in the skeleton hierarchy.
- Select the Move tool.
- In the Front view, move the joint along the XY plane to the middle of the flipper.
Oops! The joint and all the subsequent joints are moved at the same time. You don't want this.

Moving the third joint

3 Set the pivot location for the joint

- Undo the last move.
- Press the Insert key to invoke the joint's pivot location.
- Move the pivot to the middle of the flipper.
Now this joint moves independent of the other joints. You can either move the joint or set the joint's pivot to relocate joints.

Moving the fourth joint's pivot

4 Edit the remaining joints

- Press the up and down arrow key to move the selection to the next joint.
- Move this joint's pivot into place.
- Press the Insert key to go back to the move manipulator.

5 Add joints for the back flipper

- Select Skeleton \rightarrow Joint Tool.
- In the Top view, draw three joints for the back flipper.
- Press Enter to complete the joints.

Back flippers

Joining the flippers to the body

To make sure that the new joints work with the existing skeleton, you must connect them together. The logical place to join would be the hips and the shoulders.

1 Select the joints

- Using the Select Tool, pick the root joint of the front flipper.
- Press the Shift key and select the shoulder joint of the main spine.

Selected joints

2 Connect the joints

- Select Skeleton \rightarrow Connect Joint
- - I. In the Tool options, change the Mode to Parent Joint.

This will place a bone between the two selected joints rather than moving the flipper joint up to the shoulder.

- Click Connect and then Close.

Connected joints

3 Connect the back joints

- Use the same technique outlined above to join the back flipper skeleton to the hip joint of the main skeleton.

Selected joints

While you will not be animating the tail portion of Salty in this lesson, it is a good idea to complete the skeleton just in case.

Connected joints

4 Mirror the joints

- Select the joint that used to be the root joint of the front flipper skeleton.

Selected joint

- Select Skeleton \rightarrow Mirror Joint.

Mirrored joints

- Repeat for the back flipper.

Mirrored joints

Binding the surfaces

The flipper surfaces should deform with the skeleton, and therefore must be bound.

Binding a surface is a process where the surface's CVs are separated into sets which are then bound to the appropriate joints in the skeleton. When the joints move or rotate, the sets react as part of the joint hierarchy.

1 Untemplate the Salty layer

- Untemplate the Salty layer.

2 Bind all the surfaces

- Select the four flipper surfaces.
- Press the Shift key and add the main skeleton root to the selection.
- Select Skin \rightarrow Bind Skin \rightarrow Rigid Bind.

3 Test the motion

- Rotate various joints on the skeleton to test the resulting bind.

Rotated joints

4 Return to the bind pose

- Select the skeleton.
- Select Skin \rightarrow Go to Bind Pose.

This sets the skeleton back to its bind pose.

5 Assign all of the objects to a layer

- Select all of Salty's pieces and assign them to the Salty layer.

Salty's shading group

To define the look of Salty's skin, you will create a new shading group. The skin is to be dark and slick with a slight shinyness. You will set attributes on the material node to achieve this look.

1 Set your view panels

- Select Panel \rightarrow Saved Layouts \rightarrow Hypershade/Outliner/Pers.

2 Create a new shading group
You will create a shading group with a blinn material node which is suitable for shiny, metallic or wet surfaces.

- In the Hypershade, create a Blinn surface material.
- Rename the shading group and material nodes as follows:

Shading Group node to skinSG;
Material node to skinBlinn.

3 Set the common material attributes

The general color attributes are first set to create a basic dark color of the skin.

- Double-click on the skinBlinn node to open the Attribute Editor.
- Change the Color to a very dark brown by setting the following in the Color Chooser:

Hue to 24;
Saturation to 0.3;
Value to $\mathbf{0 . 0 7}$.

- In the Attribute Editor, set the following:

Diffuse to $\mathbf{0 . 5}$.
Reducing the diffuse value decreases the amount of diffuse color that appears on the surface.

Color and diffuse settings

- Click on the Minimize button at the top of the Attribute Editor to minimize the editor.
It is now readily available for use later.

4 Assign the shading group

- Turn off the joint selection mask option. Now you will only pick surfaces.

Selection masks

- Assign the material to Salty's body, front flippers and back flippers.
In the shaded view, you can see the material on the surfaces.

5 Set the specular shading attributes

The specular shading attributes define the way that the material appears in direct and ambient lighting conditions, creating highlights and hotspots on the surfaces. The seal's skin should appear soft, with a wet, reflective quality.

- Click on the Attribute Editor icon to maximize it.
- Click on the skinBlinn node in the Hypershade.
- Arrange this window so that you can see the shaded surfaces as you update the values.
- In the Specular Shading section, set the following:

Eccentricity to $\mathbf{0 . 6}$.

This creates larger areas of highlights which give a softer or more diffuse feel to the material.

Specular Roll Off to 0.8.

A higher value gives the impression of light being reflected at more oblique angles, making the surface appear more wet.

Specular Color to a darker value with a slight saturation of purple.

Specular shading attributes
In this book, HSV values of 255, $0.25,0.2$ were used. These settings darken the highlight and change its color from the warmer base color, to create a more complex surface quality.

Reflectivity to less than 0.1.
The skin of the seal should only slightly reflect the surrounding surfaces.

Specular shading attributes
The various attributes of the material node allow you to clearly define how a surface looks. As you become more familiar with the available settings, you will be able to create shading groups that clearly represent real life materials.

6 Save your work

- Select File \rightarrow Save Scene.

You will be using this scene file as the starting point for the next lesson.

Conclusion

You are now off to a great start building Salty. In the next lesson, you will add facial details with special attention to the eyes which will be set up for animation later.

19 Adding Facial Details

In this lesson, you will develop Salty's facial features. You will start by building an eye assembly that will allow you to control where Salty is looking. You will also create a control object with special attributes that will let you set where the eyes look, how the eyes blink, and how the shape of the eyes express Salty's feelings. The goal is to explore how to model using Maya's procedural capabilities to help make it easier to animate all aspects of the eyes in later lessons.

In addition, you will add whiskers and a nose. All of these elements will be texture-mapped to prepare them for rendering later on.

In this lesson you will learn the following:

- How to build an eyeball hierarchy
- How to use an aim constraint
- How to apply lattice and cluster deformers
- How to add an attribute to a node
- How to use Set Driven Key
- How to use transparency maps

Initial set-up

To start this lesson, will continue with your file from the last lesson as you continue to build Salty.

1 Change the panel layout

- Select Panels \rightarrow Saved Layouts \rightarrow Four View.
- Make the Perspective view panel active and press the 5 key to set smooth shading.

2 Template the existing objects

- In the Layer Bar, click with RMB over the Salty layer button and select Template.

Building Salty's right eyeball

To start building Salty's eye, you will build and texture an eyeball centered around the origin. Later, you will position it more closely to Salty's head.

1 Place a primitive sphere

- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- Press the 3 key to increase the display smoothness of the sphere.
- In the Channel box, rename the node to eyeball.

2 Use show manipulator tool to edit axis

- Dolly in to see the sphere from a closer point of view.
- In the Channel box, select the makeNurbSphere input node.

- Select the Show Manipulator tool.
- Press the \mathbf{x} key to temporarily turn on grid snap and click-drag on the center of the top manipulator.
- Drag this manipulator down to the ground plane and place it along the X-axis with the help of grid snap.

This orientation will facilitate the mapping of a ramp texture to the sphere later.

3 Edit the input node values

- In the Channel box, change the following attributes for the makeNurbsSphere node:

Radius to 0.5.
4 Create the eye shading group
The seal's eyes will use a phong material node that is shiny with a bit of translucence.

- In the Hypershade, Create a phong material node, and rename the shading group node to eyeSG and the material node to eyePhong.

5 Edit the material attributes

- Double-click on the eyePhong material node to open the Attribute Editor.
- Set the following attributes:

Color to white;
Diffuse value to 1.0;
Click on the color swatch next to Incandescence to set the value to $\mathbf{0 . 1 5}$.
The illuminated and shaded regions on the material sample are now quite bright.
This will help make Salty's eyeball shine in any lighting.

6 Assign the shading group

- Assign the eyeSG node to the eyeball surface using the technique taught in earlier lessons.

7 Add a ramp color texture

To help differentiate the pupil from the white of the eyes, you will use a procedural ramp texture.

- In the Attribute Editor, click on the Map button next to Color.
- In the Create Render Node window, choose a Ramp texture.
- Make the Perspective view the active panel and press 6 to turn on hardware texturing.

Note: If you do not have hardware texturing, then you can continue with smooth shading on and then you can test the eyeball later with a test rendering.

8 Edit the ramp

- In the Attribute Editor, change the ramp attributes as follows:

Type to U Ramp;
 Interpolation to None.

This creates a harsh break between the first two colors on the ramp.

- Click on the square icon to the right of the blue color indicator to delete this color.
- Click on the round icon to the left of the green color indicator to select it.
- Click-drag on the round icon to move the indicator up until its is set to around $\mathbf{0 . 8 5}$.

If you have hardware rendering, then you will see the texture update in the Perspective view.

Eyeball with texture

9 Edit the ramp's colors

- In the Attribute Editor, drag the green color indicator's Selected Color slider all the way to the left.
This makes this color turn to black.
- Click on the round icon for the red color indicator.
- Click on the Selected Color swatch to open the Color Chooser.
- Change this color to white.

Eyeball with updated texture

- Close or minimize the Hypershade and the Attribute Editor.

Creating a target for the eyeball

To animate the eyeball later, you will want to be able to control what it is looking at. You will first create a locator object, then constrain the eyeball to aim towards it.

1 Add and position a locator object

- Select Create \rightarrow Locator.
- Move the locator along the X-axis to move it in front of the eyeball.
- Move the locator along the Y-axis a little to place it above the ground.

Locator object moves

2 Aim the eyeball at the locator

- Change to the Animation menu set.
- Press the Shift key and select the eyeball surface.
Now the locator and the eyeball are selected. Since the eyeball was selected last, it is indicated in green. Since you are aiming the eye, it is important that it is picked last.
- Select Constrain \rightarrow Aim.

Now the eye is looking at the locator.

- Move the locator, on its own, in all axes to test the aiming of the eye.

Eyeball with texture

- In the Channel box, set the following for the locator1 node:

Translate \mathbf{X} to 7;
Translate \mathbf{Y} to $\mathbf{0}$;
Translate \mathbf{Z} to $\mathbf{0}$.
Now the eyeball is looking straight ahead.

Creating the eyelid

You are now going to build an eyelid out of another primitive sphere. The input node will be used to set the start and end sweep of the sphere which help create the blinking action.

1 Place a second primitive sphere

- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- In the Channel box, rename the nurbSphere node to eyelid.
- Increase the object's smoothness using the techniques taught in earlier lessons.

2 Edit the sphere's axis

- In the Channel box, select the makeNurbSphere input node.

- Select the Show Manipulator tool.
- Press the \mathbf{x} key to temporarily turn on grid snap and click-drag on the center of the top manipulator.
- Drag this manipulator down to the ground grid and place it along the Z-axis with the help of grid snap.

New sphere

3 Edit the input node attributes

The sphere's input node contains attributes that control the start and end sweep of the shape. You will set these now to look like a partially opened eye. After, you will animate these attributes to make Salty blink.

- In the Channel box, change the following attributes for the makeNurbsSphere node:

Radius to 0.55;
Start Sweep to 60;
End Sweep to 300.
The two sweep attributes let you open and close the lid surface using the construction history built into the sphere's input node.

Edited eyelid

Note: When you were modeling the body surfaces, you deleted history. For the eye, you will keep history since the start and end sweep can be used to blink the eye. This will be an example of procedural animation as the keys are set on the input node to animate the sphere.

4 Assign the seal shading group

You can now assign the existing seal skin shading group to the eyelid surface.

- Change to the Render menu set.
- Select Shading \rightarrow Assign Shading Group \rightarrow skinSG.

5 Group the eyelid and the eyeball

- Select both the eyelid and the eyeball.
- Select Edit \rightarrow Group.
- In the Channel box, change the name of group to rightEye.

6 Move the parts of the eye

- Press the Shift key and select locator1 to add it to the current selection list.
- Move these objects up and across to place the eye group on the right side of Salty's head.

Positioned objects

7 Save your work

- From the File menu, select Save Scene As...
- Enter the name Salty2 next to the file's path.

The Hypergraph

Whenever you create a group of objects, you create a transform hierarchy. In earlier projects, you learned how to look at these hierarchies in the Outliner. The Hypergraph offers a more diagrammatic view of the same information.

When working with hierarchies, you can either work with the top or root node, or you can work with the lower leaf nodes. Complex animations are possible when you combine animation at different hierarchy levels.

1 Open a Hypergraph panel

- Click in empty space to clear your selection.
- From the Top view panel, select Panels \rightarrow Hypergraph...
- From the Hypergraph panel, select View \rightarrow Frame All.

This shows you all the transform node hierarchies that exist in the model now. This includes the skeleton joint hierarchy and the new eye hierarchy.

Hypergraph panel

2 Select the eye group

- Click-drag a selection box over the rightEye group.
- From the Hypergraph panel, select View \rightarrow Frame Selection.
- Use the Alt key and the left and middle mouse buttons to dolly out of the scene. The same view tools apply here as in other panels.

Hypergraph panel

In the Hypergraph, you can see that the two lower nodes in the hierarchy have been picked even though you may have wanted to pick the upper node.
When you are in object selection mode, you are always picking the lowest node in the hierarchy.

- Press the up arrow key to move up the hierarchy to the rightEye group node.

Hypergraph panel

Deforming the eye

The eye is looking good - but it needs more character. To give it a more dynamic shape, you can apply a lattice deformer.
Lattice deformers let you manipulate the shape of a surface using an external frame. The lattice frame has its own control points that can be edited just like CVs to let you deform both the eyeball and the eyelid as a single group.

1 Apply a lattice to the eye group

- Change to the Animation menu set. Select Deform \rightarrow Create Lattice \square.
- In the Lattice Options window, set the following:

Parenting to On.

- Click the Create button.

Eye lattice
In the Hypergraph, you can now see two new nodes parented under the rightEye group. By parenting these to the group, you can move them all together to maintain the deformations as Salty's head moves.

Hypergraph panel
2 Scale the lattice base object
The lattice base is a special node designed to contain the geometry that is to be deformed. If your objects move out of the base, then they will no longer be deformed.
To be on the safe side, you should scale this node out to make sure it encompasses
the entire eye, even when it is deformed later.

- In the Hypergraph panel, click on the ffd1Base and the ffd1Lattice nodes.
- In the Channel box, edit the following attributes:

Scale X to 1.5;
Scale Y to 1.5;
Scale Z to 1.5.
This scales out the lattice and its base, allowing the eye to be encompassed more completely by the lattice. The eye group remains the same size since both parts were scaled.

Scaled lattice base

3 Scale all the lattice points

You will now work with the lattice node which lets you apply the actual surface deformations.

- In the Hypergraph panel, select only the ffd1Lattice node.
- Press the F8 key to go into component mode.
The lattice points are now visible and available for editing.
- Click-drag a selection box around all of the lattice points.
- Scale these points along the X and Z axes to scale the lattice points into the following shape:

Scaled lattice points

4 Move the bottom lattice points

- Click-drag a selection box around the six points on the lower side of the lattice.
- Move these points along the Z-axis handle to push the points out.

Pushed lattice points

Adding a cluster deformer

Another type of deformer is a cluster. Clusters let you create a set of CVs or lattice points and give these points their own special pivot
point for specific scaling and rotational edits.
This cluster will be used to make Salty's eyes appear to get worried.

1 Add a cluster to the top lattice points

- Click-drag a selection box around the top eight lattice points.

Selected Lattice points

- Select Deform \rightarrow Create Cluster.

A cluster is now created using these points. It is indicated using a small C icon.

- In the Channel box rename the clusterHandle to eyeCluster.

New cluster object

2 Edit the pivot location of the cluster

- Press F8 to go back to object selection mode.
- Press the Insert key.
- Click-drag the cluster's pivot along the Z -axis to the edge of the lattice.

New pivot location
3 Scale the cluster

- Press the Insert key to get out of edit mode.
- Scale the cluster in along the Z-axis to a value of about 0.5.
This gives Salty a worried look.

Scaled cluster

Positioning the eye

When you positioned the eye earlier, you used the templated lines for reference. You will now make sure that the eye is not intersecting the main body surface.

1 Untemplate the various surfaces

- Untemplate the Salty layer. The eye may not be positioned correctly in relation to the head surface causing intersecting surfaces. You should reposition it to create a more accurate relationship between these pieces.

2 Reposition the eye group

- In the Hypergraph, select the rightEye group node.
- Move the group until it is correctly positioned in relation to the main surface.

Creating the second eye

You will create the second eye by duplicating the first. Duplicating the eye with all of its connections will make sure that the input nodes for the sphere and the constraint are included. This is important to ensure that both eyes work in the same manner.

1 Duplicate the whole hierarchy

- In the Hypergraph, select both the rightEye group node and the locator1 node.
- Select Edit \rightarrow Duplicate - \square.
- In the Duplicate Options window, set the following:

Duplicate Upstream Graph to On.

- Click on Duplicate and Close.

2 Mirror the new eye group

- In the Channel box, change the Scale \mathbf{Z} value to $\mathbf{- 1}$.
This mirrors all of the selected parts.

3 Move the new eye group

- Move the selection along the Z-axis until the new eye group sits on the opposite side of the face.

Both eyes in place

4 Rename the new eye group

- In the Hypergraph panel, press the Ctrl key and double-click on the rightEye1 node.
- Type the name leftEye and press the Enter key.

Building the eye control node

You could now animate the eyes by keying the position of the locators to determine where Salty is looking, the start and end sweep of the makeNurbSphere nodes (to make Salty blink), or the scale of the Clusters (to give Salty a worried look).
One problem, however, is that all of these parts are buried within the eye assembly. You will now group the two locators and create an eye control, node which will be linked using expressions to control all of the items mentioned above. By creating this control now, Salty will be much easier to animate in the next lesson.

1 Group the locators

- Select the two locator objects.
- Select Edit \rightarrow Group.
- Select Modify \rightarrow Center Pivot...
- Select Display \rightarrow Object Components \rightarrow Selection Handles.
- In the Channel box, rename the group node to eyeControl.

2 Restricting channels on the new group

- From the Window menu, select General Editors \rightarrow Channel Control...
- In the Keyable list, press the Ctrl key and click on the attribute names as shown in the following:

Channel Control window

- Press the Move >> button to move these into Non Keyable list.

In the Channel box, you can now see only the three translate attributes.

- Close this window.

3 Add a worry attribute

So far, you have been working with attributes specific to different node types, and you have revealed hidden attributes. To control parts of Salty's eyes, you are going to add your own attribute that will be connected using expressions.

- Select Modify \rightarrow Add Attribute...
- In the Add Attribute window, set the following:

> Attribute Name to worry;
> Data Type to Float;
> Minimum Value to $\mathbf{0}$;
> Maximum Value to $\mathbf{1 0}$;
> Default Value to $\mathbf{1 0}$.

These settings create the value range for the attribute.

- Click the Ok button.

4 Use worry to drive the cluster

To drive the cluster's scaling along the Zaxis, you are going to use Set Driven Key. This tool lets you set up relationships between different attributes. You will set up the worry node to drive the scaling of the eyeCluster.

- Go to the Animation menu set.
- In the Hypergraph, select the eyeCluster node.
- Next, select Animate \rightarrow Set Driven Key \rightarrow Set - - .
This opens a window that lets you link attributes. The eyeCluster node is loaded as the driven node.
- Click on the scaleZ attribute in the right-hand list.
- In the Perspective view, Select eyeControl using its selection handle.
- In the Set Driven Key window, click on the Load Driver button.
- Click on the worry attribute in the right-hand list.

Set Driven Key window

5 Key the scale positions

- In the Set Driven Key window, click on the Key button.
Now, when the worry attribute is set to 10 , the scale \mathbf{Z} attribute will be set to 0.5 .
- In the Channel box, change the Worry attribute to $\mathbf{0}$.
- Select the eyeCluster node.
- In the Channel box, change the Scale \mathbf{Z} attribute to 1.
- In the Set Driven Key window, click on the Key button.

6 Test the results

- Select the eyeControl group using its selection handle.
- In the Channel box, click on the Worry channel name.
- In the Perspective view panel, clickdrag with the middle mouse button to test the attribute.
As you click-drag from 0 to 10 , Salty's eye changes its expression.

