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Abstract

We experimentally study behavior in an endogenous-timing herding game.

We find that subjects respond to their type and to observed investment ac-

tivity in a sensible way, but there are also substantial departures from Nash

Equilibrium. Some departures can be viewed as mere noise in decision making

while other departures represent systematic biases reflecting subjects’ failure

to appreciate subtle aspects of the game.
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1 Introduction

We consider an endogenous-timing herding model with the following features: (i)

There is an uncertain, exogenously determined, common gross return for investment.

(ii) Each player’s type consists of a pair of private signals, one about the investment

return and the other about investment cost. (iii) There are multiple rounds; in round

1, players simultaneously decide whether to invest, in round 2 those who did not

invest in round 1 observe how many other players invested in round 1, and decide

whether to invest in round 2, and so on. Investment is irreversible, and can be done

at most once. (iv) There is a cost to waiting (due to discounting).

In this environment, investment by others does not affect one’s payoff directly so

that there are no payoff externalities. However, there can be informational external-

ities, as the history of investment by other players may reveal something about their

private information, and hence about the investment return, to players who wait.

In such settings, important issues arise regarding how well the market aggregates

information and yields efficient outcomes.

Chamley and Gale (1994) address these issues theoretically for the case where

all players have the same investment cost so that types are one-dimensional. Levin

and Peck (2008) extend the analysis to two-dimensional types with heterogenous

investment costs. Both studies find that the Nash equilibrium (NE) outcome is often

inefficient.

To understand the relevant forces, consider the optimal behavior of some player i

given her type and given others’ strategies. In each round prior to investing, i needs

to compare the expected payoff from investing with the option value of waiting. To

compute the expected payoff from investing, i needs to take into account her type and,
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after round 1, to draw correct inferences about the investment return based on the

observed investment history. To compute the option value of waiting, i needs to look

ahead to the possible realizations of others’ investment activity and the inferences

that can be drawn from each realization. Clearly, if i’s expected payoff of investing

is negative she waits. However, even if it is positive but less than the option value

of waiting, she still waits in order to free-ride on the information provided by others’

investment activity. Such free-riding leads to inefficiency in NE.

The forces shaping i’s optimal behavior become especially apparent when one

considers how i’s computations depend on the structure of the game. For example,

i’s computations are sensitive in a subtle but crucial way to two features, the set of

possible types and the size of the market. The set of types affects the informational

content of any given observed investment history. It also determines whether i might

be able to free-ride on other subjects, e.g. on subjects with stronger types in the

sense of higher expected payoff from investing. Increasing the market size enhances

the option value of waiting in round 1 by virtue of sample-size effects–if i waits, she

gets to observe a larger sample coming from the same distribution conditional on the

investment return.1 As a result, NE behavior is critically sensitive to such features of

the game.

The main goal of our paper is to experimentally study systematic departures from

NE.2 To this end, we implement a series of endogenous-timing investment games in

the lab. The games differ by the number of players in the market (two or ten), and

by the cost-structure (one-cost or two-cost). In the one-cost games all players have

identical costs–high in the high-cost games and low in the low-cost games. In the

two-cost games, the cost of investment is either high or low and can differ across

1After round 1, the sets of possible histories are different on markets of different sizes so that
comparisons are more difficult to make.

2In the appendix, we also explore the implications of these departures for informational exter-
nalities and market efficiency.
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subjects.

We find that subjects respond to their type and to observed investment activity

in a sensible way. Thus, behavior satisfies some basic requirements of rationality.

Nevertheless, subjects’ behavior departs from NE in important ways. One departure

from NE occurs because subjects sometimes invest despite a negative expected payoff

from doing so. Another departure occurs because subjects do not always invest when

investing dominates waiting.

Although these departures have an important impact on informational externali-

ties and efficiency, they might be viewed as nothing more than noise that inevitably

moves the empirical frequencies of play away from NE boundary values of 0 or 1.

However, subjects also exhibit four systematic behavioral biases. First, they exhibit

insensitivity to market size by failing to appreciate the relevant sample-size effects.

Second, subjects are insensitive to opportunities to free-ride on other subjects. Third,

subjects fail to appreciate differences in the informational content of observed market

activity between the one-cost and the two-cost games. Fourth, subjects are exces-

sively conservative, in the sense that they are more reluctant to invest in response to

market activity, than a player in a NE or a player best responding to the empirical

frequencies.