7 Edit the resulting graph curves

- Select the eyeCluster node.
- Select Window \rightarrow Animation Editors \rightarrow Graph Editor...
- From this window, select View \rightarrow Frame All.
- Along one axis of the curve diagram is the cluster's scale Z, and along the other is the eyeControl node's worry attribute based on the keys set using Set Driven Key.

Set Driven Key anim curve

- Select the curve.
- Select Tangents \rightarrow Flat.
- This changes the way in which the driven attribute is affected by the driver. You can edit this curve to define any relationship you desire.

Edited anim curve

8 Repeat for the other cluster handle

- In the Hypergraph, select the eyeCluster1 node.
- Use the Set Driven Key window to drive this node using the eyeControl node's worry attribute.
- When you are finished, set the eyeControl node's worry attribute to 7.

This creates a good neutral position. Later, you will animate this attribute to make Salty react to the bouncing of the ball in the next lesson.

Salty looking a little worried

9 Save your work

Adding a blink attribute

Another useful control would be a blink attribute. This would allow you to control the opening and closing of the eyes using a single attribute, instead of working with the two sweep attributes on two separate input nodes.

1 Add a new attribute

- Make sure that the eyeControl group is selected.
- Select Modify \rightarrow Add Attribute.
- In the Add Attribute window, set the following:

Attribute Name to blink;
 Data Type to Float;
 Minimum Value to 0 ;
 Maximum Value to 10;
 Default Value to 10.

- Click on the Ok button.

2 Use blink to drive the sweep angles

To drive the opening and closing of the eyeLid, you are going to again use Set Driven Key. This time you will use the blink attribute to drive the start and end sweep of the eyelid's makeNurbSphere input node.

- Go to the Animation menu set.
- In the Hypergraph, select the eyelid node within the rightEye hierarchy.
- In the Channel box, click on the makeNurbSphere input node.
- Select Animate \rightarrow Set Driven Key \rightarrow Set- ㅁ.

In the Set Driven Key window, you will see the eyeLid node loaded in the Driven section.

- Click on the makeNurbSphere node in the left-hand list, then click on both the startSweep and endSweep attributes in the righthand list.
- In the Perspective view, Select eyeControl using its selection handle.
- In the Set Driven Key window, click on the Load Driver button.
This updates the list to contain the blink attribute.
- Click on the blink attribute in the right-hand list.

Set Driven Key window

3 Key the scale positions

- In the Set Driven Key window, click on the Key button.

Now when the blink attribute is set to 10, the two sweep angles will be set to their open position.

- In the Channel box, change the Blink attribute to $\mathbf{0}$.
- Select the eyelid node within the hierarchy, then click on the makeNurbSphere input node.
- In the Channel box, change the following:

```
startSweep to 0;
endSweep to 360.
```

- In the Set Driven Key window, click on the Key button.

4 Test the results

- Select the eyeControl group using its selection handle.
- In the Channel box, click on the Blink channel name.
- In the Perspective panel, click-drag with the middle mouse button to test the attribute.

Salty blinking

5 Use Set Driven Key on the left eye

- Set the Blink attribute back to 10.
- Select the eyeLid1 node belonging to the leftEye group.
- Load it as Driven in the Set Driven Key window then key the relationship between the blink and the eyeLid node's startSweep and endSweep angles. This eye should work just like the first eye.
- In the Channel box, test the Blink attribute to make sure that both eyes are working properly.
- In the Channel box, set the following:

Blink to 8.

Salty with eyes starting to blink

Adding a pupil attribute

You have now linked attributes to the scaling of a cluster and the sweep angles of a sphere input node. Another node type that can be controlled is a texture node.

You will now control the size of Salty's pupils to give you more control over the facial look. You could use Set Driven Key but for comparison, you will use an expression.

1 Add a new attribute

- Make sure that the eyeControl group is selected.
- Select Modify \rightarrow Add Attribute...
- In the Add Attribute window, set the following:

Attribute Name to pupil;
Data Type to Float;
Minimum Value to $\mathbf{0}$;
Maximum Value to 10;
Default Value to 5.

- Click on the Ok button.

2 Get the ramp position attribute

- Select Window \rightarrow General Editors \rightarrow Channel Control...
- Select Window \rightarrow Hypershade...
- Click on the ramp1 texture from the visor to add it to the selection list.
- From the Non Keyable field, select colorEntryList[1].position.
- Click on the << Move button.
- Click on Close.

3 Use an expression to drive the pupil

- Select Window \rightarrow Expression Editor.
- In the Expression name field, enter eyePupil.
- Click on colorEntryList[1].position in the Attributes list.
- Click in the Expression: field and enter the following expression:
float $\$ p o s i t i o n S t a r t=0.9$;
float \$positionChange $=0.2$;

```
colorEntryList[1].position =
    $positionStart -
    ($positionChange *
    eyeControl.pupil/10)
```

- Click on the Create button.

This expression is set up as a script. You first set up two variables for the start position of the ramp and the amount you want to change the ramp. What follows is an equation that uses the eyeControl's pupil attribute to drive the change value.
As you can see, the Set Driven Key lets you generate the same kind of control without figuring out equations or scripts.

Note: This expression uses Maya's MEL (Maya Embedded Language) to set up the expression. You will learn more about MEL and its syntax in Lesson 23.

4 Test the results

- Select the eyeControl group using its selection handle.
- In the Channel box, click on the pupil channel name.
- In the Perspective panel, click-drag left and right with the middle mouse button.
The pupil does not update until you release the mouse button.

Salty's pupils at their largest size

5 Save your work

Building the whiskers

For Salty's whiskers, a primitive plane will be used. You will then create and assign a shader that uses a transparency map to create the effect of the whiskers.

Using CV editing techniques which you learned in the last lesson, you will shape the whisker surface.

1 Place a half cylinder

- Go to the Modeling menu set.
- Select Create \rightarrow NURBS Primitives \rightarrow Cylinder - \square.
- In the Option window, set the following:

```
Axis to X;
End Sweep to -180;
Radius to 2;
Ratio... to 1;
Sections to 8;
Spans to 1.
```

- Click on Create and then Close.
- Press the 3 key to increase the display smoothness of the shape.
- In the Channel box, rename the nurbsCylinder node to whisker.

Half cylinder
2 Move the whiskers into place

- Scale the surface down a little.

Scaled whisker surface

- Move the surface until it sits in the proper position on Salty's face.

Moved whisker surface

3 Edit CVs on the shape

- Press F8 to go into component selection mode.
- In the Top view, click-drag a selection box around the middle three rows of CVs and scale them along X.

- Repeat this for the next two rows of CVs to scale them out a little.
This creates a more gentle curve at the edge of the whiskers.

4 Scale out the middle CVs

- Click-drag a selection box around the middle two CVs at both ends of the surface.
- Scale these out from the center.

This will add some curvature to the end of the whiskers.

Scaled CVs

- Move these down along the Y-axis.

Now the center of the whiskers droops down a little further than the edges.

Scaled and positioned CVs

- Press F8 to return to object selection.

Texturing the whiskers

The whiskers have been created with one surface and a texture will be used as a transparency map on the material node to create the lines of the whiskers.

1 Create whisker shading group

Because a transparency map will be used, it is important that the highlights do not
appear on the surface. A lambert material node will be used because it does not produce any specular shading qualities.

- Select Window \rightarrow Hypershade...
- Create a new Lambert material node.
- Rename the nodes whiskerSG and lambertWhisker.

2 Map grid texture onto material color

Although the whiskers will eventually be created with just a transparency map, a grid texture will first be mapped onto the color attribute. This means that the adjustments to the texture and placement can be seen in the context of the model view by those who can use hardware texturing.

- Open the lambertWhisker material node's Attribute Editor.
- Click on the Map button for the Color attribute.
- Click on the Textures tab of the Create Render Node window.
- Make sure With New Texture Placement is checked on.
- In the 2D Textures section, click on the Grid button.
- Assign the whiskerSG node to the whisker surface.

If you have texture RAM, you should be able to see the textured surface in the modeling views. If not, you can see the changes to the texture within the Attribute Editor samples and the Hypershade swatches.

Texture on whisker surface

3 Edit the grid texture's attributes

The grid texture is adjusted to produce black lines on a white surface. The lines in the direction of the whiskers are thickened to become more visible and the cross lines are set to be invisible, transforming the grid into a series of parallel lines.

- Open the grid1 texture node in the Attribute Editor and set the following:

Name to whiskerTexture;
Line Color to black;
Filler Color to white;
U Width to 0.2;
\mathbf{V} Width to $\mathbf{0}$.
If the lines of the grid texture do not flow as shown, switch the U Width and \mathbf{V} Width settings.

Whisker texture qualities

Note: If you do not have texture RAM, you will have to wait until you complete a test rendering later.

4 Edit the grid texture placement

The number of lines in the grid texture is not set in the texture node itself. Instead the number of lines, or whiskers, is set in the place2dTexture node.

- Click on the place2dTexture node tab in the Attribute Editor.
- Change the following:

Repeat \mathbf{U} to 8.

Because the thickness of the grid lines for V has been set to be invisible, the grid lines along V will be invisible.

Edited placement attributes

5 Remap grid texture onto transparency

Now that the texture for the whiskers has been developed as a color map, the same texture can be mapped onto the transparency attribute of the same material node. The white areas of the texture will be transparent and the black areas opaque.

- Open the lambertWhisker material node's Attribute Editor.
- With the middle mouse button, click-drag the whiskerTexture node from the Hypershade onto the Transparency attribute in the Attribute Editor.

Assigning texture to tranparency

The one texture node is now mapped onto both the color and transparency attributes of the material node.

Note: Transparency maps cannot be seen by default with hardware rendering. Since the color map and the transparency map share the same placement node, you can use the color map's position to determine the position of the transparency map.

6 View the shading group dependencies

The shading group now contains several nodes - the shading group node, the material node, the texture node and the texture placement node.
The structure of the shading group nodes appears in the open Hypergraph panel. There are two connections between the texture node and the material node which is, in turn, connected to the shading group node itself.

- Move the cursor over each of the connection lines.
The connected attributes of both the up and downstream nodes are indicated.

Hypershade view of connections

7 Add a ramp texture to grid texture

In order to add some more detail to the whiskers, another texture map can be added to the shading group. In this case, an embedded texture node can be used. This is when one texture node is connected to an attribute of another texture node. This overlays the effects of the two textures.

- Open the whiskerTexture node's Attribute Editor.
- Click on Map next to the Line Color attribute.
- In the Create Render Node window, go to the 2D Texture section and click on the Ramp button.
A new texture node and 2D placement node is added to the shading group and connected to the existing texture node, not to the material node.

Shading group with new ramp
The lines of the whiskers now take on the color of the ramp texture.

Texture with ramp

8 Edit the ramp texture parameters

The ramp texture can be adjusted so that the whiskers are light at the ends, and dark and heavy closer to the face. Because the whisker surface is one surface that goes through the body of the seal, the ramp should be symmetrical about the center.

- Open the ramp texture node's Attribute Editor.
- Click on the round selector at the center of the ramp.
The Selected Position should be 0.5 .
- Change the Selected Color to black.
- The other two selectors should be light gray and positioned as shown.

Ramp settings

9 Save your work

Building Salty's nose

You will now build Salty's nose using the techniques learned so far. You will CV pull the surface into shape shown below:

Front view of Salty's nose

1 Place a primitive sphere

- Create a primitive sphere and rename it nose.
- Move the sphere up to the tip of Salty's face.

2 Manipulate CVs on the shape

- Go to component selection mode.
- Use techniques taught in the last lesson to reshape the sphere into the desired shape as shown below:

Edited CVs

3 Create the nose shading group

The shading group for the seal's nose will be similar to that of the seal's body, but with sharper or harder specular shading qualities to produce the effect of a nose that is hard, wet material and slightly reflective.

- Create a new Blinn material node.
- Rename the nodes as follows:

Shading Group node to noseSG;
Material node to noseBlinn.

- Open the noseBlinn node in the Attribute Editor.
- Change the Color to a pale purple.
- In the Specular Shading section set the following:

Eccentricity to below 0.15;

Specular Roll Off to about 0.8;
Specular Color to almost white;
Reflectivity to 0.
The specular highlight on the surface becomes small and sharp, with high contrast against the base diffuse color. Reflectivity has been
turned off since this piece is too small to create any useful reflections in the final animation.

- Assign the noseSG node to the nose surface.

Material qualities of the Salty's nose

4 Save your work

Parenting to the skeleton

It seems like Salty is built and ready to animate. But since you will want these pieces to move when Salty's head moves, you will need to parent them into the skeleton.
Parenting can be used to add nodes into existing hierarchies. To help you visualize the results, you will use the Hypergraph panel's freeform layout where you can move nodes wherever you need them.

1 Hide the main surface

- Select Salty's main body surface.
- Select Display \rightarrow Hide \rightarrow Hide Selection.
Now you can more easily see the joints and the other surfaces

Hidden body surface

2 Rename joints in the Hypergraph view

- In the Hypergraph view, click on the Scene Hierarchy button.
- Dolly and track until you see the joints that belong to the head.
- Press the Ctrl key and double click on joints to rename them. Rename the head joints as shown below:

Salty's head joint names

Renamed joints

3 Move the nodes using Freeform mode

- Make the Hypergraph panel full screen.
- Click on the Toggle Freeform/ Automatic Layout Mode button.
- Dolly out until you can see all off the nodes.
- With the left mouse button, drag the left and right eyes groups, the nose node, and the whisker node next to the head joints.

Freeform node layout

- Double-click on the top nodes of the left and right eye groups.
- This collapses the hierarchies into a single node.

This makes it easier to work with these two nodes.

- Click-drag on the nodes with the left mouse button to move them close to the head nodes.

4 Parent the whisker to the head

- Click-drag with the middle mouse button on the whisker node and drag it onto the noseJoint node.
- Click-drag with the middle mouse button on the nose node and drag it onto the noseJoint node.
- This parents this node to the noseJoint.
Now the whisker will move when the skeleton is animated.

5 Parent the eye groups to the head

- Click-drag with the middle mouse button on the rightEye node and drag it onto the eyesJoint node.
- Click-drag with the middle mouse button on the leftEye node and drag it onto the eyesJoint node.
- This parents these nodes to the eyeJoint.

6 Test the results

- Select the headJoint.
- Rotate it to test the new hierarchy.

- Select Display \rightarrow Show \rightarrow Show Last Hidden.

Rotated neck joint

- Test the rotation with all of the surfaces.

7 Return to the bind pose

- Select the skeleton.
- Go to the Animation menu set.
- Select Skin \rightarrow Go to Bind Pose.

This sets the skeleton is back to its bind pose.

8 Save your work

Conclusion

Salty is now built and ready to animate. In the next lesson, you will add IK chains to Salty's bones, and then you can animate the bouncing ball. You will also begin to take advantage of the extra work used in this lesson to build the eye controls, since keying these features using the new attributes is a straightforward process.

20 Animating Salty

In this lesson, you will make Salty bounce a ball on her nose. At first you will set up Inverse Kinematic (IK) chains that offer you control over the motion of Salty's bones. You will also animate the movement of the eyes so that they follow the ball around the scene.

Salty on the move
In this lesson you will learn the following:

- How to set up IK chains
- How to animate the IK chains
- How to constrain a bouncing ball to Salty's nose
- How to animate the eyeControl group
- Soft body dynamics to animate whiskers

Initial set-up

To start this lesson, you will continue with the file from the last lesson.

1 Change the panel layout

- Select Panels \rightarrow Layouts $\rightarrow 3$ Left Split.
- Set the top left window to a Front view, the bottom left window to a Side view, and the right view to a shaded Perspective view.
- Make the Perspective view the active panel and press the $\mathbf{5}$ key to set smooth shading.

2 Use the Show menu to set up views

- In the Front view panel's Show menu, turn Surfaces to Off.
- Repeat this step for the Side view. This lets you focus on the skeleton in these views while still seeing the surfaces in the Perspective view.

Recommended panel layout

Adding IK single chain handles

To help control Salty's flippers, you need to build inverse kinematic (IK) chains. These will
let you control the flippers while Salty bounces the ball with her nose.

To animate a joint hierarchy, you could rotate each joint individually to set poses for the character. But, this can be time-consuming if you were to set keys for all of the joints.
Instead, you will use an IK chain. With an IK chain, you define a start joint and an end joint. The start joint is known as the root of the chain while the end joint has a corresponding end effector. You define the end effector by placing an IK handle that is then used to control all the bones within the chain.

1 Set the IK handle options

Maya offers you several types of IK chains. For the flippers, you will use an IK single chain solver which is the simplest IK solver.

- Go to the Animation menu set.
- Select Skeleton \rightarrow IK Handle Tool - 1.
- In the option box, set the following:

Current Solver to ikSCsolver.

- This tool is now active. Click Close.

2 Add IK handles to the right flipper

IK chains are defined by a root joint where the chain starts, and an IK handle where the chain ends. This handle can then be used to control the chain.

- Click on Salty's right shoulder joint to set the root of the IK chain.
- Click on the second-last joint on Salty's flipper to place the IK handle.

The chain is drawn between these two joints.

First IK chain

3 Add a second IK handle to the flipper

- Press the \mathbf{y} key to reinvoke the IK Handle Tool.
- Click again on the second-last joint to start another IK chain.
- Click on the last joint on Salty's flipper to place the IK handle. This IK chain will be used to help keep Salty's flipper on the ground as Salty strains to bounce the ball.

Second IK chain

4 Add similar IK chains to the left flipper

- Use the same technique to add two similar IK chains to the left flipper.

Left flipper IK chains

5 Test the IK chains on the right arm

- Select the two IK handles on the right flipper, making sure that you mask everything except the handles.
- Move the flipper in the Side view and watch the results in the Perspective view.
- All the joints in the flipper hierarchy are moved as one. As you move the IK handles, the interior joints bend.

Translated IK handles

- Press the \mathbf{z} key to Undo this move.

Rather than moving the legs during this lesson, you want them to stay on the ground. Later, you will lock them down so that they don't accidentally move on you.

Add an IK spline handle

The IK Spline solver is another type of IK solver that lets you use a curve to control the joint rotations. You can then animate the skeleton by either moving the joints along the curve, or by animating the position or shape of the curve.

This kind of IK chain is a good choice for Salty's neck where most of the animation in this lesson will take place.

1 Set the spline IK options

- Select Skeleton \rightarrow IK Spline Handle Tool -
- In the option box, make sure that the following options are set:

IK handle tool options

- Click Close. This tool is still active.

2 Add an IK spline handle

- Click on the joint at the nape of Salty's neck as the root joint.
- Click on Salty's nose joint as the end joint.
An IK chain is drawn between these joints. At the same time, a curve has been placed along the joints. You can use the panel's Show menu to see this curve.

IK spline chain

3 Show the curve in the Front view

- Change the Side view to another Front view panel.
- In the new Front view panel's Show menu, turn Joints and IK Handles to Off.

Now you can use this window to select and transform the curve itself, while viewing the effect on the joints in the other views.

IK spline curve
4 Test the effect of the new chain

- Select the new curve.
- Move the new curve up in the Front view.
The whole head and neck moves as one, bringing the flippers along.

Moving the spline curve

- Undo this move.

5 Set a key on the flippers

- In the Perspective window, Select all four of the IK handles belonging to the flippers.
- Move the IK handles along the Yaxis to raise the flippers above the ground level just a little.
- Set the Time slider to frame 1.
- Press Shift w to set keys on only the translation channels belonging to the IK handles.

Setting keys helps to lock down the flippers, which helps when you move Salty's neck later.

Tip: To set keys for only translation, rotation or scaling remember the following hotkey combinations:
Shift w-Translation
Shift e-Rotation
Shift r-Scaling

6 Re-test the chain

- Select the new curve.
- Move the new curve down in the Front view.

As the head and neck moves down, the flippers stay planted on the ground.

Curve moved with flippers keyed

- Move the curve up.

The flippers try to stay planted until Salty goes beyond their reach. Now, you can focus on the fact that Salty's back is deforming in an uncomfortable manner.

- Undo these two moves.

Cluster the spline curve

In order to get more control over Salty's motion, you will place a cluster deformer onto the curve, then adjust the cluster weights of the CVs to refine how they will animate.

You could now animate the joints by setting keys for the CVs of the new spline curve, but a cluster will offer better control because of the ability to weight the cluster points.

1 Cluster the curve

By adding a cluster to the new curve, you will be placing the curve's CVs into a special cluster set.

- Select the spline curve.
- Select Deform \rightarrow Create Cluster.

A cluster is now created using the spline's CVs. The cluster is indicated using a small ' c ' icon. This represents a cluster handle node.

New cluster

2 Edit the cluster weights

One key feature of a cluster is the ability to set weights for each CV in the cluster. For Salty, you will use a lighter weight for the CVs near Salty's neck and a heavier weight at her nose. This means that her head will move more than her neck, thereby giving you more subtle control as to how the head moves.

- Select the spline curve.
- Press F8 to enter Component mode.
- Select the four CVs for the curve.
- Select Windows \rightarrow General Editors \rightarrow Component Editor... and click on the Weighted Deformers tab.
- Press Load Components in the Editor.

The four CVs are now listed with their current weight setting of 1.0.

- Enter the following values for the CVs:

$$
\begin{aligned}
& \operatorname{cv}[0] \text { to } 0.25 ; \\
& \operatorname{cv}[1] \text { to } 0.5 ; \\
& \operatorname{cv[2]~to~} 0.75 ; \\
& \operatorname{cv[3]~to~} 1.0 ;
\end{aligned}
$$

Weighted CVs

- Close the Component Editor.
- Press F8 to go back to Object mode.

3 Test the results

Now that the CVs cluster weights have been set, you can move the cluster to see the advantage of using the weights.

- Since one of the CVs is now the current selection, once again Select the cluster handle using the small ' c ' icon.
- Move the cluster down along the Yaxis.
The head and the flippers move.

Moved cluster

- Move the cluster out along the Zaxis using the manipulator in the Perspective view.
The cluster is helping the head move in a more graceful manner. The cluster makes sure that the neck remains fairly stationary while the head moves more freely.
As the head moves, you may notice that a little bit of motion is placed on the neck because the first CV in the IK spline curve has been given a weight of 0.25 . Generally, it is a good idea to not move the first CV of an IK spline curve. For Salty, a little bit of motion is used because of Salty's more limited range of motion.

Moved cluster

- Undo these moves until you return to Salty's start position.

4 Display the cluster's selection handle

- With the cluster handle selected, select Display \rightarrow Object Components \rightarrow Selection Handles.

This toggles on the cluster node's selection handle. Every node in Maya has a selection handle that can be revealed to simplify selection later.

5 Move the selection handle

- Press F8 to go into component selection mode.
- Turn off the points selection mask and turn on the handles mask.

Selection masks

- Click-drag a selection box around the cluster's selection handle to pick this component.
- Move the handle along the Y-axis to place it above Salty's head.
It will now be easier to find later.

Selection handle

- Turn off the handles selection mask and turn on the points mask.
- Press F8 to go back to object selection mode.

Create a ball

To animate Salty bouncing a ball, you need to create the ball itself. This ball will use a simply hierarchy of grouped nodes. One node will be used to animate the bounce of the ball while the top node will be used to constrain the ball to Salty's nose.

1 Create a sphere

- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.
- Name this node ball.
- Press 3 to increase the surface smoothness.
- Click on the input node in the Channel box and set the following:

Radius to $\mathbf{1 . 5}$.

- Move the sphere up until it sits just above the ground plane.

Primitive sphere

2 Delete history

- Select Edit \rightarrow Delete by Type \rightarrow History.

3 Group the sphere to itself

This will create a node hierarchy for your animation. One node will be used to animate the ball's bounce while the top node will be constrained to Salty's nose.

- Select Edit \rightarrow Group.
- Name this node ballConstrain.

4 Create a ball shading group

- In the Hypershade, create a Phong material node.
- In the Channel box, rename this node ballPhong.

5 Add a texture to the shading group

- Press Ctrl-a to open the Attribute Editor.
- Click on the Map button next to Color.
- Choose a checker texture from the Create Render Node window.
- In the checker 1 node tab of the Attribute editor, change the two colors to red and white.
- Click on the place2DTexture node and set the following attribute:

RepeatU to 0.5 .

6 Rename the shading node

- In the Hypershade, select the ballPhong node.
- Click the Show Up and Downstream connections button.
- Press the Ctrl key and click on the phong1SG node. Rename this node ballSG.

7 Assign the shading group

- With your middle mouse button, click-drag the balISG node onto the new sphere.

Ball with checker texture

8 Save your work

Connect the ball to Salty's nose

You now want the ball to move with Salty's nose as she gets ready to start bouncing it. A point constraint will be applied to the top node of the ball group.

1 Constrain the ball to Salty's nose joint

- Go to the Animation menu set.
- In the Front view panel, select Show \rightarrow None, then Show \rightarrow Joints.
- Select the nose joint of the skeleton.

Only the round joint icon at the end of the skeleton should be highlighted. The first bone should not be highlighted.

- Click on the Select by hierarchy button.

- Press the Shift key then Select the ball.

The select by hierarchy mode forces your selection to the top node of the ball hierarchy. The ballConstrain node is the node that you will use to constrain to the nose.

- Select Constrain \rightarrow Point.

Now the ball is constrained to Salty's nose.

Ball constrained to Salty's nose
2 Move the cluster to balance the ball

- Press F8 to go back to object selection mode.
- Select the cluster handle using its selection handle.
- Move the cluster up until Salty appears to be balancing the ball.

Moving the cluster handle

3 Put a selection handle on ball node

You will now place a selection handle on the ball node to make it easier to select.

- Select the ball node.

Use the Channel box to confirm that the correct node is selected.

- Select Display \rightarrow Object Components \rightarrow Selection Handles.
- Press F8 to go into component selection mode.
- Turn off the points selection mask and turn on the handles selection mask.
- Click-drag a selection box around the ball's selection handle to pick this component.
- Move the handle along the Y-axis to place it above Salty's head.

Ball selection handle

- Turn off the handles selection mask and turn on the points mask.
- Press F8 to go back to object selection mode.

Setting up for the animation

To get ready to animate the scene, you will set up the animation preferences, refine the display of Salty in the Perspective view, and use the channel control to make it easier to set keys on the clusterHandle and ball nodes.

1 Set the length of the animation

In the animation preferences, you can set the frames per second to 30 and the length of the animation to 450 frames. This will give you a 15 -second animation.

- At the right end of the Time slider, click on the animation preferences button.
- Click on the Units tab and set the following:

Time to NTSC (30 fps).

- Now click on the Animation tab and set the following:

Playback Start/End to 1 and 450;
Animation Start/End to 1 and 450;
Playback Speed to Normal.
Now the length of your animation is 450 frames long and play back will be at 30 frames per second.

- Click on Save.

2 Prepare the Perspective view

It is a good idea to focus on how the surfaces look when animated.

- In the Perspective view panel, select Show \rightarrow Joints, Show \rightarrow Deformers, and Show \rightarrow IK handles to turn these object types off for this window.
You can now use the three selection handles to quickly select and key the various parts of Salty.

Note: By turning off deformers, you have hidden Salty's cluster handle. This is not a problem because you can use the selection handles to pick and animate this node.

3 Restrict the cluster handle channels

To make sure that you are keying the correct channels, you will make some of the attributes non-keyable on the clusterHandle and ball nodes.

- Select the cluster handle for Salty's neck using its selection handle.
- Select Window \rightarrow General Editor \rightarrow Channel Control.
- Press the Ctrl key and click on all the rotate and scale channels, and then the visibility channel.
- Press the Move >> button to make these channels non-keyable.

cluster3Handle	
Translate X	0
Translate Y	3.06
Translate Z	0
Keyable channels	

4 Restrict the ball channels

- Select the ball node using its selection handle.
- In the Channel Control window, make the translate X, translate Z, the rotate and scale channels, and the visibility channel all non-keyable.

This leaves only the translate Y channel. This is the only channel you will be keying on the ball node.

ballBounce

```
Translate Y 0
```

Keyable channels

Animating Salty

It is now time to get Salty moving. You will start by keying Salty's neck using the cluster handle and then you will animate the ball bouncing. You will start with a single bounce, then you will copy and paste these keys to extend the animation.

1 Set initial keys

- Set the Time slider to frame 20.
- Select both the ball node and the clusterHandle node using the two selection handles.
- Press the s key to set keys for the keyable channels.

2 Set keys on Salty's cluster handle

- Set the Time slider to frame 40.
- Select only the clusterHandle node using its selection handle.
- Move Salty's neck down along the Y-axis.
- Press the s key to set keys for the keyable channels.
This drop is where Salty builds the momentum to start bouncing the ball. This action is designed to give the audience a clear indication that Salty is going to bounce the ball. In traditional animation, this is called anticipation.

Second key position

- Set the Time slider to frame 50.
- Move Salty's clusterHandle up along the Y -axis.
- Press the s key to set keys for the keyable channels.
Salty is now pushing the ball up to project it into the air.

Third key position

3 Set keys on the ball

Salty has been pushing the ball up to project it into the air. You will now key the ball's motion in the air.

- Select only the ball node using its selection handle.
- Press the s key to set keys for the keyable channels at the current frame.

This key makes sure that the ball is touching Salty's nose as it is being pushed off.

Second key position

- Set the Time slider to frame 70.
- Move the ball node up along the Yaxis.
- Press the s key to set keys for the keyable channels.

- Click-drag on the Time slider to scrub through the roughed out sequence.

4 Copy a range of keys

To make Salty bounce the ball three times, you will copy and paste the existing keys to extend the animation.

- Select both the ball node and the clusterHandle using the two selection handles.
- Set the Time slider to frame 20.
- Press the Shift key and in the Time slider, drag to frame 71.

A red selection bar appears to indicate the selected time range. The start and end frames of the selection are displayed in white.

- Click in the Time slider with your right mouse button and select Copy from the pop-up menu.

5 Paste the keys

- Set the Time slider to frame 90.
- Click in the Time slider with your right mouse button and select Paste \rightarrow Paste from the pop-up menu.
New keys have been placed starting from frame 90.
- Set the Time slider to frame 160.
- Paste \rightarrow Paste the frames again at this frame.
- Play back the results.

6 Select the animation curve for the neck

- Open the Graph Editor.

Note: You can open the Graph Editor either in one of the existing view panels using its Panels menu or as a floating window using the Window menu. In earlier lessons, you learned both methods. Now you can begin using the method that you like the best.

- From the Graph Editor, select View \rightarrow Frame All.
- Click on the name Translate Y belonging to the clusterHandle. This isolates this curve from the others.

7 Edit the curve tangents

- Select the bottom three keys on the curve.
- From the Graph Editor, select Tangents \rightarrow Flat.

Free tangent weights Break tangents

- Select Curves \rightarrow Weighted Tangents.
- Click on the Break tangents button and then on the Free tangent weight button.
The first button lets you break the tangents to create a sharp reaction. The second button lets you refine your curves to make them extra steep.
- Press the Shift key and select the tangent handles to the left of each of the selected keys.
- Select the Move tool.
- Click-drag with the middle mouse button to drag the tangents out to increase their weight.
This curve indicates that Salty will slow down to a stop as she drops her neck down.

Tangent handle edits

- Press the Shift key and drag a selection box over the three keys to deselect the tangent handles.
- Press the Shift key and select the tangent handles to the right of each of the selected keys.
- Click-drag with the middle mouse button to drag the tangents up to a vertical position.
This curve indicates that Salty will quickly snap her neck up to project the ball into the air.

Tangent handle edits

- Play back the results.

As the curves suggest, Salty slows down as her head drops then speeds up in order to toss the ball.
Always remember the importance of using the animation curve tangents to refine your motion. The tangent controls help define what happens before and after your keys.

8 Edit the animation curve for the ball

- Click on the name Translate Y belonging to the ball.
- Select all of the keys at the bottom of the curve.
- Click on the Linear Tangents button.
- Select all the keys at the top of the curve.
- From the Graph Editor, select Curves \rightarrow Weighted Tangents.
- From the Graph Editor, select Tangents \rightarrow Flat.
- Click on the Free tangent weight button.
- Press the Shift key and select the tangent handles on the left side of the keys.
- Move the handles to change the weight at this point.

Ball animation curve edits

- Playback the results.

9 Delete the last key on the ball

Since the new locator will be controlling the animation as the ball leaves Salty's nose, the key on ball after frame 190 can be removed.

- Select the ball node.
- In the Graph Editor or Timeline, delete the key at frame 210.

10 Save your work

Bounce the ball off the floor

For Salty's last bounce of the ball off the nose, you will be constraining the ball to another locator. You will then animate the new locator going off screen.

1 Create a new Locator

- Go to frame 190.
- Select Create \rightarrow Locator.
- Use the Channel Control editor to have only the Translation channels keyable.
- Place the Locator in front of the ball.

New Locator in front of ball

2 Constrain the ball to the locator

- Select the new Locator.
- Shift-Select the ball node.
- Press the up arrow to move up the ball's hierarchy to the ballConstrain node.
- Select Constrain \rightarrow Point.

The ball is nose floating half way between Salty's nose and the locator. This is because both the constrains have equal weighting.

The ball with two constrains applied

3 Key the Constraint weights

- Select the ballConstrain node.
- Select ballConstrain_pointConstraint input node and set the following:

NoseJoint W0 to 0;
Locator3 W3 to 1;
The ball is now favoring the nose.

- Go to frame 189
- Select Key Selected for the noseJointW0 and the Locator3W3 attributes.

4 Move the new Locator

- Select the new Locator.
- While holding the \mathbf{v} key, point snap the new locator to the end joint at salty's nose.

The locator point snapped to end joint

5 Key the Constraint weights

- Go to frame 190.
- Select the ballConstrain node.
- SelectBallConstrain_pointConstrain1 input node and set the following:

NoseJoint W0 to 0;
Locator3 W3 to 1;

- Click on the Channel box with your right mouse button and select Key Selected.

Animate the Locator

You will now animate the locator exiting the scene. Since the weight of the constraint is fully on the locator and not the joint, the ball will follow the locator. You will also be adding a floor under Salty.

1 Create a floor

You will create a flat polygon surface for the platform which Salty will perform on.

- Select Create \rightarrow Polygons

Primitives \rightarrow Plane.

- Rename the surface deck.
- Click on the polyPlane input node and set the floor as follows:

Width to 25 ;
Height to 75.

- Move the surface along the negative X-axis so that it is positioned with Salty is at its front edge.

Polygon plane moved to position
2 Set a key on the locator

- Go to frame 190.
- Select the new locator.
- Press sto set a key on the translation channels.
- Go to frame 305.
- Move the locator to the floor and beside salty.
- Set a key for the locator at this position.

The ball on the floor at frame 305
The ball is going straight from the nose to the floor. You will need a key in between where the ball is in the air.

- Go to frame 240.
- Translate the ball in Y over Salty's head.
- Set a key.

3 Refine the motion

- Continue adding keyframes to make the ball bounce more naturally. Use the Graph Editor to modify the curves.

4 Add roll to the ball

To add some rotation to the ball you will add the Rotation Channels back to the ball node.

- Select the ball node.
- With the Channel Control editor, make the rotation channels keyable.
- Go to frame 305.
- Key rotations on the ball as it bounces off screen.

5 Save your work

Finishing Salty's motion

Salty is sure to be upset that the ball is bouncing away out of her control. You will now set more keys to animate Salty's reaction.

1 Key Salty's cluster handle node

- Select the clusterHandle node using its selection handle.
- Go to frame 240.
- Move the clusterHandle along the Zaxis to begin following the ball.
- Press the s key to set keys for the keyable channels.

Salty starts to follow ball

- Go to frame 305.
- Move Salty's cluster handle along the Z-axis then down along the Yaxis so that Salty is looking at the ball.
- Press the s key to set keys for the keyable channels.

Salty watching ball bounce

- Go to frame 340.
- Press the s key to set keys for the keyable channels.

Frame 340

Salty continues to watch ball bounce away

- Go to frame 385.
- Move Salty's cluster handle back along the Z -axis then down a little further along the Y -axis so that Salty is looking out at the audience in a dejected pose.
- Press the s key to set keys for the keyable channels.

Salty in dejected pose

- Play back the results.

Animating Salty's eyes

Earlier, you built a special eyeControl node that is designed to control where Salty is looking and other important eye features. Now you will animate this node to make use of this control.

1 Animate the eyeControl position

- Go to frame 5.
- Select the eyeControl group using its selection handle.
- Move it to be in the same position as the ball.

Eye control node positioned

- Press Shift w to key the translation channels of this node.
- Go to frame 190.
- Press Shift w to key the translation channels of this node.
- Go to frame 300.
- Move the eyeControl node to Salty's right close to where the ball is landing.
- Press Shift w to key the translation channels of this node.

Eyes following the ball

- Go to frame 440.
- Select the eyeControl group using its selection handle.
- Move the eyeControl node out in front of Salty near the ground since Salty doesn't want to make eye contact with the audience.
- Press Shift w to key the translation channels of this node.

Eyes in front looking down

- Play back the results.

2 Animate the worry channel

You will now animate the worry channel to control the shape of Salty's eyes over time.

- Go to frame 5.
- In the Channel box, change the Worry channel to $\mathbf{0}$.
- Click on this channel and use the right mouse button to select Key Selected from the pop-up menu.
- Go to frame 190.
- Again select Key Selected to keep the Worry set to $\mathbf{0}$.
- Go to frame 300.
- Set Worry to 5.
- Select Key Selected.
- Go to frame 440.
- Set Worry to 10.
- Select Key Selected.

Salty worried about dropping the ball

Note: The other two eye attributes will not be animated right now. Blinking will be animated in Lesson 23. The pupil can be animated later as you see fit.

3 Save your work

Making the whiskers flop

With Maya, you can use soft body dynamics to animate Salty's whiskers. Soft body dynamics lets you use forces on an actual surface to get realistic secondary motion.
A soft body is actually a surface that is defined by particles. These particles can then be animated using dynamic forces, and the surface deforms as required.

1 Create the soft body

The whisker surface will be turned into a soft body. The original surface will be hidden and used as a goal for the particles. This means that as the whiskers move around using dynamics, they always try to maintain their original shape.

- Go to frame 1.
- Go to the Dynamics menu set.
- Select the whiskers surface.
- Select Bodies \rightarrow Create Soft Body - \square and set the following options:

Create Options to Duplicate, Make Copy Soft
Hide Non-Soft Object to On;
Make Non-Soft a Goal to On;
Weight to 1.

- Click Create then Close.

2 Open the Component Editor

By setting a weight of 1 , the soft body will always attempt to match the original whisker surface.
You will now edit the individual particle weights to make the edges of the whisker more free.

- Select the soft body whiskers.
- Open the Attribute Editor.
- In the Attribute Editor, click on the CopyOfwhiskersParticlesShape node.
- Open the Per Particle (Array) Attributes section.
- With the right mouse button, click on the goalPP field and select Component Editor... from the pop-up menu.
This window lets you set the weights for the particles on a per particle basis.

3 Go into select particles mode

To edit the particles, you have to be able to pick them. They can be picked using component mode.

- Press F8 to go into component mode.
- Click on the Points mask button to turn it off.
- Click on the Points mask button with the right mouse button and choose Particles.

Selection masks

4 Set goal weights for the points

- Set up a Side view panel and dolly in to see the whiskers.
- Click-drag a selection box around the three middle rows of particles.
- In the Component Editor, press Load Components.
- Click on the Particles tab.
- Set the goalPP to $\mathbf{1 . 0}$ for the selected particles.

Center particle selection

- Select the next two rows of particles on both sides of the whiskers.
- In the Component Editor, press Load Components.
- Set the goalPP to $\mathbf{0 . 7 5}$.

Middle particle selection

- Select the outside rows of particles on both sides of the whiskers.
- In the Component Editor, press Load Components.
- Set the goalPP to $\mathbf{0 . 5 0}$.

Edge particle selection

5 Link gravity to the whisker soft body

To achieve a realistic effect with the soft body, it is important that it is affected by gravity.

- Press F8 to go back to object mode.
- Select the copyOfWhiskers node.
- Select Fields \rightarrow Create Gravity.
- The whiskers are now connected to the gravity field. You can verify this by opening the Dynamics Relationship Editor.

6 Add a spring to the soft body

To make the whiskers bounce, the soft body needs the help of some springs.

- Select copyOfWhiskers.
- Select Bodies \rightarrow Create Springs -
\square and set the following options:
Under Spring Methods set:
Creation Method to Min/Max;
Min Distance to 0;
Max Distance to 1.
- Under Spring Attributes set:

Stiffness to $\mathbf{1 0 . 0 0}$.

- Click Create.