The first generation of herding models assumes exogenous timing, i.e., that agents

are exogenously placed in a queue and must sequentially decide whether or not to

invest (see Banerjee (1992) or Bikhchandani, Hirshleifer, and Welch (1992)). The

seminal result in these models is the possibility of information cascades, which lead

to inefficiencies as a result of a failure to aggregate private information. Anderson

and Holt (1997) provide the first experimental tests of herding models with exogenous

timing and demonstrate the frequent occurrence of information cascades.3

The first experimental work on endogenous timing herding models is done by Sgroi

3See Weizsäcker (2010) for a meta-analysis of exogenous-timing herding experiments.
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(2003) and Ziegelmeyer et al. (2005). In Sgroi (2003), subjects receive two draws from

one of two urns: a “red” urn which contains two red (R) balls and one white (W)

ball, and a “white” urn which contains two W balls and one R ball. The possible

signals are either strongly red (RR), strongly white (WW), or neutral (RW or WR).

In each round, subjects either guess which urn the draws came from, or wait (at a

cost) to observe others’ guesses. In Ziegelmeyer et al (2005), each of two subjects

receives a signal that is randomly drawn from the set of integers between -4 and

4, and the subjects have to guess whether the sum of the two signals is positive or

negative. Although the NE predicts perfect identification (where signals 4 and -4

guess in round 1, signals 3 and -3 guess in round 2, etc.), a more common strategy is

for signals of absolute value 3 or 4 to guess in round 1. Our study goes beyond Sgroi

(2003) and Ziegelmeyer et al (2005), by identifying behavioral biases that explain

departures from NE. The previous papers did not vary the market size or the set

of possible types. We show that subjects do not respond to these features of the

environment, in contrast to the theoretical predictions.

The experimental work closest to the current paper is Ivanov, Levin, and Peck

(2009, henceforth ILP), which studies behavior in the two-player one-cost and two-

cost games mentioned above. ILP focuses on individual-level behavioral issues. The

authors consider prominent behavioral theories–the level-k model (see Nagel (1995),

Stahl and Wilson (1994, 1995), and Crawford and Iriberri (2007)), cursed equilib-

rium (Eyster and Rabin (2005)), and Quantal Response Equilibrium (McKelvey

and Palfrey (1995, 1998))–as possible explanations of behavior. They conclude that

rather than best-responding (possibly with noise) to (possibly incorrect) beliefs as

in the aforementioned behavioral theories, subjects seem to be following simple,

computation-free rules of thumb based on different insights about the game.

The rules of thumb identified in ILP are interesting from the point of view of
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individual-level cognition in dynamic settings where people gather information from,

or anticipate gathering information from, others’ behavior over time. However, they

do not map readily into behavior for markets with more than two players. The

current paper takes a different angle on behavior by identifying aggregate-level be-

havioral patterns that apply more generally to endogenous-timing herding games.

The two approaches are complementary. Moreover, the finding in the current paper

that aggregate-level behavior does not respond to more subtle features of the game is

consistent with the finding in ILP that, at the individual level, subjects use simple,

computation-free rules of thumb.4

The layout of the paper is as follows. Section 3 defines the games and presents the

Nash equilibria. The experimental design is explained in Section 4. Our experimental

results are presented in Section 5. Section 6 offers concluding remarks. The appendix

considers some additional important issues.

2 Theoretical Framework

Our theoretical framework is based on the model in Levin and Peck (2008). There

are n risk-neutral players.5 Let Z ∈ {0, 10} denote the true gross investment return,

common to all players, with Pr(Z = 0) = Pr(Z = 10) = 1
2
. Each player i observes a

signal correlated with the investment return, Xi ∈ {0, 1}, which we call the common-

value signal of player i. We assume that signals are independent, conditional on Z.

4Another strand of the literature, pioneered by Avery and Zemsky (1998), retains the exogenous-
timing assumption but allows the investment cost (or asset price) to change as new information is
revealed. See Cipriani, Guarino (2005) and Drehmann et al. (2005), and Park and Sgroi (2012) for
experimental studies.

5Our derivations of the Nash equilibria below, as well as our analysis of behavior in the lab, will
be conducted under the assumption of risk-neutrality. We discuss violations of this assumption in
section 4.3.
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The accuracy of the signal is given by the parameter α ∈ [1
2
, 1]:

Pr(Z = 0 | Xi = 0) = Pr(Z = 10 | Xi = 1) = α.

When α = 1
2
, common-value signals have no informational content at all, and when

α = 1, the common-value signal fully reveals Z. Thus, the parameter α effectively

captures the informativeness of the common-value signal. In addition, each player i

privately observes a second signal representing the idiosyncratic cost, ci, of undertak-

ing the investment. The cost ci is independent of all other variables, and distributed

according to a distribution function defined over the support, [c, c]. Impatience is

measured by the discount factor, 0 < δ < 1. If player i has cost ci and the state is

Z, her profits are zero if she does not invest, and δr−1(Z − ci) if she invests in round

r = 1, 2, ....

Here is how the game proceeds. First, each player observes her private information,

or type, (Xi, ci). Let kr be the number of players who invest in round r. For r =

1, 2, ..., each player observes the history of investment prior to round r, hr, where

h1 = ∅ and, for r ≥ 2, hr = (k1, . . . , kr−1). Players not yet invested simultaneously

decide whether to invest in round r. We require that a player can invest at most

once. In these settings, a strategy s is a function which assigns, for each type, an

investment probability to each history of observed investment.

Although Levin and Peck (2008) consider continuous cost distributions, our ex-

perimental design considers a discrete distribution containing either one point (ci = L

or ci = H but is the same for all subjects in a given game) or two points (ci = L or

ci = H and can differ across subjects in a given game). This simplifies the decision

making required of subjects and simplifies the data analysis. At the same time, it

maintains the essential tradeoff between the incentive to delay and gain information

by observing investment activity, versus the associated shrinkage of the (expected)
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pie due to discounting. For the remainder of the paper, we restrict attention to the

parameter values, n = 2 or n = 10, δ = 0.9, α = 0.7, L = 3.5, and H = 6.5. Note

that given these parameters, the expected profit of investing in round 1 is negative

for types with Xi = 0 (−3.5 for type (0, H) and −0.5 for type (0, L)) and positive for

types with Xi = 1 (0.5 for type (1, H) and 3.5 for type (1, L)).

We now define the games relevant to our experiment. We also compute NE behav-

ior for rounds 1 and 2.6 This computation relies on the “one-step property,” which is

proved by Levin and Peck (2008) for the case of a continuum of possible cost realiza-

tions. According to this property, for a type that invests with positive probability at

a given history in NE, the option value of waiting at that history equals the expected

payoff from waiting and investing in the next round if and only if the expected payoff

of doing so is positive (and otherwise never investing). For the case of n = 2, the

explicit derivation of the NE can be found in ILP. For the case of n = 10, NE behavior

is computed numerically.

Two-Cost Games:

There are two equally likely cost realizations, L = 3.5 and H = 6.5. Thus, we

have four possible types of players based on the common-value signal and the cost:

(0, H), (0, L), (1, H), and (1, L). NE behavior in rounds 1 and 2 is shown in the left

panels of Tables 2 (for n = 2) and 4 (for n = 10).7

Low-Cost Games:

There is only one possible cost realization, 3.5. Thus, we have two possible types

of players: (0, L) and (1, L). NE behavior in rounds 1 and 2 is shown in the left

6For n = 10, the number of histories quickly becomes intractable beyond round 2. For n = 2,
there are no decisions to invest beyond round 2 in NE and relatively few such decisions in the actual
data (see ILP for details).

7In the two-cost games and in the two-player low-cost game (see below), type (1, L) never reaches
round 2 in NE. In these cases, we show the sequentially rational round-2 investment probabilities
for type (1, L) assuming others behave according to NE.
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Two-Player One-Cost Games (A2 Treatment)

Nash Actual
(0,H) (0,L) (1,H) (1,L) (0,H) (0,L) (1,H) (1,L)

Round 1 0 0 0.492 1 0.048(589) 0.128(564) 0.380(545) 0.779(574)

Round 2
- after (1) 0 1 1 1 0.155(103) 0.510(206) 0.663(80) 0.831(71)

- after (0) 0 0 0 1 0.055(458) 0.112(286) 0.256(258) 0.518(56)

Table 1: Round-1 and round-2 frequencies of investment in the two-player one-cost
games (A2 treatment). The subscripts on the actual frequencies show the number of
decisions that were made at each history.

Two-Player Two-Cost Game (R2 Treatment)

Nash Actual
(0,H) (0,L) (1,H) (1,L) (0,H) (0,L) (1,H) (1,L)

Round 1 0 0 0 1 0.072(459) 0.113(415) 0.353(465) 0.771(433)

Round 2
- after (1) 0 1 1 1 0.216(116) 0.452(115) 0.679(112) 0.892(37)

- after (0) 0 0 0 1 0.058(310) 0.111(253) 0.228(189) 0.597(62)

Table 2: Round-1 and round-2 frequencies of investment in the two-player two-cost
game (R2 treatment). The subscripts on the actual frequencies show the number of
decisions that were made at each history.

panels of Tables 1 (for n = 2) and 3 (for n = 10) (only the columns corresponding to

types (0, L) and (1, L) apply).