7 Set up cache for whiskers

- Select copyOfWhiskersParticle. You may want to use the Hypergraph to help get the exact node.
- In the Channel box, under the softObjectParticles node, set Cache data to On.
- Select Solvers \rightarrow Scene Caching \rightarrow Enable.
- Play back the results

This will create a cache file so that you can scrub in the time slider and playback more quickly in subsequent playbacks.

8 Save your work

You will use this scene in your next lesson.

Playblasting the animation

You will now Playblast the scene to test the results. Playblast gives you fast access to your animated sequence and lets you quickly evaluate the results using a Movie Player movie.

1 Set up the Perspective view

- From the Perspective panel, select Show \rightarrow None to turn all object types off. Next, select Show \rightarrow Surfaces and Show \rightarrow Meshes to turn these types on. This gets rid of any icons that may be cluttering up the view.

2 Playblast the animation

- Select Window \rightarrow Playblast - \square and set the following:

View to On;
Show Ornaments to Off;
Display size to From Render Globals;

Save to file to Off.

- Click the Save button.
- Select Window \rightarrow Playblast.

3 Play back the movie

Conclusion

In this lesson you have taken advantage of the set-up time you put into preparing Salty. The cluster handle helped simplify the animation of Salty's neck and the eye control node made it much easier to control various aspects of these important parts of your character.

> - Use the Movie Player controls to play back the sequence.

In the next lesson, you will build a stage for Salty to perform on and then set up the scene's lighting.

You may be wondering why you didn't set keys on Salty's blinking - you will do this by building a special command in Lesson 23, using Maya's scripting language.

21
 Building the Set

In this lesson, you will build Salty's stage which is sitting at the edge of a swimming pool. This stage will be created using: a back surface as a wall, the polygonal deck surface created earlier, two polygonal surfaces which will act as the side and bottom of a pool, and a NURBS surface that will act as the water's surface.

Afterwards, you will place lights into the scene to create some mood and atmosphere. Several lights will be used to give the stage the look of a performance.

These surfaces will be built using very simple geometry that will be enhanced in later lessons when you build and assign shading groups to the various parts.

In this lesson you will learn the following:

- How to draw a spline curve
- How to create a lofted surface
- How to use curve snapping
- How to place multiple lights into a scene
- How to add color to the lights

Initial set-up

To start this lesson, you will continue with the file from the last lesson.

1 Create a layer for the set

To help manage the scene, you will set up a second layer for the new objects and the deck surface.

- Open the Layer Editor by selecting Window \rightarrow Layer Editor.
- Create a new layer and call it stage.

2 Template the seal layer

- Click on the Salty layer name.
- Click the Template button to template everything on the layer.

3 Set up your view panels

- Select Panels \rightarrow Saved Layouts \rightarrow Four View.

Make sure that all of the view panels are in wireframe mode. This will make it easier to see the wire lines as you build the stage.

Four view panels

Creating the pool

The first part of the set is the pool which will be built using polygonal surfaces that are the same size as the deck surface.

1 Create a new polygonal surface

You will create the side and bottom of the pool using a polygonal surface that has the same size as the deck surface.

- Go to the Modeling menu set.
- Select Create \rightarrow Polygon Primitives \rightarrow Plane.
- Rename the surface poolSide.
- Click on the polyPlane input node and set the floor as follows:

Width to $\mathbf{2 5}$;
Height to 75.

- Move the surface along the X-axis so that it is positioned in front of the deck surface.

New surface

2 Position the pivot point

You will now move the surface's pivot point from the center to one of the corners. This will make it easier to allow the side of the poolSide surface to share a common edge with the deck surface.

- Press the Insert key on the keyboard.
- Hold down the \mathbf{v} key to activate the Snap to points function. This will let you snap to the edge of the surface.
- Drag the center of the pivot manipulator to the far corner of the poly surface.

Relocated pivot point for surface

3 Position the pool surfaces

The pivot point's new position allows you to snap the two surface edges together.

- Press the Insert key again to return to the move manipulator.
- Hold down the v key.
- Move the poolSide surface to the front edge of the deck surface.

4 Duplicate and rotate the surfaces

The third surface is created by duplicating the second surface. This will maintain the repositioned pivot point. The new surface is then rotated about the common edge.

- Select Edit \rightarrow Duplicate - \square to open the option window and set the following:

Duplicate Upstream Graph to

 On.- Click Duplicate and Close.

The third surface is created with a duplicated polyPlane input node.

- Rename the surface poolBottom.
- Move the duplicate surface down to form the pool bottom.

- Select the poolSide surface.
- Rotate the surface -90 degrees around the Z-axis.

The pool and deck are now complete.

Rotated surface

Tip: \quad By keeping the surfaces the same size and proportion, one shading group can later be applied to all three surfaces without affecting the detail of the texture maps. In this case, you should let the surfaces overlap to maintain the same size and proportion.

5 Create the water surface

To simulate the effect of a pool filled with water, the surface of the water will be created as a NURBS surface which will later be textured to appear wavy.

- Select Create \rightarrow NURBS Primitives \rightarrow Plane.
- Rename the surface water.
- Click on the makeNurbsPlane input node and set the floor as follows:

Width to 25;

Length Ratio to 3;

U Patches to 1;
V Patches to 1.

- Move the surface about 1 unit below the deck surface.
- Move it in front of the poolSide surface as shown below.
It is not necessary for the edge of the water surface to be snapped to the side of the pool. If the surfaces intersect each other, the rendering process will define the line of intersection.

Water surface in position

Note: A displacement map will be assigned to this surface to create the waves and, by intersecting them, it ensures that the water remains tight to the side of the pool - instead of creating a gap.

Creating the back wall

You will now create a curved vertical wall as the backdrop to the scene. This wall will be created by lofting two curves to create a NURBS surface.

In the last lesson, you learned how to sculpt a NURBS surface by editing the control vertices. In this situation, you will focus on creating a curve with the desired shape which you can then use to create the surface.

1 Draw a curve

To form the base line of the wall, a straight single span curve is positioned to stretch between the opposite edges of the deck surface. For this purpose, an edit point curve will be used.

- Select Create \rightarrow EP Curve Tool.
- Hold down the \mathbf{v} key.
- Snap the first edit point to one of the deck surface's isoparm grid points.
- Snap the second point to the opposite side of the surface.
Because the curve is coincident with the center line of the surface, it cannot be seen while it is being created.
- Press the Enter key to finish the curve construction.

Single span curve snapped into position
Note: It is important that you only click once at each location, or else two edit points will be placed at the same location; the curve will extend beyond the points and double back on itself.

2 Select and move the center CVs

By moving the curve's two middle CVs, you create a symmetrical and uniform curve that stretches between the edges of the deck surface. To do this, the curve's CVs must first be displayed.

- Press F8 to change the selection mask to Select by component type.
- Select the two CVs close to the middle of the curve.
- Move the CVs back away from the seal.

CVs moved to shape the curve

3 Duplicate and move the curve

The top of the wall is defined by a copy of the curve.

- Press F8 to change the selection mask back to Select by object type.
- Select the curve.
- Select Edit \rightarrow Duplicate - \square to open the option window and set the following:

Duplicate Upstream Graph to Off.

- Click Duplicate and Close.
- Move the duplicate up along the Yaxis.
The curve should be positioned at the desired location for the top edge of the back wall.

4 Create a loft surface

A single span NURBS surface is created that connects between the two curves.

- Select the two curves.
- Select Surfaces \rightarrow Loft.

A surface is created between the two curves.

- Press the $\mathbf{3}$ key to increase the surface smoothness and the 5 key to turn on smooth shading.

Finished back wall

LIGHTING THE SET

Now that the set is ready, you will add lights. Lighting is an important part of any scene since it adds mood and atmosphere.

Creating spot lights

In this scene, you will illuminate Salty with three main spot lights that will be colored green and blue. When all these lights combine you will get white light with fringes of color at the edge.

1 Create and position a spot light

You will create a spot light in the scene then reposition it using the show manipulator tool. You will then use the look through function to more accurately position the light.

- Go to the Rendering menu set.
- Select Lights \rightarrow Create Spot Light.
- Select the Show Manipulator tool.
- Position the look at and eye points of the light so that the light is pointing down at Salty from the upper left.

New position of second curve

- From one of the orthographic view's Panel menu, select Look Through Selected.

The panel view changes to a Perspective view that looks through the spot light.

View looking through the spot light

- Dolly, tumble, and track the view in the spot light view panel.

The position and direction of the spot light changes to that of the changed view.

- Change the position of the view so that it is centered on the seal from above.

View through the repositioned spot light

2 Change the angle of the spot light

The cone angle of the spot light is changed using the light's multilayered manipulators.

- Click twice on the small blue manipulator button or select
Display \rightarrow Camera/Light
Manipulator \rightarrow Cone Angle.
- The circular outline in the spot light view represents the outside extent of the spot light's cone.
- Click-drag on the blue dot of the manipulator to change the cone angle.
The circular outline of the manipulator should slightly overlap both the wall and the water surfaces.

Modified cone angle of the spot light
3 Change the penumbra of the spot light
The spot light is created with a hard outside edge to the cone of light. The light can be given a softer edge by adjusting the penumbra.

- Click once on the small blue manipulator button or select
Display \rightarrow Camera/Light Manipulator \rightarrow Penumbra.
- Click-drag the manipulator in the spot light view to increase the angle of the penumbra slightly.
This softens the edge of the spot light.

4 Change the spot light color

You will now give the spot light a color to create more dramatic lighting, and to differentiate it from the other light sources that will be added later to the scene.

- Press Ctrl a to open the Attribute Editor.
- Change the Color to a full, saturated red.

5 Use smooth shading and default lighting

In order to see the approximate affect of the spot light, you can use Maya's smooth shading and lighting in the hardware rendering of the views.
If you do not have hardware texture RAM, then skip to the next step and you can test render the scene after the lights have been placed.

- Press the $\mathbf{7}$ key to turn on Use All Lights in the Perspective view panel.
- Press the 5 key then the $\mathbf{7}$ key in the spot light view panel to turn on smooth shading and the lights.
You can now see the lighting, but it seems a little bit broken and fuzzy.

6 Increase the NURBS smoothing

The curved wall is displayed as a flat plane and the lighting that is not rendering the affect of the spot light very well. This is because of the low display subdivisions of the NURBS surface.

- Select the wall surface.
- Select Display \rightarrow NURBS Smoothness \rightarrow Custom - \square.
- In the Shaded section of the option window:

Set Surface Div per Span to
32.

- Click Apply and Close.

The light areas of the surface are now more defined.

- Select the water surface.
- Select Display \rightarrow NURBS Smoothness \rightarrow Custom.

Tip: \quad The higher the surface shading divisions are set, the smoother the hardware lighting will appear - but increased division settings will slow down the interaction of the model views.

7 Increase the polygon smoothing

The detail of the hardware lighting conditions for polygon surfaces is determined by the size of the polygons the smaller the polygons, the more detailed the lighting conditions.
In this case, the size of the polygons is determined by the number of polygon subdivisions which is set in the input shape node.

- Select the deck, poolSide and poolBottom polygon surfaces.
- In the Channel box, click on the polyPlane node under the Inputs section.
- Click into the Subdivision X field then press the Shift key and click into the Subdivision Y field.

The first value highlights in white while the second highlights in black, allowing both to be changed at once.

- Enter a value of 32.

Entering values in the Channel box

The subdivisions of all three surfaces are increased. When a series of objects or nodes are selected, the changes that are made in the Channel box affect the particular attribute on all of the selected nodes.

- Deselect the surfaces to see the increased detail of the lighting.

Increased polygon subdivisions
By increasing the smoothness of the surface display, you can see the lighting more accurately.

8 Duplicate and position the spot lights

- Select and Duplicate the spot light.
- In the spot light view panel, select Panel \rightarrow Look Through Selected.
- Tumble the spot light view to a position looking from the right side.
- Change the spot light Color to full saturated blue.

Three different colored spot lights

- Repeat the procedures above to create a green spot light positioned to the left.

Three different colored spot lights

9 Test render the scene

If you do not have texture RAM, then you should test render the scene to see the colored lights.

- In one of the orthographic panels, select Panels \rightarrow Panel \rightarrow Render View.
- From this panel, select Render \rightarrow Render \rightarrow persp.

Software rendering of set

Note: Salty does not render because she is templated.

Creating background lighting

With the main spot lights established, it is necessary to light the background wall of the stage. You will also create additional ambient lighting.

1 Create and position a spot light

A series of spot lights will be used to illuminate the back wall. The lights should focus on a centralized area of the wall where a logo will be later assigned.

- Select Lights \rightarrow Create Spot

Light.

The light is positioned at the origin.

- Select Show Manipulators.
- Position the manipulators so that the light is shining down on the center of the back wall as shown.

Hardware rendering of the light position

- If you cannot see the lights with hardware rendering, use the Look Through Selected to position the light.

View looking through the spot light

[^4]
2 Set spot light parameters

To contrast the dynamic colored spot lights that focus on the seal, several identical spot lights illuminate the background with a warm soft light that washes the wall.

- In the Channel box, select the new light's spotLightShape node and set the following:

RGB to 11 0.75;
Intensity to 0.5 ;
Cone Angle to 60;
Penumbra Angle to 20;
Dropoff to 5.
The Dropoff setting causes the light to lose intensity as the distance from the source increases. The RGB settings define a pale yellow color for the light.

3 Duplicate and position the lights

Once the settings are established for the first light, it can be duplicated to create an even pattern of lights across the back wall.

- Move the spot light to one side of the Z-axis.
- Duplicate the spot light.
- Move the new light to the other side of the axis.
- Duplicate and Move two more spot lights.
The four spot lights should be equally spaced and centered around the axis line.

Hardware rendering of four lights

4 Adjust all of the spot lights

In situations where you have multiple lights which you want to stay the same, the Channel box can be used to modify any of the attributes.

- Select all four of the background spot lights.
In the Channel box, you can see that more than one node is selected because the node name is followed by three dots.
- In the Channel box, click on the top light's spotLightShape node.
- Change the Cone Angle to 70.

The cone angles are now set for all four of the selected lights.

Tip: \quad The attributes for the node that was selected last will be displayed in the Channel box. If different node types are selected, the changes that are made to the attributes will only affect those nodes that have the attributes.

5 Add an ambient light

Ambient lighting is needed to fill in the shadows and areas of the scene that are not
directly lit with the spot lights. Even though there are a lot of lights in the scene, the light from a spot light will not "bounce" but will only illuminate what it is directly shining on. Ambient light is good for filling in the dark areas.

- From the Rendering menu set, select Lights \rightarrow Create Ambient Light.
If you have hardware lighting turned on, you will see that this light significantly increases the illumination in the scene.
- Move the light behind Salty and slightly above the deck surface.
The light in this location will approximate the light that is expected to bounce off the deck.

Ambient light in position

- In the Channel box set:

Intensity to $\mathbf{0 . 2}$.

- In the Attribute Editor set:

Color to a pale turquoise;
Ambient Shade to 0.75.
The Ambient Shade attribute affects the amount that the ambient light illuminates surfaces that are facing away from the source.

Position of the ambient light source

Animating the camera

To preview the animation, you will now add a new camera and animate its position. When working in 3D space, an animated camera can help accentuate the depth of a scene.

1 Untemplate the Salty layer

- Click with RMB over the Salty layer button and select Standard from the pop-up menu.

2 Create a new camera

It is a good idea to always create a new camera for your animations. The default Perspective view should be saved for modeling, and set up while the new camera is used for the final take.

- Select Create \rightarrow Camera.
- Select the Show Manipulator tool.

Position the look at point of the camera just behind Salty and the eye point of the camera in front.

Position of new camera

- From the Perspective view panel, select Panels \rightarrow Perspective \rightarrow camera1.

Don't worry if you don't like the resulting view. It's difficult to properly position a camera using the manipulators. You can now fix the view using the normal view tools.

3 Set focal length

- In the Channel box, set the Focal Length to 30.
This widens the view angle to show more of the scene.

4 Position the camera

- From the Perspective panel, select View \rightarrow Camera Settings \rightarrow Resolution Gate.

The view expands and a line is drawn around the area that will be rendered. This allows you to see the scene and animation outside of the rendered area.

- Dolly, track and tumble in this view to get a good view of Salty.

You should see the water surface in the foreground and the illuminated area of the back wall.

Scene with resolution gate on

5 Keyframe the camera position

- Go to frame 340.

This should be the point where Salty is just finished watching the ball bounce away.

- From the camera1 panel, select View \rightarrow Select Camera.
- Press the s key to set a key at this position.

Scene at frame 340
6 Keyframe a second position

- Go to frame 400.

This should be the point where Salty is just finished watching the ball bounce away.

- Dolly in for a close-up of Salty and press the s key to set a key at this position.

Scene at frame 400

Playblasting the animation

You will again Playblast the scene to test the results. It is always good to do rough tests to make sure that everything is working properly.

1 Set up the Perspective view

To Playblast you do not need to see the resolution gate outline.

- From the Perspective panel, select View \rightarrow Camera Settings \rightarrow No Gate.
- From the Perspective view, select Show \rightarrow None to turn all object types off then select Show \rightarrow Surfaces and Show \rightarrow Meshes to turn these types on.

2 Playblast the animation

- Select Window \rightarrow Playblast... - \square and set the following:

View to Off;
Show Ornaments to Off;
Display size to From Render Globals;

Save to file to Off.

- Click the Save button.
- Select Window \rightarrow Playblast...

3 Playback the movie

- Use the Movie Player controls to play back the sequence.

4 Save your work

If you like, save your work.

- Select File \rightarrow Save Scene As... and save your work as Salty5.

Conclusion

Your scene is now built and lighting has been applied. Now you can build shading groups for the various surfaces to create a more interesting environment for Salty to bounce her ball.

LESSON 21

Conclusion

22
 Texture Mapping

In this lesson, you will add different kinds of texture maps to the stage, then prepare the file for rendering. The stage's simple surfaces will become more visually complex using textured shading groups.

The tiled deck and pool surfaces will be textured using a grid bump map, giving an appearance of being raised. The water surface will be created using a displacement map that actually raises the surface. The water's texture will include animated attributes to give the water a more realistic appearance.

The textured set
In this lesson you will learn the following:

- How to use a bump map texture
- How to build and animate a displacement shader
- How to build a layered shader
- How to set up a textured light
- How to set up a raytrace rendering
- How to render the final animation

Initial set-up

To start this lesson, you will continue with the scene file from the last lesson.

1 Set up your panel arrangement

- Select Panels \rightarrow Saved Layouts \rightarrow Hypershade/Render/Persp.
- In the Perspective view panel, select Panels \rightarrow Perspective \rightarrow camera1.

Creating the deck shading

The floor and the side of the pool will be textured using a series of grid textures that give it color and material qualities.

1 Create and assign a phong material

To produce a shiny, reflective surface for the floor and side of the pool, a phong material node will be used.

- In the Hypershade panel, Create a new Phong material.
- Rename the nodes tileSG and tilesPhong.
- Assign the tileSG node to the deck, poolSide and poolBottom geometry.

Tip: \quad The nodes can be renamed in the Hypergraph by double-clicking on the swatch with ctrl key name bar and entering a new name.

2 Map a grid texture to the color

Instead of using a simple color for the material, a grid texture is used to produce a colored tile pattern on the floor.

- Open the tilePhong node's Attribute Editor.
- Click on the Map button next to Color.
- In the Create Render Node window, make sure the Textures tab is up.
- From the 2D texture section, select the Grid texture.

3 Set the grid color

Once the texture is assigned, the parameters of the texture node can be adjusted. The overall fill color of the tiles is set to one color, while the joints between the tiles is set to be a different color.

In the Attribute Editor:

- Rename the node gridColor and set the following:

Line Color to a pale yellow;
Filler Color to a dark turquoise;
\mathbf{U} Width and V Width to $\mathbf{0 . 0 2}$.
A turquoise grid with thin yellow lines is produced.

Settings in Attribute Editor

- Next open the Effects section and set the following:

Filter to 0.5.

4 Set grid placement

- Click on the place2dTexture tab in the Attribute Editor.
- Rename the node sharedGrid.

This node will be shared by other textures later.

- Increase the Repeat UV to 8 and 24.

This changes the number of grid squares across the entire surface.

Attributes of the texture placement

5 Set your Render Globals

Even if you are able to display the scene with hardware texturing, the quality of the texture does not display very well on the surfaces. It is necessary to create a software rendering of the surfaces in order to evaluate the tile pattern.

- In the Render View panel, select Options \rightarrow Render Globals...
- Open the Anti-Alias Quality section.
- Set the Presets to Intermediate Quality.
Notice that the anti-aliasing attributes change.
- Open the Resolution section.
- Set the Render resolution to 320×240.

6 Test render the scene

- In the Render View panel, select Render \rightarrow Render \rightarrow camera1.
- Once the rendering is finished, press the Keep Image button.
This allows you to keep a series of renderings for comparison purposes so that you can watch the development of the shading group.

Test rendering of the color texture

Note: A scroll bar is placed at the bottom of the panel which you can use to scroll between the different test renderings. Renderings that are kept are not saved onto the hard drive and are only maintained while Maya is running.

Adding a bump map

A bump map is a special map type that lets you render a surface as if it has some surface relief. The areas of black, gray and white on the bump map create the effect of a raised surface when rendered.

1 Map grid to bump node

A second grid texture is used to produce a bump map that will produce the appearance that the lines between the tiles are recessed. A second texture node is used so that the thickness of the lines can be different than the gridColor.

- In the Hypershade, double-click on the tilePhong node.
- Click on the Map button next to Bump Mapping.
- In the Textures section of the Create Render Node window, turn With New Texture Placement to Off.
- From the 2D texture section, select Grid.
In the Hypergraph, a bump2d node is placed between the texture and material nodes, but no texture placement node is produced.

Multilister view of the shading group

2 Set bump and texture attributes

The depth of the bump is set in the bump node, and the areas that are to be recessed are set in the grid texture node. Any color that is used in the texture will be ignored, because the bump map only deals with the grayscale or alpha channel values.

- In the Attribute Editor for the bump2d node, set the following:

Bump Depth to -0.1.

The dark areas of the texture will appear slightly recessed.

- Click on the new grid tab to bring this node forward and set the following:

Name to gridBump;
Line Color to black;
Filler Color to white;
\mathbf{U} Width and V Width to $\mathbf{0 . 0 2 5}$.

Bump texture attributes

- Next open the Effects section and set the following:

Filter to 0.5.

This blurs the texture less than the default setting of 1.0. For most textures, you will generally want a lower filter setting.

Tip: \quad The line thickness for the bump map is set to be thicker than the color texture so that the bump will occur within the tile color instead of the fill color.

3 Share the texture placement node

Because the color map and bump map need to be positioned identically on the surface, the texture placement node for the color map will be used for the grid map.

- With the middle mouse button, click-drag the sharedGrid swatch onto the gridBump swatch.
The 2D texture placement node for the first grid is connected to the second grid.

Hypergraph view of shading group

Tip: You could use separate texture placement nodes but you would have to make sure that they both had identical
attribute settings. Using the one node simplifies changes that you could make to the number of tiles on the surface.

4 Test render the scene

To see the effect of the bump map, the scene must be rendered.

- Dolly into the Perspective view to get closer to the tiles.
- In the Render View panel, select Render \rightarrow Redo Previous Render.
- Once the rendering is finished, use the scroll bars at the bottom of the panel to compare this rendering with the previous one.
If the view or lighting conditions have not been modified, it is easy to evaluate the material before and after the change.
- Press the Keep Image button to keep this rendering.

Rendering of bump texture

Note: If you do not select to keep the latest rendering, it will be replaced the next time the scene is rendered.

Refining the floor material

You will now reassign the bump map as a specularity map. You will then preview the results using a raytrace rendering. Raytracing lets you see reflections and refractions.

1 Connect node to shading group

You will now connect the gridBump node to the material node as a specularity map. This texture can now play two roles.

- In the Hypershade, click-drag with middle mouse button the gridBump swatch onto tilePhong.
- Select Specular Color from the pop-up menu.

Hypergraph view of shading group connections

2 Test render the scene

In order to see the subtleties of the bump texture and added effects of the shading group, you can produce a test rendering that uses raytracing.

- From the Render View panel, select Options \rightarrow Render Globals...
- Open the Raytracing Quality section and set the following:

> Raytracing to $\mathbf{O n}$;
> Reflections to 1 ;
> Refractions to 1 ;

These settings only allow 1 level of reflections, and refractions. This will keep rendering times faster for your tests.

- In the Render View panel, select Render \rightarrow Redo Previous Render.

Rendered floor with raytracing

The water shading group

The water is going to be textured using a color texture that is also mapped as a displacement map. This means that the surface will raise and lower based on the value of the map texture. Compared to bump mapping, a displacement map is slower but achieves more realistic results.

1 Create and assign a Blinn material

- Create a new Blinn material node with shading group.
- Rename the nodes waterSG and waterBlinn.
- Assign waterSG to the water surface.

2 Edit transparency, specular and raytrace attributes

- Open the waterBlinn node in the Attribute Editor and set the following:

Transparency to about 0.3.

Tip: Open the color swatch and set Value to about 0.3 .

In the Specular Shading section:
Eccentricity to about 0.06;
Specular Roll Off to over 0.9;
Specular Color Value to 0.7;
Reflectivity to 0.4.

- In the Raytrace Options section:

Refractions to On;
Refractive Index to 1.33;
Refraction Limit to 1;
Reflection Limit to 1.

3 Create a water color map

- In the Hypershade, select Create \rightarrow Create Render Node...
- In the Textures section of the Create Render Node window, turn on With New Texture Placement.
- In the 2D texture section click on the Water texture.
- Rename this node waterColor.
- In the Water Attributes section of the Attribute Editor, set the following:

Number of Waves to 20;
Wave Amplitude to 0.075 ;
Smoothness to 1.0.

- In the Color Balance section, set:

Color Gain to a bright turquoise-blue;
Color Offset to a dark saturated blue;

4 Connect the map to the shading group

- Using the Hypershade, click-drag with middle mouse button the waterColor texture node onto the waterBlinn material node. select Color from the pop-up menu.

5 Create a displacement node

- Open the waterSG node's Attribute Editor.
- Drag the waterColor texture node onto the Displacement Material attribute.

Displacement in shading group

- View the shading group in the Hypershade.
Notice that the shared texture node is connected to the material node and to a new displacement shader node. This node is similar to a bump node except that it connects directly to the shading group node and not to the material node.

Note: A displacement map moves the actual geometry when rendering, whereas a bump map only gives the rendered appearance of bumps in the material surface.

6 Animate the waves

Since texture nodes are just like other nodes in Maya, their attributes can be keyed. You are now going to key some of the wave attributes so that the water moves during the animation.

- Set the Time slider to frame 1.
- Open the waterColor node's Attribute Editor.
- With the right mouse button, click and hold on the Wave Time attribute.
- From the pop-up menu select Set Key.

Setting a key on a texture node attribute

- Change the Wave Frequency to 5.0.
- Select Set Key from the pop-up menu for the Wave Frequency attribute.
The attribute fields is colored to indicate that keys have been set for these attributes.
- Change the current frame to the last frame of the animation.
- Change the Wave Time to 2.
- Select Set Key.
- Change the Wave Frequency to 6.0.
- Select Set Key.

7 Change the direction of the waves

- Open the texture placement node for the waterColor node in the Attribute Editor and set the following:

Rotate Frame to 90.
8 Test render the water material

- Go to first frame button in the Time slider.
This should pop your camera back to its initial position.
- In the Render View panel, select Render \rightarrow Render \rightarrow Camera1.
Oops! there doesn't seem to be very many waves.

Raytraced rendering of the water

9 Increase the surface tessellation

- Select the water surface.
- Open the Attribute editor.
- Open the Tessellation section, and then the Explicit Tessellation Attributes section.
- Set Explicit Tessellation Attributes to On.
- In Primary Tessellation Attributes set the following:

Set Number U to 50;
Set Number V to $\mathbf{5 0}$.

- In the Render View panel, select Redo Previous Render.
Notice that the detail of the waves has increased dramatically.

Rendering with increased surface tessellation

Note: Increasing the tessellation of the surface can greatly increase the rendering time but is needed to achieve the detail.

LAYERED SHADERS

A unique material node type in Maya is the layered shader node. This material node lets you layer other material nodes together to create more sophisticated effects. The layered shader can be fed by other material nodes and can therefore combine different material effects in one shading group.

The wall shading group

The back wall is going to be designed to look like a plaster wall that is peeling to reveal wood panels below. A layered shading group will be used to achieve this effect.

1 Create a layered shading group

- Create a Layered Shader material node with a shading group node.
- Rename the nodes wallSG and wallLayered.
- Assign the shading group to the back wall surface.

2 Create the paint material

A material node is created for the paint and logo that will be applied to the back wall. The material qualities should be set to represent a painted surface with an image texture mapped as a painted logo or sign. Because this node will be included within the layered shader, it does not need to be created with a shading group node.

[^5]- In the Materials tab of the Create Render Node window:

Turn off the With Shading
Group option.
Create a Blinn material node.

- Open the Attribute Editor for the new Blinn node.
- Rename the new node paintBlinn.
- In the Specular Shading section, set:

Eccentricity to 0.4;

Specular Roll Off to 0.9;
The Value of the Specular
Color to 0.8;
Reflectivity to 0.1 .

3 Add the material to the layered shader

- Open the wallLayered node's Attribute Editor.
The Layered Shader Attributes section contains a green default swatch. This is the default layer.
- From the Hypershade, drag the paintBlinn node onto the wallLayered Layered Shader Attributes section in the Attribute Editor.
The paintBlinn node is added as a second layer of the blue swatch in the layer of the shading group.

Material node added to the layered shader

- Click on the boxed "X" below the green swatch.
This deletes the default layer of the shading group. The paintBlinn is now the only layer of the wallLayered node.

Default node deleted

Note: If you click in the space of the boxed region for the Layered Shader Attributes section, a new layer is created with the default green. Material or texture nodes can be mapped onto this layer instead of dragging from the Hypershade.

[^6]- Click on the Map button for the Color attribute.
- In the 2D Textures section of the Create Render Node window:

Turn With New Texture Placement on;
Select As stencil;
Create a new File node.
A stencil1 utility node and a file1 node have been added to the shading group.

5 Reference an image file

- Open the Attribute Editor for the file1 node.
- Click on the Browse button next to Image Name.
The file browser window opens.
- In the sourceImages directory, open the logoStencil.tiff file.
- In the Effects section:

Set Filter to 0.2.
The logo image is mapped as a texture onto the material.

6 View the shading group in the Hypershade

In the Hypershade window, one of the texture placement nodes connects to both the stencil node and to the second texture placement node.

- Press the Ctrl key and double-click on the shared texture placement node.
- Enter the new name placeLogo.

7 Position the image

- Open a Side view panel then dolly until you can see the entire back wall.
- Select the placeLogo node in the Hypershade
- In the Attribute Editor, change the Rotate UV to -90.0.
- Click the Interactive Placement button.

Texture interactive placement manipulator
The wall is outlined with the red interactive placement manipulator.

- With the middle mouse button, click-drag the red square, at the midpoint of one of the surface edges, to a new position. The position of the image on the Multilister swatches reflects the manipulation and the values in the Attribute Editor change.
- Adjust the four sides of the manipulator until the texture is positioned as shown.

Stencil texture positioned

Note: If you have hardware texturing, you can barely see the changes on the surface.

- In the Render View panel, select Redo Previous Render.

Test render of stencil

8 Create the image mask

In order to remove the white areas of the logo, a grayscale image file can be used as a mask for the stencil node.

By using an image as a mask, you isolate part of the texture to be used and part of the texture to be ignored.
When associated with the stencil, the black areas of the mask represent areas of the image that you want to keep while white areas represent areas that you want to be ignored. Gradations of gray would create a partial masking of the image.

- In the Hypershade, select Create \rightarrow Create Render Node...
- In the Create Render Node Window:

Turn With New Texture
Placement off;
Set the 2D Texture type to Normal;
Create a File texture node.
The new file2 node appears in the Textures section of the Hypershade.

- In the Attribute Editor, click on the Folder icon next to Image Name.
- Open the logoMask.tiff image file.
- In the Effects section:

Set Filter to 0.2.

9 Connect the stencil to the shading group

- Open the Attribute Editor for the stencil1 utility icon.
- Drag the new mask file2 node onto the Mask attribute in the Stencil Attributes section.
- In the Hypershade, drag the placeLogo node onto the file 2 mask node.
The mask now shares the same positioning as the logo image and the white area disappears from the material node.
- View the shading network in the Hypershade.

The placeLogo node is connected to all of the texture nodes. You only need to adjust the one node to reposition the logo on the surface of the wall.

Image of Hypergraph

Note:
There are more connections between the placeLogo and mask file nodes because of the way the connections were made.

10 Modify the paint color

Because the logo has been mapped onto the material node as a stencil, the background color of the material must be adjusted in the stencil node and not on the material node.

- Open the Attribute Editor for the stencil1 utility node.
- Open the Color Balance section.
- Change the Default Color swatch to an appropriate color.
The base color of the shader updates on the Hypershade swatches.
- Re-render the scene to see the effect of the shading group to this point.

Rendering of the stencil logo

Note: If the proportions of the logo do not look correct, you can adjust them by adjusting the placement on the placeLogo node.

Adding to the layered shader

The first layer of this shading group represents the painted wall. You will now add a second layer and use a map to set the transparency between them. The lower level will then be textured to look like wood.

1 Create a base material node

- Create a new Phong material node without a shading group node.
- Rename the node woodPhong.
- Open the Attribute Editor for the wallLayered node.
- Drag the woodPhong node from the Hypershade to the boxed area of the Layered Shader Attributes section.

Note: This is the same result as dragging it onto the wallLayered swatch in the Multilister.

- Move the cursor over the two blue swatches to highlight the names.
The paintBlinn swatch to the left is the top layer; the woodPhong swatch to the right is the base, or underneath layer of the layered shader. The order of the layers can be changed by dragging the swatches to reposition them.

Multiple layers in the Layered Shader Attributes

2 Create a transparency node

This node will be used to create the visual transition between the two layers.

- Create a 3D Marble texture node with New texture placement still set to On.
- In the Attribute Editor:

Rename the marble node
paintTransparency;
Change the Filler Color to black;
Change the Vein Color to white;
Set Vein Width to 0.2;
Set Diffusion to 0.25;
Set Contrast to 0.8 .

- Open the Attribute Editor for the wallLayered node.
- Click to highlight the paintBlinn swatch in the Layered Shader Attributes section.
- Drag the paintTransparency swatch from the Hypershade onto the Transparency attribute.

The wallLayered material references the marble node - instead of the transparency information within the paintBlinn node - to create the transparency between the top and base layers of the shader.

- Re-render the scene to see the effect of the texture.
Oops! The grain of the marble seems too intense. You need to adjust how this texture is placed.

Default marble texture placement

3 Position the 3D texture

Because the marble is a 3D texture, it can be placed using the texture's 3D placement icon. This icon represents how the texture relates to objects in 3D space.

- Open the Attribute Editor for the paintTransparency node's 3D texture placement node.
- In the 3D Texture Placement Attributes section, click on the Fit to Group box button.
The 3D texture placement icon moves and scales to surround the surface that the shading group is assigned to. Shown below is the icon as it would appear in the Perspective view panel.

$3 D$ placement icon scaled to fit geometry
Notice that the texture swatch in the Hypershade changes to reflect the change in positioning.
- Re-render the scene to see the effect of the new texture placement.

Transparency texture with new placement

4 Create the base wood texture

- Open the attributes for the woodPhong node.
- In the Specular Shading section:

Set Cosine Power to 5.0;
Set Specular Color value to 0.2;

Set Reflectivity to $\mathbf{0 . 0}$.

- Map a Grid texture onto the Color attribute.

Note: Make sure that you create it with a new texture placement node.

- Rename the texture node woodTexture, and the placement node woodPlacement.

5 Set the texture parameters and placement

- Open the attributes for the woodTexture node:

Set the Line Color to a pale brown (360.250 .6);
Set U Width to 0.0;
Set V Width to $\mathbf{0 . 0 2 5}$.
The Filler Color will be mapped with another texture so it is not necessary to set its color.

- Open the attributes for the woodPlacement node.

Set the Repeat V to 30.0.
The Repeat U can remain unchanged because the lines in this direction will not be visible.

6 Map a brownian texture

The brownian texture is used to create a streaked wood texture. Because the wall is in the background and covers a large area,
an abstracted texture is more suitable than the procedural wood texture.

- Open the attributes for the woodTexture node.
- Click on the Map button for the Filler Color attribute.
- In the 3D Textures section select a Brownian texture.
- In the Brownian Attributes section of the Attribute Editor:

Set Increment to 0.5 .

- In the Color Balance section:

Set the Color Gain to a light brown (30 0.4 0.75);
Set the Color Offset to a slightly darker brown (30 0.4 0.53).

Brownian texture

7 Position 3D texture placement

The fill color texture can be transformed into a streaked directional texture by adjusting the texture placement node.

Because the brownian node is a 3D texture, the texture placement can be manipulated as an object in the 3D XYZ space of the scene, instead of on the 2D UV space of the surface.

- In the Hypershade, select the brownian node's place3Dtexture node.
- In the 3D Texture Placement Attributes section, click on the Interactive Placement button.
A combined move, scale and rotate manipulator is displayed. The icon by default is a single unit cube located at the origin.
- Scale the icon along the Y-axis.

It should be about the same height as the back wall.

- Move the icon so that it is at the approximate center of the back wall.

3D placement node scaled and moved

Note: Because the 3D texture in this case is fairly consistent, the specific position of the icon is not as important as the fact that it is scaled or stretched. In other cases, the specific position, scale and rotation of the 3D placement icon is very important.

8 Render scene

- Re-render the scene.

Rendering of finalized materials

REFINING THE LIGHTING

To refine the lighting in the scene, you will add a new light that represents light reflecting off of the deck and then you will add shadows to some of the other lights.

Adding reflected lighting

The light in a computer generated scene cannot reflect off surfaces. You can see the reflection of images but light serves only to illuminate the scene.

To simulate the reflection of light off of the water, you will use a new light, then map the animated water texture to the light's color.

1 Add a new spot light

- Select Lights \rightarrow Create Spot Light.
- Position the light so that it is looking up at the seal from just below the surface of the water. Use look through selected to verify the position. The spot radius should cover the seal and the ball at its highest point.

2 Add water map as filter to light

- Open the attributes for the new spot light.
- Drag the waterColor texture swatch from the Hypershade onto the Color attribute.

The animated texture node is now connected to the spot light and will be projected up onto Salty.

- Set the Intensity to $\mathbf{0 . 5}$.

3 Link light to seal and ball

Since this light is not needed on all of the surfaces, you are going to link it to the shading groups belonging to the ball and Salty. This will later make your rendering more efficient because this light is only rendered in relation to the linked shading groups.

- In the Attribute Editor, click on the Illuminates by Default button to turn it off.
The light in no longer linked to any of the shaders or objects, and must be specifically linked to the shaders that you want the light to shine on.
- Select all of Salty's surfaces and the ball's surface.
- Select the new spotlight.
- Select Lights \rightarrow Make Light Links.

Lights linked to shaders

Note: In Maya, lights are linked not to the objects but to their shading groups.

Turning on shadows

To achieve realistic lighting, shadows become very important. At the same time, they take longer to render and, therefore, must be set with caution. By default, lights do not cast shadows. You can then turn shadows on for lights that are key to the scene.

For Salty, you will use the three main lights for casting shadows while the other lights are used only for illumination.

1 Turn shadows on for the lights

You will use depth map shadows for the three main lights. This shadow type is fast and offers a soft look.

- Select the three colored spot lights.
- In the Channel box, set the Depth Map Shadows to On.
- Test render the scene.

Rendering with depth map shadows
You will notice that the lights are casting colored shadows. This is a natural phenomenon that is mimicked by colored lights in Maya.
You may want to leave these different shadows or edit the way the scene is lit to achieve a different result. If you increase the value setting for the three lights, then their color will be less prominent and the shadows will be darker.
You could also choose to only cast shadows from the light that produces the best shadow. In this case, the green light is producing the strongest shadow. Another option would be to change the color of the tiled deck which also affects the look of the shadow.
These are the kinds of decisions you need to make during the test rendering of a scene. You'll find that you will have to evaluate the look of the rendering, and tweak and adjust your settings until you are happy with the results.

2 Save your work

RENDERING

You are now going to batch render the scene. Rendering an animation offers you the chance to see the fruits of your labor. Before
proceeding, you should prepare your surfaces and set the Render Globals.

Preparing the surfaces

To render as quickly as possible with the best quality possible, you should look at how to subdivide your polygonal and NURBS surfaces.

1 Reduce the polygon subdivisions

- Select the deck surface.
- Click on the surface's shape node, then the polyPlane input node, and set the following:

Subdivisions X to 1;
 Subdivisions \mathbf{Y} to 1.