High-Cost Games:

There is only one possible cost realization, 6.5. Thus, we have two possible types

of players: (0, H) and (1, H). NE behavior in rounds 1 and 2 is shown in the left

panels of Tables 1 (for n = 2) and 3 (for n = 10) (only the columns corresponding to

types (0, H) and (1, H) apply).
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Ten-Player One-Cost Games (A10 Treatment)

Nash Actual
(0,H) (0,L) (1,H) (1,L) (0,H) (0,L) (1,H) (1,L)

Round 1 0 0 0.071 0.746 0.046(239) 0.152(217) 0.394(241) 0.787(263)

Round 2
- after (9) 1 1 1 1 - 0.000 (1) - -
- after (8) 1 1 1 1 - 1.000 (5) - 1.000 (5)

- after (7) 1 1 1 1 - 0.714 (7) - 0.875 (8)

- after (6) 1 1 1 1 0.000 (2) 0.655(29) 0.500(2) 0.909 (11)

- after (5) 1 1 1 1 1.000(1) 0.419(31) 0.444 (9) 0.737 (19)

- after (4) 1 0 1 1 0.174(23) 0.259(27) 0.368(19) 0.333 (3)

- after (3) 0 0 1 0.763 0.071(42) 0.125(32) 0.357(42) 0.667 (3)

- after (2) 0 0 1 0 0.086(35) 0.036(28) 0.143(21) 0.250 (4)

- after (1) 0 0 0.322 0 0.037(81) 0.083(24) 0.185(27) 0.333 (3)

- after (0) 0 0 0 0 0.068(44) - 0.154(26) -

Table 3: Round-1 and round-2 frequencies of investment in the ten-player one-cost
games (A10 treatment). The subscripts on the actual frequencies show the number
of decisions that were made at each history; “-” indicates that a given history never
occurred.

Table 5 shows the cutoff values for k1 above which each type invests in round

2. We are interested in the actual cutoffs, the NE cutoffs, and the cutoffs based

on best-responding to the actual behavior of the other subjects. The NE cutoffs

are complicated by the fact that the NE sometimes involves mixing. As a useful

summary statistic of the NE round-2 behavior of each type in the ten-player games,

we interpolate the cutoff value of the number of observed round-1 investments that

induces investment with probability 0.5 in round 2. In particular, denoting this cutoff

value by k
NE

1 , we set k
NE

1 = (p2−0.5)
p2−p1

k̃1 +
(0.5−p1)
p2−p1

(k̃1 + 1), where k̃1 is the highest level

of round-1 investment for which the round-2 NE probability of investment is less

than 0.5, p1 is the NE probability of investment after history (k̃1), and p2 is the NE

probability of investment after history (k̃1 + 1). That is, k
NE

1 is a weighed average of

k̃1 and k̃1+1, where the weights depend on how close p1 and p2 are to 0.5. The third
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Ten-Player Two-Cost Game (R10 Treatment)

Nash Actual
(0,H) (0,L) (1,H) (1,L) (0,H) (0,L) (1,H) (1,L)

Round 1 0 0 0 1 0.058(241) 0.169(231) 0.348(250) 0.681(238)

Round 2
- after (9) 1 1 1 1 - - - -
- after (8) 1 1 1 1 - - - -
- after (7) 1 1 1 1 0.500 (2) 1.000 (1) - -
- after (6) 1 1 1 1 0.429 (7) 1.000(3) 0.583(12) 0.667 (6)

- after (5) 1 1 1 1 0.300(20) 0.385(13) 0.571 (7) 1.000 (5)

- after (4) 0 1 1 1 0.167(42) 0.379(29) 0.467(45) 0.438 (16)

- after (3) 0 0 0.655 1 0.000(50) 0.186(43) 0.220(41) 0.550 (20)

- after (2) 0 0 0.020 1 0.034(59) 0.051(59) 0.087(46) 0.400 (20)

- after (1) 0 0 0 1 0.000(34) 0.000(26) 0.000(6) 0.167 (6)

- after (0) 0 0 0 0 0.077(13) 0.056 (18) 0.000(6) 0.333 (3)

Table 4: Round-1 and round-2 frequencies of investment in the ten-player two-cost
game (R10 treatment). The subscripts on the actual frequencies show the number
of decisions that were made at each history; “-” indicates that a given history never
occurred.