The higher settings made it possible to preview the lighting on the surface; however, rendering only one subdivision in each direction is better because less geometry will render faster.

- Repeat the same edit for the input nodes of the other polygonal surfaces.

2 Set the NURBS tessellation

Earlier, you set the tessellation of the water surface to make sure that there was enough detail when you rendered the displacement. You should now set the tessellation for other NURBS surfaces.
Tessellation is the method by which your NURBS surfaces are broken down, or subdivided, into triangles for rendering. If you use a higher tessellation, the results are better but the rendering is slower. Maya offers you a Best Guess option that
lets the renderer choose the appropriate tessellation.

- Select the surfaces that make up Salty, the ball surface and the back wall.
- Select Window \rightarrow General Editors \rightarrow Attribute Spread Sheet...
- Click on the tabs at the far right and choose Tessellation from the popup.
- Under the Mode U column, clickdrag over all the entries.
By selecting all of this column, you can edit one value to update them all.
- Type 4 to enter the mode option then press the Enter key.
This value sets the tessellation to

Best Guess Based on Screen

Size. This means that the renderer will tessellate your scene based on the size that the object fills the screen. This offers you an optimized tessellation solution.

- Repeat for the Mode V column.

\square Attribute Spread Sheet							
Names Layouts Key							
	Mode U		Number U	Mode V	Number V	Use Chord Height	c
bodyShape	Best Guess B	Ba.	3	Screen size	3	off	0
bodyShape10rig	Best Guess B	Ba.	3	Best Guess Ba. 3		off	0
rightBackFlipper	Best Guess B	Ba.	3	Best Guess Ba. ${ }^{\text {a }}$	3	off	0
rightBackFlipper	Best Guess B	Bas	3	Best Guess Ba. ${ }^{\text {a }}$	3	off	0
PightFrontFlippe	Best Guess B	Ba*	3	Best Guess Ba. ${ }^{\text {a }}$	-	off	0
PightFrontFlippe	Best Guess B	Ba*	3	Best Guess Ba.	3	off	0
1eftBackFlippers	Best Guess B	Ba.	3	Best Guess Bad	-	off	0
1eftBackFlippers	Best Guess B	Ba.	3	Best Guess Bar ${ }^{\text {a }}$	-	off	0
1eftFrontFlipper	Best Guess B	Bas	3	Best Guess Ba. ${ }^{\text {a }}$	-	off	0
1eftFrontFlipper	Best Guess B	Bar	3	Best Guess Bar ${ }^{\text {a }}$	-	off	0
eyeball RShape	Best Guess B		3	Best Guess Ba, 3	-	off	0
eyeballRShapeOri	Best Guess B	Bar	3	Best Guess Ba, 3	3	off	0

[^7]Note: The number 4 represents the fourth option if you were to look up Mode U in the tessellation control section of the Attribute Editor.

Setting the Render Globals

You have already used the Render Globals window to set up some test renderings. This window is where you make your final decisions before sending a rendered animation off to the batch renderer.

1 Open the Render Globals window

- Select Window \rightarrow Render Globals...

2 Set the Camera's render status

- In the Image File Output section set Camera to camera1.
- Set Channels to RGB Channel (Color) to On.
These settings mean that this camera will be considered by the renderer. If you were compositing, you might also turn on the mask layer but, for now, only the image is required.

3 Turn on animation and motion blur
By default, the Render Globals are set up to render the current frame. If you want to render an animation, then you have to turn animation on.

- Set Frame/Animation Ext to the following:
name.ext.\# for IRIX;
name.\#.ext for NT.
- Set the following:

Start frame to 1;
End frame to 450.

4 Set the quality

- Click on the Anti-alias Quality section.
- Set Presets to Production quality.

5 Set the size

- In the Resolution Section, set Resolution to 320x240.

6 Turn on motion blur

- In the Motion Blur section, click turn Motion Blur to On.
- Set Motion Blur Type to 2D.

7 Save your work

- Select File \rightarrow Save Scene As... Enter the name Salty 6 and press Save.

8 Batch render the scene

- Select Render \rightarrow (Save) Batch Render.
- Enter the name SaltyRender and click on the Batch Render button.
Look at the Feedback line in the lower right to follow the rendering progress.

Tip: At this point, you could exit Maya and the rendering would continue. This is because the renderer is a separate application. If you do this, then you will lose the feedback on the renderings
progress but you will free up RAM for the renderer. You can then use fcheck to check the progress of each frame.

9 Preview a frame

- Select Render \rightarrow Show Batch Render.
This shows you the progress on the frame being rendered right now.

10 Preview the animation

Once you have completed the animation, you can use Playblast or fcheck to view the movie.

Conclusion

Congratulations, you now have a fully animated and articulated character. You have learned how to work with a wide range of Maya's feature set in an integrated project.
In the last lesson, you will explore Maya's scripting language, MEL as you set up custom controls for blinking Salty's eyes.

23
 Blinking using MEL

In this lesson, you will set keys on the blink attribute that you created on the eyeControl node in Lesson 19. To help with this task, you will create a MEL (Maya Embedded Language) script that will help you animate the blink.

MEL is a powerful scripting language that can be used by both technical directors and animators to add to what Maya can do. Animators will be able to take advantage of simple macro-like scripts to enhance their workflows, while technical directors can use more advanced MEL commands to rig up characters, add special visual effects, or set up customized controls.

If you know nothing about programming and scripts, this lesson will, at first, seem foreign to your world of graphics and animation. While you can certainly be successful with Maya without relying on the use of MEL, this lesson offers a good chance to get your feet wet and see the possibilities. If you do learn how to use MEL, you will be quite surprised how a simple script can be used to enhance your work.

In this lesson you will learn the following:

- How to recognize and enter MEL commands
- How to create a MEL script procedure
- How to use this procedure within Maya's existing UI
- How to build a custom UI element for the procedure
- How to animate Salty's blinking using the procedure

Starting a new file

Rather than working in the Salty scene file, you will practice using MEL in a new file. Once your scripts have been written and saved, you will return to the Salty scene and use the custom user interface tools in context.

1 Start a new file

- Select File \rightarrow New Scene.
- Set up a single Perspective view panel.
- Make sure that the Command line, the Help line and the Channel box are all visible.

WHAT IS MEL?

MEL stands for Maya Embedded Language. MEL is built on top of Maya's base architecture and is used to execute commands that you use to build scenes and create user interface elements. In fact, every time you click on a tool, you are executing one or more MEL commands.

Typing commands

A MEL command is a text string that tells Maya to complete a particular action. As a user, it is possible to skip the graphical user interface and use these commands directly. Generally, animators will choose the user interface instead - but it is still a good idea to know what MEL can do at a command level.

The Command line

You will now use Maya's Command line to create and edit some primitive objects. The goal at this point is to explore how simple commands work.

1 Create a cone using the Command line

- Click in the Command line or press the ` key to set your focus. The Command line can be found at the bottom left, just above the Help line.
- Enter the following:

Entering a MEL command

- After you finish, press the Enter key on the numeric keypad section of your keyboard.

Tip: The keyboard has two Enter keys that each work a little differently with the Command line. The Enter key associated with the numeric keypad will keep your focus on the Command line, while the Enter key associated with the alpha-numeric keyboard switches your focus back to the view panels.

2 Rotate and move the cone with commands

The next step is to transform the cone using MEL commands.

- Enter the following:

```
rotate 0 0 90 < Enter >
```

move 500 <Enter >

You now have a cone sitting on the ground surface, five units along the X -axis. You entered the commands by first entering the command then adding the desired values.

3 Rename the cone

You can also rename objects from the command line.

- Enter the following:
rename "nurbsCone1" myCone < Enter >

You can look in the Channel box to confirm that the object has been renamed.

Channel box with cone's name

4 Execute two commands at once

If you quickly want to enter more than one command without pressing the enter key along the way, then you can place a semicolon between the commands.

- Enter the following:
sphere; move 006 ; scale 411 < Enter >

Using the semi-colon(;), you executed three commands in a row. First, you created a sphere, then you moved it, then you scaled it. The semi-colon will become important later when you write scripts.

Perspective view of new sphere

5 Execute a command on an unselected object

If you want to execute a command on an object that is not selected, then you simply have to add the name of the node that you want to affect. The node will follow the command without requiring the cone to be selected.

- Enter the following:
move -5 00 mycone < Enter >

Oops! You get an error message saying that Maya cannot find the mycone object. This is because the object name has a capital C for the word 'Cone'. MEL is case sensitive which means you should be especially aware of how you spell and capitalize any names or commands.

- Enter the following:
move -5 00 myCone < Enter >
scale 511 myCone <Enter>

Always remember the importance of getting the spelling of commands correct. Later, when you write scripts, this spelling will be very important.

6 Use commands flags

Another important MEL capability is the command flag. You can use these flags to be more specific about how you want the commands to be executed. The command flags can have short or long names. Flags are indicated with a hyphen in your script. Shown below are examples of both kinds of flags.

- Enter the following using long names for flags:
cylinder -name bar -axis 010 -pivot $00-3$ < Enter >
- Enter the following using short names for flags: cylinder -n bar2 -ax 010 -p 00 -6 -hr $10<$ Enter >

The short flag names represent the following:

```
-n name
-ax axis
-p pivot
-hr height ratio
```

Tip: You will notice that long flag names can create a commands that is easy to read but hard to type in - the short names are harder to decipher but easy to type. Generally, entering in the command line is a good place for short flags while long flags should be used in scripts to aid in readability.

7 Delete all objects

- Enter the following:

```
select -all; delete < Enter>
```


The Script Editor window

You may have noticed that the Command line is a small space to work in and only one line of feedback. The Script Editor is a special user interface element that will make entering commands easier.

Up until now, you have been entering random commands in order to learn a little about their syntax and how they work. You will now use the script editor to build a sphere and a locator which will mimic the eyeLid/eyeControl relationship that you set in Lesson 19. The ultimate goal is to set up a blink attribute that will control the blinking of the eyelid.

1 Open the Script Editor window

- Click on the Script Editor button in the lower right of the workspace or select Window \rightarrow General Editors \rightarrow Script Editor.
The window opens to show all of the commands you just entered.
- From the Script Editor, select Edit \rightarrow Clear History.

2 Create a primitive sphere using the Primitives menu

In the earlier lessons, you have been using MEL without having to type a single command. Most Maya tools and windows have been designed and implemented using MEL.

- Go to the Modeling menu set.
- Select Create \rightarrow NURBS Primitives \rightarrow Sphere.

In the Script Editor, you can see the MEL command that was used to create the sphere. Also included are the flags with default settings presented in their short form.

Script Editor

- In the lower portion of the Script Editor, type the following:
delete
- Press the numeric keypad Enter key to execute the command.

Tip: In the Script Editor, the numeric keypad's Enter key executes an action while the alpha-numeric keypad's Enter key returns to the next line.

3 Copy and edit the sphere commands

Now that the sphere command is in the Script Editor's history, you can use this command as a start point to write your own command.

- In the Script Editor, select the parts of the Command line up to the -r 1 flag.
- Move your cursor to the edit area below and click with your middle mouse button. This places the selected text in this part of the editor.

- Edit the first part of the command to read as follows:
sphere -name eyeLid -p 000 -ax 001 -ssw 60 -esw 300 -r 2

Edited commands

- Press the Enter key on your numeric keyboard.

4 Create a locator

- Select Primitives \rightarrow Create Locator.

In the Script Editor, you do not see a corresponding MEL command.

- Enter undo to go back one step.

5 Echo all commands

- In the Script Editor, select Edit \rightarrow Echo All Commands.
- Select Create \rightarrow Locator.

In the Script Editor, you can now see a MEL command that you can use to create a locator - createPrimitive nullobject;

Note: This command is surrounded by other commands that belong to Maya. You only need to focus on the locator command.

- In the Script Editor, select Edit \rightarrow Echo All Commands to turn this option off.

6 Rename and move the locator

You will now name the locator as eyeControl. This object will be used as a substitute for the control node you built earlier in the Salty scene.

- Enter the following:
rename "locator1" eyeControl;
move 1000 eyeControl < Enter >

7 Add an attribute to the locator

You will now add a blink attribute. This command is the same as using Modify \rightarrow Add Attribute from the UI.

- Enter the following:

```
addAttr -ln blink -at "float"
-min 0 -max 10 -dv 10 eyeControl < Enter >
```

The short flag names represent the following;
-ln long name of the new attribute
-at attribute type
-min/max minimum/maximum values for the attribute
-dv default value for the attribute

8 Make the attribute keyable on the blink attribute

- Enter the following:

```
setAttr -keyable true eyeControl.blink < Enter >
```


9 Set up your Perspective view panel

- Set up your view panel so that you can see the eyelid object and the locator.
- Select the eyelid and press 3 to increase the smoothness and 5 to turn on hardware shading.
- Select Display \rightarrow Grid to turn off the grid.

Learning more about commands

You now know how to use a few of the many Maya commands. To learn more about the commands, refer to the online documentation where you will find a complete list of all the commands available in MEL. Each command is listed with descriptions of the various flags.

Expressions

When you write an expression in the Expression Editor, it can be written as a MEL script. You can also use MEL to create the expressions from within the Script Editor.

You will create two expressions to control the start and endSweep of the eyeLid's makeNurbSphere input node. In Lesson 19, you used Set Driven Key. Now you can compare the use of expressions to that earlier approach.

1 Add an expression to the eyelid's startSweep

This expression is designed to make sure that as the blink attribute goes from 0 to 10, the eyelid rotates 60 degrees. Therefore, the blink attribute is multiplied by 6 .

- Enter the following:

```
expression -n toplid -o makeNurbSphere1
```

-s "ssw = eyeControl.blink * 6" < Enter >

2 Add an expression to the eyelid's endSweep

This expression is similar to the last one except now you want the eyelid to rotate from 360 to 300 degrees. Therefore the blink attribute is multiplied by 6 then subtracted from 360 .

- Enter the following:
expression -n bottomlid -o makeNurbSphere1
-s "esw = (360 - eyeControl.blink * 6)" <Enter >

3 Test the blink attribute

- Enter the following:

```
setAttr "eyeControl.blink" 5 < Enter >
```


4 Set keys on the blink attribute

- Enter the following:

```
setKeyframe -at blink -t 1 -v 10 eyeControl;
setKeyframe -at blink -t 5 -v 0 eyeControl;
setKeyframe -at blink -t 10 -v 10 eyeControl < Enter >
```

The short flag names represent the following:
-at attribute that is being keyed
-t time at which you want the key set
-v value of the attribute that you want to key

- Play back the results.

Keys have been set at several frames with the eye opening and closing to match.

Building a blink procedure

You are now going to create a blink procedure that you will save as a MEL script. The next few steps outline all of the parts of the MEL script with some tips for how to enter it and how to execute it. At the end of this lesson, you will find the script without descriptive text. You can enter the script later, in case you want to read over this section first.

Writing the script

You will write the blink procedure not in the Script Editor but in a text editor. A text editor is an application that lets you quickly work with text then save in a generic text format.

1 Open a text editor

- Go from the Start menu to your Windows NT accessories.
- Open a text editor such as Notepad or WordPad.

2 Type comments to create header information

Every script should start with a header that contains important information for other people who might read your script later. Below is an example header. The / / that is placed in front of these lines indicate that these lines are comments and therefore will be ignored when you later execute the script.

- Type the following:
//
// Creation Date: Today's date
// Author: Your name here
//
// Description:
// Learning Maya tutorial script
// This script builds a procedure for animating
// Salty the seal's eyeControl.blink attribute
//

Tip: Please don't underestimate the importance of commenting your scripts. Down the line, someone will need to read what you have done and the comments are much easier to follow than the actual script.

3 Declare the procedure

The first thing you will enter is designed to declare the procedure. This line loads the procedure into Maya's memory so that it can be executed later.

- Type the following:
global proc blink (float \$blinkDelay)\{

This line defines a procedure named blink. The required argument is within the round brackets. This tells Maya what the script requires to execute. In this case, the length of the blink action is required. This is defined as a floating value called \$blinkDelay. Because this value is not yet determined, it is known as a variable. The $\$$ sign defines it as a variable. The open bracket - the $\{$ symbol - is added to the end of the declaration to let you start inputting MEL statements.

4 Set up variables

Within your script, you will use variables to represent values that may need to change later. At the beginning of the script, you need to set up the variables and set their value. In some cases, you may set their value with an actual number. But for this script, you will use attribute names and values instead.

- Type the following:

```
    // Set up variables that will be used in the script
    string $blink = "eyeControl.blink";
    float $time = `currentTime -query`;
    float $blinkCurrent = `getAttr $blink`;
```

The first variable set defines \$blink as the blink attribute found on the eyeControl node. The second variable queries Maya for the current time.

The third attribute gets the actual value of the eyeControl.blink at the queried time.

5 Set keys on the blinking

Next, you want to set keys on the blink attribute at the beginning, middle and end of the blink. The length of the blink will be defined by the blinkDelay variable that was set out as the main argument of the procedure. Notice that, while other variables were set at the beginning of the script, the blinkDelay is used as an argument so that you can set it when the script is executed later. As you enter the keyframe commands, notice how you use the normal setup of command/flag/node name.

- Type the following:

```
// set key for the blink attribute
// at the current time
    setKeyframe -value $blinkCurrent
            -time $time
            -attribute $blink
            $blink;
// set key for a blink of 0
// half way through the blink
    setKeyframe -value 0
            -time ($time + $blinkDelay/2)
            -attribute $blink
            $blink;
// set key for the original blink value
// at the end of the blink
setKeyframe -value $blinkCurrent
    -time ($time + $blinkDelay)
    -attribute $blink
```

```
$blink;
```

\}

In this part of the script, you have set keys using the setKeyframe command. The keys set at the beginning and end of the blink use the queried value of the blink attribute, while the key set in the middle uses a value of zero. At the end, a closed bracket - the $\}$ symbol - is used to declare the statement complete.

6 Save your script

You can now save your script into your Maya scripts directory. This will make sure that the procedure is easily available within Maya any time you need it.

- In your text editor, save the script using the following path:

\[drive]:\maya\scripts\blink.mel

Note: Because the procedure is named blink, it is important to save the file as blink.mel. This helps make it easier for Maya to find the function.

7 Testing the script

Because you named the file blink.mel and placed it in your maya/scripts directory, you can execute the command in Maya without having to load the script. If you enter blink with a value for the blink delay, then Maya will look in the scripts directory for a procedure called blink.mel.

- Set the Time slider to frame 40.
- Enter the following:
blink 10 < Enter >
- Scrub in the Time slider to test the results.

If this works, then you can congratulate yourself on completing your first MEL script and you can move on to the next section. If it doesn't, then you typed something incorrectly and MEL is finding your mistake.

8 Debugging your script

To debug your script, you need to find out which line is causing the error, and then you need to go back and check your spelling and syntax. Did you use the correct symbols? Did you name your nodes correctly? Is your capitalization correct? These and similar questions are what you need to ask yourself.

- To display line numbers in the Script Editor, select Edit \rightarrow Show Line Numbers.

Adding the function to the $\mathbf{U I}$

Now that you have created your own function, you will want to have easy access to it. Below are three methods for adding your function to the default UI, which you can easily set up using interactive methods.

1 Creating a shelf button

- In the Script Editor, select the text blink 10.
- Click on the selected text with the middle mouse button and drag up to the shelf.
It is placed on the shelf with a MEL icon. You can now move the Time slider to a new position and test it. You could also drag up different blinkDelay settings to offer different blink settings. Or you could set up a marking menu as outlined below.

2 Creating a blink marking menu set

- Select Options \rightarrow Customize UI \rightarrow Marking Menus...
- Click on the Create Marking Menu button.
- Click on the top middle square with your right mouse button and select Edit Menu item... from the pop-up menu.
- In the Edit window, type Blink 10 in the Label field.
- In the Commands(s): field, type blink 10.
- Click Save and Close.
- Repeat for the other quadrants to set up blink commands that use a blinkDelay of 20, 30 and 40.
- In the Menu Name field, enter: blinking.

3 Prepare the blink marking menu for a hotkey

The blink marking menu now needs to be set up.

- In the marking menu customize window, set the following:

Use Marking Menu in to Hotkey Editor.
Now the marking menu can be set up in the Hotkey Editor so that it can be evoked using a hotkey.

- Click the Apply Settings button then Close.

4 Assign the blink marking menu to a hotkey

- Select Options \rightarrow Customize UI \rightarrow Hotkeys... and set:

Display Mask to Show All.

- Scroll to the bottom of the list and click on the blinking (Press) listing.
- In the Key Settings section, set the following:

Key to \mathbf{b};

Action to Press.

- Click on the Query Key button to verify that this key is not in use.
- Press the Apply New Settings button.
- Scroll to the bottom of the list and click on blinking (Release).
- In the Key Settings section, set the following:

Key to \mathbf{b};

Action to Release.

- Press the Apply New Settings button then Close.

5 Use the new marking menu

- Go to frame 80.
- Click and hold on the \mathbf{b} key, then pick one of the blinking options from the marking menu.
blink 10

blink 30
Blink marking menu

Building a custom UI script

In the next section, you will write a second script that will build a custom user interface window that includes a slider for the blinkDelay variable and a button that executes the blink procedure you scripted earlier. In Maya, you have the ability to use MEL to build custom user interface elements.

Custom user interface window

1 Start a new text file

2 Adding the opening comments

Start the script with a commented header that helps others read your work. While this was taught earlier, it can never be emphasized enough.

- Type the following:
//

// Creation Date::	Today's date
// Author:	Your name here
//	
// Description:	
//	Learning Maya tutorial script
//	This script builds a custom user interface
//	for executing the blink procedure
//	and for setting the blink delay
//	

3 Declare a get info procedure

You are now going to create a procedure called blinkGetInfo that will be used to get the blinkDelay value from a slider, which you will build later in the script. Since the value set in the slider is meant to be the chosen value for the blink, this procedure queries the slider to set the blinkDelay, and then adds that value next to the blink command.

- Type the following:

```
global proc blinkGetInfo() {
    // get necessary information from Maya
    float $blinkDelay = ‘intSliderGrp
    -query -value blinkWindow|columnLayout|delaySlider`;
    blink $blinkDelay;
}
```


4 Declare a second user interface procedure

You are now going to declare a procedure that will build a floating window. This window will look and act like any other window in Maya but will be designed to help you put a blink to Salty's eyes.

- Type the following:
global proc blinkWindow() \{

5 Remove any existing blink windows

As you start a user interface script, it is a good idea to check if the same UI element already exists in the scene and, if so, then to delete it. This makes sure that your new element is the only one recognized by Maya at any one time.

- Type the following:
// clean up any existing blinkWindows
if ((`window -ex blinkWindow`) == true) deleteUI
blinkWindow;

6 Build the window called blinkWindow

The next part of the script is designed to build a window that is 400 pixels wide and 75 pixels tall. You will call it Blink Control in its title bar but Maya will know of it as blinkWindow.

- Type the following:

```
window
    -width 400
    -height 75
    -title "Blink Control"
blinkWindow;
```


7 Form a column layout

Within the window, you need to organize your user interface elements. One method of organization is a columnLayout. This sets up a column with a particular spacing in relation to the window.

- Type the following:

```
columnLayout
    -columnAttach "right" 5
    -rowSpacing 10
    -columnWidth 375
columnLayout;
```


8 Create a slider group

Within the layout, you want to build a slider that lets you set the blinkDelay value. MEL offers you preset kits using special group commands that build several UI types in one go. The intSliderGrp builds a slider along with a field for seeing the resulting value and for entering the value yourself. This slider is set to integer values since frames are generally set in whole numbers. The flags let you set the various values for the minimum and maximum settings of the slider.

- Type the following:

```
intSliderGrp
    -label "Blink Delay"
    -field true
    -minValue 2
```

```
    -maxValue 30
    -fieldMinValue 0
    -fieldMaxValue 100
    -value 10
delaySlider;
```


9 Create a button

The next part of the script builds a button that you will be used to execute the blinkGetInfo procedure, which in turn uses the blinkDelay value from the slider to execute the blink command. At the end, you will enter setparent to link the button to the columnlayout.

- Type the following:

```
button
    -label "Blink"
    -width 70
    -command "blinkGetInfo"
button;
    setParent ..;
```


10 Show the window

You are almost finished, except that you must tell Maya to show the window.

- Type the following:

```
showWindow blinkWindow;
```


11 Finish the script

Finally, you must complete the procedure then make one final declaration of the blinkWindow procedure name.

- Type the following:

```
blinkWindow;
```


12 Saving the script

You can now save your script into your Maya scripts directory.

- In your text editor, save the script using the following path:

\[drive]:\maya\scripts\blinkWindow.mel

13 Test your script

- In the Command line or the Script Editor, type the following:

```
blinkWindow < Enter >
```

The window should open. You can now set the Time slider to a new time, and then set the blink delay using the slider; pressing the button will key the blink.

Keyframing Salty's blink

Congratulations! You now have your own custom user interface element built and ready to go. You can now open your Salty file from the last lesson and use this script to make her blink. Note that this will only work if you named your eyeControl node correctly and created a blink attribute as taught.

THE SCRIPTS

Here are the two scripts listed in their entirety for you to review.

blink.mel

//

// Creation Date: Today's date
// Author: Your name here
//
// Description:
// Learning Maya tutorial script
// This script builds a procedure for animating

```
    // Salty the seal's eyeControl.blink attribute
    //
    global proc blink (float $blinkDelay){
    // Set up variables that will be used in the script
    string $blink = "eyeControl.blink";
    float $time = `currentTime -query`;
    float $blinkCurrent = `getAttr $blink`;
// set keys for the blink attribute
    setKeyframe -value $blinkCurrent
            -time $time
            -attribute $blink
            $blink;
    setKeyframe -value 0
            -time ($time + $blinkDelay/2)
            -attribute $blink
            $blink;
    setKeyframe -value $blinkCurrent
            -time ($time + $blinkDelay)
            -attribute $blink
            $blink;
        }
```


blinkWindow.mel

//

```
//Creation Date:Today's date
//Author:Your name here
```

```
//
//Description:Learning Maya tutorial script
// This script builds a custom user interface
// for executing the blink procedure
// and for setting the blink delay
//
global proc blinkGetInfo() {
            // get necessary information from Maya
            float $blinkDelay = `intSliderGrp
    -query -value blinkWindow|columnLayout|delaySlider`;
    blink $blinkDelay;
}
global proc blinkWindow() {
    if ( (`window -ex blinkWindow`) == true ) deleteUI
blinkWindow;
    window
        -width 400
        -height }7
        -title "Blink Control"
    blinkWindow;
    columnLayout
        -columnAttach "right" 5
        -rowSpacing 10
        -columnWidth 375
    columnLayout;
```

```
    intSliderGrp
        -label "Blink Delay"
        -field true
                -minValue 2
        -maxValue 30
        -fieldMinValue 0 -fieldMaxValue 100
        -value 10
    delaySlider;
    button
        -label "Blink"
        -width 70
        -command "blinkGetInfo"
    button;
        setParent ..;
    showWindow blinkWindow;
}
blinkWindow;
```


APPENDIX

A
 File Management

When you are working with Maya, you need to create and save your scene files into directories on your hard drive. To help you save and open these files, Maya lets you create project directories where your files can be saved in an easy-to-organize location. You can also work with other files in other directories and even on other computers. By setting up your projects to work with these other directories, you can work in any number of ways.

In this chapter, you will look at different ways in which scenes can be managed using projects.

In this appendix, you will learn the following:

- Where your maya directory is and what is in it
- How to work with your prefs directory
- How to create and edit project directories
- How to work with reference files
- How to share files in a large project
- How Maya works with data transfer file types

The Maya directory

When you first launch Maya, the maya directory is placed on your hard drive in your home directory, on IRIX or in your windowsNT/profiles/username directory on NT. Each user gets its own maya directory. Here you will find some directories and text files. Listed below are some of the directories and files that you will find in the maya directory:

- project - this directory contains your project directories which in turn contain all of your working files.
- prefs - this directory contains system configuration information that saves your Maya settings when you quit Maya.
- scripts - this directory gives you a place to put MEL scripts so that commands can be easily sourced from within Maya. You used this directory in Lesson 23 when you saved the blink.mel file used to set keys on Salty's eyes.
- renderLog - this file contains information about your renderings including render time, and memory usage.

The Maya directory

The preferences directory

The prefs directory contains files that tell Maya how you want your system configured. The various user interface settings you work with in Maya such as hotkeys and shelf layouts are recorded here.

How to reset your preferences (safely)

If you want to return Maya to its default settings, you can simply delete the prefs directory. Before you delete it, you should rename the existing prefs directory in case you need any of your previous settings. This is especially important if you want to work on another person's computer.

If you were to delete their prefs directory, then they could lose their personalized user interface settings for good. To safely reset your preferences, complete the following steps:

- In your maya directory, open your 2.0 directory then rename your prefs directory to old_prefs.

This preserves the existing settings.

- If you used a previous version of Maya then do the same for that version. Maya 1.0 preference files will be in your maya directory and in your maya/1.5 directory for maya 1.5.
- Relaunch Maya.

A new prefs directory is created automatically. You can then refer to the old_prefs if you want to retrieve one of the old files.

The projects directory

The projects directory is where you will store your Maya work. Maya files, source images and final renderings can be stored in this directory. For a simple project directory, you could imagine having several default projects (labelled with a p) set up for each of your animations.

You do not have to set up your projects in the projects directory. As your projects become more complex, you may want to set up other directory structures in which you can place your project directories. In the following example, some projects have been placed within production-focused directories within the default projects directory, while a texture library has been set up in another location.

Appendix A

A more complex project directory setup

Creating a new project

When you create a project, you set up the location of the project and the names of the subdirectories. These subdirectories let you further break down a project so that the parts can be easily retrieved by yourself and other members of your production team, however big or small.

To create a new project:

- From the File menu, select Project \rightarrow New...

The new project window appears with fields available for different types of subdirectories.

- Click on the Use Defaults button to enter the Maya defaults into the fields.
- Delete text from any field where you don't want a subdirectory.

The names you enter here will be used when Maya points to a particular directory type - such as the Images directory type - when you render. You could name your Images directory artwork. If you leave a directory type field blank, then no subdirectory is created.

Some of the most important directories are as follows:

- scenes - This is where you save your Maya scene files.
- sourceimages - This is where you put image files that you want to source as file textures or as image planes.
- images - This is where your rendered images go.

In the following diagram, you can see some of the file types. The other project subdirectories offer particular locations primarily for import and export files which you want to associate with your project.

Setting projects

As you will probably be working with multiple projects at the same time, you need to be able to switch between them. While at any time, you can open any file from any of your projects, it is advisable to only open files when you have set the appropriate project directory. Once you set a project, Maya then points towards the right directories for opening and saving files. For instance, your rendered images go, by default, to the images directory of the current project.

To set a different project:

- Select File \rightarrow Project \rightarrow Set...
- Choose another project to make your active project. This is now where Maya will look when opening and saving files.

Scene files

Your Maya scenes are saved as either Maya binary or Maya ascii. The first format is faster for loading and saving files while the second format can be read and edited (if you really know what you are doing) with a basic text editor. If you do not need to know the meaning and syntax of the file format then Maya binary is probably good for you.

REFERENCING FILES

In Project Three of this book, you created an animated space scene by referencing two spaceship files. While this seemed to be just an elaborate kind of import, referencing lets you share the referenced scene files with other scenes. Then, if you wanted to update one of the models or change one of the texture maps, all of the referencing scenes would benefit from the changes.

File referencing lets you reference one scene file into another. This lets you have a series of prop and character files that are referenced into other scenes. These props and characters can be shared by other animators working on other scenes which helps streamline the production process.

To create a reference:

- Select File \rightarrow Create Reference...
- Choose a file for referencing.

This file can be in the current project, in another project or even on a remote computer.

- Press the Reference button.

To view the reference:

- Select File \rightarrow Reference Editor...

This window shows you the hierarchical relationship of the main scene file, referenced files and associated UI files.

If you click on one of the files, you get its particulars. One important point is the I/O (Input/Output).

To delete a referenced file:

- Open the Reference Editor.
- Select the reference in the editor.
- Select Edit \rightarrow Remove Reference.

A single user project with referencing

A single user or a small team can use file referencing to share models, shading groups, lights and cameras between different scenes. Below is an example of the space scene as if it was being worked on by a single user in a single project directory:

In this example, the two spaceships are being shared by multiple scenes.
Both ships are referenced into scene1, while only one of the ships is referenced into the other scenes. The appropriate scenes will automatically update changes made to either the first two ships.

These changes are subject to the rules of referencing as outlined at the end of this appendix.

Appendix A

A multiple-user project with referencing

You can also share files amongst different users and different projects. In this case, the files must be more carefully set up in the projects directory so that your project can see the projects of other people.

After referencing the models, animator1 and animator 2 must set up their projects to always point at the modeler projects where the referenced files are kept. By default, Maya only looks for files in the current project's subdirectories. To look elsewhere, you must point to the other projects:

How to set up the project for animator1 and animator2

- Select File \rightarrow Project \rightarrow Edit Current.
- Under Scene File Locations, change Scenes to read the following:
scenes: /home/modeler1/maya/projects/a2Project/scenes: /home/modeler2/maya/projects/a2Project/scenes
In this case /home/ represents the home directory of each modeler. Now when the animators open their own scene files, Maya first checks the current project's scenes directory for any referenced files, then it will check the modelers' directories. The colon is used to separates directories.

Understanding References

In Maya you work with the dependency graph which is built using nodes, attributes and connections. Both your scene file and any referenced scene files contain these basic building blocks.

When files are referenced, the nodes are placed into the new scene as Read Only. Every node and connection from the reference file is placed into the scene with a prefix showing the file's name. In the example shown below, you see that when the file called nurbship.mb is referenced into scene1.mb, then its fighter 1 group node is given the new name of nurbship_fighter1.

This renamed node is actually a new node in the parent scene file that acts as a proxy for the referenced nodes. Any modifications made to the attributes on these proxy nodes are stored in the scene1.mb file and are not sent back to the nurbship.mb file.

Original node names
Renaming of referenced nodes

What happens to referenced textures and shaders

When you reference a file, the texture and shading group nodes are treated just like other nodes. They are renamed with a prefix to avoid name clashes and added to the scene file.

Source images that might have been loaded into a file texture would be referenced forward as part of the shading group.

Appendix A

If the file texture image had not been loaded into the original file, it could be added to a file texture node in the scene1.mb file and then connected to the shading group. In this case, the texture would not be part of the original polyship.mb file and therefore would not be shared with other people sharing polyship.mb.

Sourceimages and shading groups being referenced

Importing vs. Referencing

To get another scene to be part of your scene can be accomplished in two different ways. You can import the scene in order to merge the files or you can create a reference as you have learned in this appendix. If you want to share the files amongst many scenes then you would want to reference otherwise importing should work fine.

Exporting parts of a file with reference

If you have a file that contains a character, camera, light or other object that you want to share with other users, you can export the file as a reference. This means that it is essentially removed from your scene file then saved as a separate referenced file. Other people can now reference it into their scenes.

To export as a reference:

- Select the pieces that you want to export.
- Select File \rightarrow Export Selection - \square.
- In the option window, set Keep Only a Reference to On.
- Click Export Selection. Now the selected portions of the scene are placed into a new scene file that is automatically referenced.

Making and breaking reference connections

When you are referencing files, you are placing proxy nodes from those files into your scene. As you set keys, move objects and change attributes to those proxy nodes, you are making links to the attributes on these nodes. With reference files these connections link the proxies to nodes that sit in the scene file.

It is important to remember that all you have to do is change one attribute on a node and Maya records a connection into your scene file. For instance, if you reference in a file that contains a model of a chair and then you move the chair's root node, that node has been connected. You cannot rename or group/ungroup this node in the reference file or the connection will be broken. You can rename referenced nodes below the chair's root node because these nodes weren't connected.

Once these connections take place, you must avoid breaking the connections. Below are some tips for working with these files.

The rules of referencing

- If you save your files as Maya ascii then you can open your scene file in a text editor. This will then allow you to see what kinds of connections are made to your referenced nodes. Also, the actual reference is listed at the top of the file.
- Referenced files should not be renamed or else the scene file will not be able to find it.
- If you want to move a referenced file to another directory, make sure to set up the project to look for that directory. See How to set up the project for animator1 and animator2 earlier in this chapter.
- Nodes in referenced files should not be renamed or regrouped unless you are positive that the scene file has not made any connections. If you set keys or even change the value of the proxy version of a node, then the original node must not be renamed or regrouped or else connections will be broken.
- If you want to replace a referenced file with another file with the same name, remember that the new file must contain all of the nodes (named properly) that are connected in the scene file.
- If you want to apply a deformer to a referenced surface, go back to the original referenced scene file and apply the deformer there. Since deformers link to CV names and numbers, if you were to later attempt to create a new surface in the referenced file, the deformer connections would break.
- Some expressions that use MEL command statements can give your problems. For example, Ball.ty $=5$ would definitely work whereas setAttr Ball.tx $=5$ will not work.
- When you are writing MEL scripts for projects with referenced files, remember that the object names will have the prefix. Efficient use of variables should help you coordinate scripts in a reference file scenario.

INDEX

absolute values 96
action curves, see animation curves
Action Window, see Graph Editor
actions 103
Add Attribute window 166, 386
aim constraints 378
alpha channel, see masks
anim curves, see animation curves
animation curves 115,387
breaking tangents 44
cleaning up 44
deleting static channels 44
editing curve shapes 43,387
Graph Editor 87, 387, 415
Hypergraph 115
keys 45,115
motion 416
smoothing 43
static channels 44
tangent handles 44,415
tangent weights 415
tangents $43,115,329,332,333,415,416$
walk cycle 333
animation paths
orientation markers 294
position markers 294
animation tests 277, 439
ankle joint, see walk cycle
anti-aliasing 68
anticipation 413
arms, see walk cycle
ASBD Window, see Hypergraph
attach 134
attach to path 185
Attribute Editor 32, 99, 112, 115
connections 111
effects 443
light effects 288, 292
minimizing 373
nodes 111
placement 283
tabs 111
Attribute Spread Sheet 459
attributes 33
Add Attribute window 386
animating channels 115,421
animation curves 42

Channel box 109
Channel Control window 390
connections 107, 112
coordinate input 95
Dependency graph 110
Graph Editor 42
grayscale channels 80
keyable channels 112
linked attributes 386, 390
nodes 436
particles 79, 297, 300
procedural texture attributes 114
reflectivity 373
relationships 386
scene hierarchy 110
shading groups 373,447
specularity 373
spring attributes 423
testing in view panel 387
transform attributes 262
transparency 395
twist attributes 294
Auto Key, see keys
background images
animating 275
image plane background 267, 302
importing 275
rendering 275
batch rendering 70, 82, 203, 301
bend deformer 50
bind skin $316,362,371$
bind pose 362,372
lattices 321
soft 166
testing 321
to joints 315,361
to skeletons 307
binding surfaces, see bind skin
birail 238, 241
bones 361
bound surfaces, see bind skin
breakdown keys 181
brush 154
opacity 157
radius $155,157,159$
shape 157
size 155
stroke 154
bulging 321, 324
bump maps $230,264,270,271,444,448$
colors 273
rendering 232

\square

cameras
animating 342, 437
changing views 438
depth settings 282
eye point 437
focal length 438
image planes 267
look at point 437
new cameras 281, 437
nodes 342
overscan 266
rendering 346
resolution gate 192
view angle 266
Channel box 32, 74, 96, 99, 112
channel control 97
channel controls 99
editing attributes 33, 109
manipulators 97
particles 79
texture maps 228
Channel Control window 412
channels, see attributes
character
add attributes 170
combine 171
create 170
character animation 307,327
character modeling 308
circle 144
close surface 135
clusters 307, 383, 406, 407
cluster handles 408, 412
cluster weights 407
pivot location 384
scaling 384
color 344,442
bump maps 270

Color Chooser 372
color maps 269
colored shadows 458
diffuse setting 372
material 59
material attributes 372
particles 78
procedural ramp textures 377
procedural texture 61
projection maps 263
ramp attributes 270,377
ramp color 378
remap color 270, 273
remap ramps 270
rendering 298
shading groups 453
solid fractal textures 269
texture maps 442
components 101
Component Editor 422
Composer
using Maya with 80
compositing 80,460
advantages 84
animation 83
layers 80
particles 80
passes 301
renderings $83,301,346$
with Maya Composer 80
with Maya Fusion 80
Connection Editor 124, 268, 271
connections 107, 112, 116
arrows 113
texture nodes 114
up and downstream connections 395
viewing 113
constraints
aim constraints 378
orient constraint 169
orientation constraints 311, 312
point constraint 168
point constraints 312,410
construction history, see dependencies
Control vertices 150
control vertices 123, 236, 356, 392
moving 358, 365, 429
positioning 358
pulling 355, 359
pushing 359
rotating 358, 365, 366
scaling 365, 392
coordinate input 95, 262
curves
character curves 238
cubic 147
curve editing tool 237
curve snapping 241
curve tangency 241
curve tool 236, 280
cv curve 146,147
duplicating 239, 430
edit point curves 118, 245, 429
insert knots 245
linear 146
moving 430
path animations $122,277,279,283$
profile curves 244
project tangent 244
scaling 240
shaping surfaces 237
single span curves 238
curves on surface, see surfaces
CVs , see control vertices
cylinders $132,143,314,391$

DAG nodes, see transform nodes
deformations 360
bend 50
bulging 324
clusters 406
deformers 412
flexors 307, 317
isoparms 314, 315
lattice deformations $315,316,381$
lattice defromations 182
point on curve 165
sculpt object $323,324,325$
squash 46,186
surface deformations 307
delete history 135
dependencies $108,110,120,499$
animating 123
connections 116
construction history $237,254,257,258,315,355,380$
dependency network 125

Hypergraph 115
IK chains 309
shading groups 110
viewing 109
Dependency graph $107,110,111,118,120$
animating 123
Connection Editor 111
connections 111
Digital OptiF/X, see OptiF/X
displacement
maximum displacement 156
displacement maps $429,446,448$
display options 35,88
backface culling 210
display smoothness 90
dollying views 87
Dope sheet 52
editing timing 52
duplicate 133, 385
Duplicate Options window 385
Dynamic Relationships window 423
dynamics 73
colliding surfaces 418
emitters 295
passive rigid body 418
springs 423

E

elbow joint, see walk cycle
emission rate set keys 299
emitters 295, 299
direction 296
parenting 295, 299
environments
image plane 267, 282
erasing $155,157,159$
explosions 291
expressions
Expression Editor 311, 390
Maya Embedded Language (MEL) 391
scripts 391
Set Driven Key 391
shorthand 310
walk cycle 335

F

Feedback line 95
feet, see walk cycle
files
directories 492, 495
exporting references 501
management 54, 354, 491
projects 493, 494, 495
Reference Editor 275, 496
referenced files 275, 496, 499
saving 39, 54
scene files 496
set-up 236
subdirectories 495
fillet
2D fillet 104
circular 251, 252
fire clip effect 74
flexors 307, 317, 321
Create Flexor window 323
sculpt object 324, 325
flipbook 83
flood 159
flood erase 155,157
fog $286,288,289$
freeze transformations 143
Fusion
using Maya with 80

\square

glow 286
Graph Editor 42, 87, 115, 178, 279, 332, 387, 414
curves 415
resizing 42
tangents 415
timing 52
viewing 87
grid 35
grouped nodes 408, 409
grouping 100, 258
empty groups 312

H

halos 286, 293
handles, see selection handles
hands, see walk cycle
hardware rendering $78,80,82,83,297,377,395,432$
hardware shading 35,356
hardware texturing $65,66,114,220,223,226,261,262$, 377, 393, 452
heel joint, see walk cycle 332
hide 289,398
hierarchies 36, 116, 117, 258
adding nodes 118
dependencies 108
duplicating 318, 385
group hierarchies 121
grouping and parenting 100
hiding 118
Hypergraph 398
parent nodes 398
scene hierarchy mode 100
selection masks 100
shape nodes 108
skeleton joint hierarchies 381
transform hierarchies 108, 380
history, see dependencies
hotbox $32,56,91$
customizing 92
hotbox controls 92
marking menus 92
hotkeys $56,57,88,154$
Animation menu set 37
changing menu sets 74
Dynamics menu set 37
grid snap 354
hardware shading 356
hardware texturing 61
Modeling menu set 37
object and component mode toggle 101
object smoothness 89,360
parent 116
previous tool 254
realistic lighting 89
Rendering menu set 37
rotate 405
scale 405
select by object 360
set key 37, 413
show manipulator tool 65
smooth shading 88
snap to points 427
translate 405
undo 310
hulls 357,359
Hypergraph 87, 108, 110, 259, 380, 395
animation curves 115
automatic layout 399
connected attributes 395
connection arrows 113,271
dependencies 115,125
duplicating 326
freeform layout 399
input nodes 109
joint nodes 309
moving up nodes 381
nodes 115, 269
parent nodes 382
renaming nodes 442
scene hierarchy 111,398
shading groups $266,269,395$
shape nodes 109
texture nodes 114
transform nodes 109
up and downstream connections $109,113,115,269$, 395
Hypershade 110
shading groups $58,59,60$
Hypershade shading groups
Hypershade 87

I

IK chains $307,309,402$
end effector 309, 402
joint hierarchies 309,402
joint rotations 320
joints 314, 404
root 402
skeletons 402
walk cycle 333
IK handles 164, 309, 310, 322, 325, 402, 403, 404
IK solver 309, 341
pole vector 313
rotate plane 313
rotating 313
IK, see inverse kinematics (IK)
image planes 267, 268, 282
placement 282
resolution gate 282
setting keys 283
input devices
mouse 154
stylus 154,157
tablet 154, 157
input nodes 29, 278
intersecting strokes 156
inverse kinematics (IK) 402, 404, 407
IPR 193
isoparm 134
isoparms 120, 244, 314, 355

】

joints 360
bind sets 316
bind skin 315,361
colored joints 316
connecting 370
connecting joints $321,326,370$
flexors 317, 323
joint hierarchy 371
joint rotations 320
joint tool 164, 308, 368
legs 308
mirroring 371
moving 368
next joint selection 369
parent joints 370
pivot location 369
sets 316
skeleton joints 314

K

keyframes, see keys
keys
Auto Key 278, 333, 335, 340
breakdown 181
copy and paste 414
removing keys 45
Set Driven Key 323, 324, 386, 387, 389
set key 36
tangent handles 44
knee joint, see walk cycle
lattice deformations 182, 217, 307, 381
bind skin 321
control points 218
flexors 317
joints 315
lattice base 382
lattice points $217,316,382$
scaling 382
sets 316
layers 156
layer bar 136
Layer Editor 426
untemplating 437
layouts
default layout 86
Layouts pop-up menu 86
Saved Layout Editor 88
saving 87
spacebar shortcut 86
view panels 42,86
legs, see walk cycle
lighting 64, 344, 345
ambient lighting 229, 274, 435
ambient shade 437
background lighting 435
Channel box 436
cone angle 436
consistency 274
depth map shadows 458
directional lighting 191, 228, 262, 274
dropoff 436
eye point 65,431
filtering light 457
fog 288
glow 291
hardware lighting 65
intensity $288,292,436$
light effects 288
light manipulator 66
linked lights 457, 458
look at point 65,431
look through 431,457
parent nodes 286
penumbra 432
penumbra angle 436
point lights 289, 291
positioning lights $65,287,290$
refining 457
reflections 457
RGB 436
shadows 458
spot light attributes 436
spot light color 431, 432
spot light view 66, 67
spot lights 64, 66, 195, 286, 288, 431
spread 288
subdivisions 66
visibility 290
locators 378, 470
loft tool 138, 254, 429, 430

M

make live 121,185
manips, see manipulators
manipulators 30, 93, 237
Auto Key 340
axes 95, 354
camera/light manipulator 432
Channel box 97
constraints 94
coordinate input 96
default settings 97
interactive placement manipulator 451
lighting cone angle manipulator 66
lighting toggle point manipulator 66
move manipulator 121, 287
nodes 93
no-manipulator setting 98
no-visual manip setting 98
parameter handle 237
pivot manipulator 357
position handle 237
projection manipulator 223
rotate manipulator 93, 312
rotate plane manipulator 342
scale manipulator 357
select manipulator 93
show manipulator $244,278,376,431$
transform manipulator 93
using mouse buttons 94
maps, see texture maps
markers, see path animations
marking menu 159
marking menus 56, 102
masks 80, 302, 346, 452, 460
materials, see texture maps
mattes, see masks
Maya Embedded Language (MEL) 391, 463, 464
attributes 471
case sensitivity 467
command flags 467
Command line 464
comments 474
completing script 483
creating buttons 483
creating floating windows 481
creating marking menu set 478
creating shelf button 478
creating slider groups 482
creating sliders 480
debugging scripts 478
declaring procedures 475
echo all commands 471
Enter keys 465, 469
executing commands 477
Expression Editor 472
expressions 472
headers 474
Hotkey Editor 478
locators 470
MEL command 464
move 465
multiple commands 466
naming 310
readability 468
renaming 465
rotate 465
saving scripts 477, 484
Script Editor 468, 472, 478
Set Driven Key 391
set key 476,477
syntax 467,478
testing 484
text editor 474
unselected objects 466
user interface 478, 480, 482
variables 475
viewing commands 469
MEL, see Maya Embedded Language
menus 90
marking menus 92
menu sets 29, 91
pop-up menus 90
show menu 90
tear-off menus 90
motion blur 69, 70, 202, 203, 345
motion curves, see animation curves
motion paths, see path animations
move
move manipulator 93
move tool 30,295
moving in orthographic views 31
transform manipulators 30
Move CV normal 151
MovieConvert 301
MoviePlayer 301, 424, 439, 461

N

nodes
animation 36
attributes 114, 436
Channel box 96
child nodes 117
connections 107
duplicating 272
grouped nodes 408, 409
grouping and parenting 100, 117
hierarchy 36
input nodes 278
joint nodes 309
leaf nodes 380
manipulators 93
naming 30
new nodes $46,47,48,49,50$
null nodes 312
parent nodes $36,116,382,398,399$
placement nodes 114
referenced files 286
remap ramp nodes 271
root nodes 258,380
scaling $46,47,48,49,50$
shading groups $110,395,448,449$
shape nodes 108
texture nodes $114,273,448$
transform nodes 36, 108
twist nodes 294
non-uniform rational b-splines (NURBS) 29
curves 238
primitives 221
smoothing 236, 433
surface tessellation 459
surfaces 260, 428
NURBS, see non-uniform rational b-splines

objects
cylinders 391
object smoothness 35,360
planes 32
selection masks 101
spheres 29
operations
erase 155,157
pull 155, 156
push 155
smooth 155
OptiF/X 285, 286
explosions 291
fog 286, 288, 289
glow 286
halos 286, 293
rendering 302
Options menu 32
orient constraints 169
Outliner 380
scaling nodes $46,47,48,49,50$
overlap 156
overscan 266

P

painting $153,154,159$
brushes 154
paint 154, 159
sculpting 154
panels
panel layouts 31, 42, 286
view panels 86
parenting 47, 100, 262, 264
lights 286
parent nodes 36
parenting emitters 295, 299
walk cycle 340
particle event 77
particles 73
add per object attribute 79
add per particle attribute 79
attributes 297, 300
collision 76
color 78, 298
color per particle 79
Component Editor 422
compositing 80,84
effects 84
emission rate 299
emitters 295, 296, 299
fire 74
goal weights 421, 422
gravity fields 423
initial state 75
lifespan 297
rendering 78, 80, 297, 299
shading groups 298, 299
smoke 299
path animations 122, 276, 294
attaching to path 281
curves 277, 283
orientation markers 294
path direction 277
position markers 277, 278, 279, 283, 294
set key 277
tangents 279
time 279
U direction 279
paths, see path animations
pelvis, see walk cycle
pivot point
move 133, 426
planar 142
planes 32
playback controls 37, 277
Playblast 175, 344, 424, 439
point constraints 168,410
point on curve deformer 165
polygons 210
extrude 211
facets 211, 221
history 216
planar mapping 222
planes 426
polygonal mesh 216, 219, 220
primitives 221
projection 221
scale 211
surfaces 426
texture maps 219
preferences 492
previewing animation 71, 203
primitives 307
camera 281, 437
circles 255
cube 190
cylinders 314
locator object 378
planes 249, 251, 426, 428
polygons 210
sculpting 354, 363
spheres 253
UV coordinates 221
procedural animation 118, 380
procedural modeling 216
procedural textures
grid 61
shading groups 268
texture maps 268
project set-up 74
projection 260, 261, 263
projection placement icon 262
projection mapping 200
pulling $155,156,158,159$

R

raytracing $231,346,446$
reactive animations 48
redo 360
reference surfaces 156,157
referenced files $275,286,496,499$
reflections $231,233,345,346,373,397$
refractions 345, 346
relative values 96
Render Globals 300, 345, 443, 460
rendering 344
2D textures 396
3D elements onto 2D image planes 268
animations 69, 202, 460
anti-aliasing 68
background images 275
batch rendering 70, 82, 203, 297, 300, 458, 460
bump maps 232, 448
cameras 346
colored shadows 458
Command line rendering 346
compositing 301, 346
Create Render Node window 442
depth map shadows 68, 458
displacement maps 448
evaluation 69
fcheck utility 70, 460
Feedback line 301, 460
hardware rendering 82
IPR 193
issues 345
layers 301, 302
lighting 345
masks 302, 460
motion blur 69, 70, 202, 203, 345, 460
OptiF/X 302
options 301
overscan 266
particles 78, 80, 297, 299
raytracing 346, 446
reflections $233,345,346$
refractions 345, 346
region 299
render attributes 298
render passes 301
render quality 346
Render View window 87, 262
renderable cameras 460
resolution gate 346
shadows 68, 345, 346, 458
specularity 446
streak 78, 83
subdivisions 459
test render $68,262,300,346,432,435,443$
trimmed surfaces 258
whole scene 301
resolution gate $74,83,267,282,346$
revolve tool 146, 236
rotate manipulator $93,310,311$
groups 313
negative rotation 311
positive rotation 311

5

saving files $39,54,152,159,161$
SBD Window, see Hypergraph
scale manipulator 93
scale tool 356
scene hierarchy 110, 116
scripting language, see Maya Embedded Language
(MEL)
sculpting $153,155,354,359,363$
facial details 157
painting 154
secondary animation 36
select
by component 356
by hierarchy 259
by object 360
select manipulator 93
select masks, see selection masks
select tool 356
selection 99
selection handles $122,237,238,259,262,328,408$, 410, 411
selection masks $100,101,356,359,362$
combined select modes 102
components 101
hierarchies 100
Set Driven Key 166, 172, 386, 389, 391
Set Driven key 48
set key 36, 448
shaders, see shading groups
shading groups $58,59,60,442$
2D placement nodes 396
ambient shade 437
attributes 373, 447
color 59, 453
dependencies 110,395
hardware rendering 35
Hypergraph 266
Hypershade 58, 59, 60
layered attributes 450, 454
layered shader nodes 449
linked lights 457, 458
material $110,373,376,395$
naming 59, 60
particles 298, 299
procedural textures 268
reflectivity 373,397
smooth shading 35, 430
specularity $373,397,447$
surfaces 428
texture maps 230, 395, 428
texture placement nodes 395
transparency 395, 447, 454
water 447
shadows $196,345,346,458$
colored shadows 458
depth map shadows 458
shape nodes 108
shelf 91
shoulder joint, see walk cycle
show manipulator 93
show tool
deformers 411
IK handles 411
joints 411
meshes 424
skeletons 309
bind skin 315,316
bones 361
connecting joints 321
flexors 307
IK chains 402
IK handle tool 322
joint tool 308, 320, 368
joints $164,307,308,314,315,360$
parenting 398
rerooting 361
surfaces 308
skin, see loft tool
smart transform 255
smoke 299
smooth shading 432
smoothing 155,159
snap 140
software rendering 66, 78, 80, 83, 297, 395
specularity $230,373,397,446,447$
spheres 29
spine joint, see walk cycle
spline curves, see inverse kinematics (IK)
spline IK 164
spot lights 286, 431, 436
squash and stretch 46
squash deformer 46,186
stamp profile
opacity 155,157
radius $155,156,157,159$
shape 157
status line bar 356
surfaces
aligning 246
attaching 246
birail 238, 241, 242, 246
constrained orientation 122
curves 237, 238
curves on surface $120,249,251$
cutting 249
deformations $307,315,360,382$
duplicating 427
fillet 252
grouping 258
history 248
intersecting 249, 251
isoparms 315
joining surface edges 427
live surfaces 120
lofting 254, 429, 430
NURBS surfaces $89,428,429$
operations 155
polygonal 426
profile curves 244
projection maps 260
pushing 154
reference surfaces 156,157
revolving 236
rotating 427
sculpting 155, 429
shading groups 428
smoothing 159
smoothness 250, 430, 433
subdivisions 315, 434, 459
surface normals 122
surface tangency 241
tessellation $274,345,449,459$
texture maps 428
trimming 249, 250, 251
updating 157
system architecture of Maya 107

丁

tangent handles 237
tangent weights 179
tangents 173
templates 437
tessellation, see surfaces
test render 68, 264, 300, 346, 446
texture maps 198
2D texture placement 121
3D texture placement $267,273,289,454,456$
brownian textures 455
bump maps 230, 264, 270, 444, 448
Channel box 228
clouds 273
color 442
displacement maps 446, 448
embedded texture nodes 396
grid textures 394,442
image stencils 450, 452
incandescence 271
leather 267,268
marble 454
masks 452
material nodes 270
placement nodes 63
planar mapping 222
planets 268
polygonal mesh 219
polygons 219
positioning 63
procedural textures 268, 377
projection mapping 200
projection maps 260
projection placement icon 262
projection plane 223
reflectivity maps 231, 233
shading groups 230, 428
solid fractal textures 231, 269, 289, 292
specularity maps 230,446
starfields 267, 268
surfaces 428
texture placement nodes 232, 445
texture RAM 393, 394
texture reference objects 201
transparency maps 393
water 447
wood 455
Time slider 37, 74
animation preferences 39, 411
attributes 292
copy and paste 414
frames per second 411
playback controls 37, 39
red selection bar 414
scrubbing 414
Tool Settings window 153
Display 154
Sculpt 155, 157
tools 32, 103
tracking views 87
transform manipulator 31, 93, 94
transform nodes 36, 108
transformation nodes, see transform nodes
transparency $393,395,447,454$
trim edge 142
trim indicator 253
tucking 323
tumbling views 87

\square

U direction indicator 236
UI, see user interface
undo $159,310,360$
user interface
backface culling 210, 221
customizing 32,56
dolly 87
hotbox 56, 91
hotkeys 57
layouts 86
marking menus 56
menubar options 56
preferences 90, 492
shelf 91
track 87
tumble 87
workspace 85
collar joint 340
elbow joint 341
expressions 335
feet 330,332
hands 340
heel joint 332, 337
heel to toe motion 337
hip 335
IK handles 333
IK solver 341
knee joint 330
legs 331
parenting 340
pelvis $330,332,334,335$
pole vector axis 342
rotate plane IK handle 341
rotation 334
set key 331
shoulder joint 340
spine joint 338
tangents 333
translation 334
twist 342
windows 56
wireframe view 88
world space $287,312,340$

X

XYZ axes
transform manipulator 93
Y-up world 31

Nates

Nates

Nates

Nates

Nates

The Learning Maya book offers you self-study training right out of the box. You can guide yourself through several projects to help you learn the interface, workflows and functionality found in Maya.

To continue learning Maya in an instructor-led environment, courses are available that offer more advanced training in various Maya concepts and workflows. For information on all Alias I Wavefront training classes, please visit our website at www.aliaswavefront.com and choose the Training Express link.

If you would like to register for a training session, or if you do not have access to the web, you can contact your local sales office or call the Training Information Hotline at 416 362-8558 x5699. You can also email us at training-info@aw.sgi.com or fax us for information at 416 369-6131.

Another great Maya learning resource is the Assistant Online. This web site offers an exciting new way to learn as you work directly with digital files and web-based lessons. This web site also includes shaders, MEL scripts, sample files and many How-to lessons. You can access the Assistant Online site at www.aliaswavefront.com/assistant_online.

[^0]: Tip: \quad To toggle between object and component modes, press the F8 key.

[^1]: Note: You must first use the marking menu then use the Shift key to add a second point to the selection list, otherwise the selection menu will not appear.

[^2]: \rightarrow Resolution Gate.

[^3]: Render -s 1 - e 24 renderTest.mb

[^4]: Note: If hardware rendering is on, you may notice a slowing of the interactivity while positioning the lights, due to the increased display smoothness.

[^5]: - In the Hypershade, select Create \rightarrow Create Render Node...

[^6]: 4 Map an image stencil to the color

 - Open the paintBlinn node's Attribute Editor.

[^7]: Attribute Spread Sheet window