A10
(0,H) (0,L) (1,H) (1,L)

k1 8.71 5.33 5.54 2.93
(2.94) (0.37) (1.29) (0.84)

k
NE

1 3.5 4.5 1.26 2.66

k
TBR

1 4.5 4.5 1.5 3.5

R10
(0,H) (0,L) (1,H) (1,L)

k1 6.85 4.86 4.58 3.26
(0.82) (0.39) (0.37) (0.76)

k
NE

1 4.5 3.5 2.76 0.5

k
TBR

1 5.5 3.5 3.5 1.5

Table 5: Round-2 actual, Nash, and truncated best-response cutoffs.

row in the left and right panels of Table 5 shows k
NE

1 for each type in the one-cost

ten-player games and the two-cost ten-player game, respectively. (The actual cutoffs,

k1, and the best-response cutoffs, k
TBR

1 , in the remaining rows are explained further

below.)

The NE of the games described above exhibit the following theoretical predictions:
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(1) In each game, the higher the expected profit from investment given a subject’s

type, the more likely she is to invest in round 1–the frequencies with which

subjects of type (0, H), (0, L), (1, H), and (1, L) invest in round 1 are (weakly)

increasing in the given order.

(2) For each type in each game, the round-2 probability of investment is (weakly)

increasing in the number of subjects who are seen to invest in round 1.

(3) In all games, (0, H) and (0, L) players never invest in round 1 because that

entails a negative expected profit.

(4) In the two-player games, (1, L) players invest in round 1 with probability 1–in

fact, investing in round 1 dominates waiting.8 In the two-cost ten-player game,

(1, L) players also invest in round 1 with probability 1.

(5) Sensitivity to market size:

For a given cost structure (one-cost or two-cost game), the round-1 probability

of investment for each type is (weakly) smaller in the larger market because

the investment activity that can be observed by waiting is more informative

by virtue of sample-size effects. Notably, type (1, H) invests in round 1 with

probability 0.49 in the high-cost two-player game and with probability 0.07 in

the high-cost ten-player game; type (1, L) invests in round 1 with probability

1 in the low-cost two-player game and with probability 0.75 in the low-cost

ten-player game.

(6) Sensitivity to opportunities to free-ride:

For a given market size (n = 2 or n = 10), the round-1 probability of investment

8Investing in round 1 dominates waiting because, even if a (1, L) player were to find out for sure
in round 2 that the other player has an unfavorable common-value signal, it would still be optimal
to invest.
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for type (1, H) is smaller in the two-cost game than in the high-cost game. The

reason is that, in the two-cost game, type (1, H) can free-ride on the stronger

(1, L) type.

When n = 10, the round-1 probability of investment for type (1, L) is smaller

in the low-cost game than in the two-cost game. The reason is that, in the

two-cost game, only half of the players with Xi = 1 are type (1, L), so that

the opportunities for free-riding are limited; on the other hand, in the low-cost

game, all players with Xi = 1 are type (1, L), so that (1, L) players end up

free-riding on each other and the NE involves mixing.

(7) Sensitivity to the informational content of market activity:

When n = 10, k
NE

1 for types (0, H) and (1, H) is higher in the two-cost game

than in the high-cost game. The reason is that, in the two-cost game, players

with a low investment cost invest with a high probability in round 1 if Xi = 1.

Thus, relatively low round-1 investment makes the presence of type (0, L) more

likely, which is bad news. In the high-cost game, no type invests with a high

probability in round 1, so that the same level of round-1 investment can still be

viewed as good news.

When n = 10, k
NE

1 for types (0, L) and (1, L) is lower in the two-cost game

than in the low-cost game. The reason is that, in the two-cost game, half of the

players with Xi = 1, namely the (1, H) players, do not invest in round 1 despite

their favorable common-value signal. Thus, relatively low round-1 investment

can still be viewed as good news. In the low-cost game, only one-quarter of

the players with Xi = 1, namely the (1, L) players who wait as part of the NE

mixing, do not invest in round 1. Thus, the same level of round-1 investment

may no longer be viewed as good news.

13



The main goal of our paper is to check to what extent actual behavior in the

lab conforms to the NE features of behavior described in equilibrium predictions (1)-

(7). Note that equilibrium predictions (1)-(2) capture aspects of behavior that are

about basic rationality. On the other hand, the remaining equilibrium predictions,

especially equilibrium predictions (5)-(7), are based on more subtle considerations

about the logic of the game.

Note that some departures from NE may still be optimal given the empirical

frequencies of play. Therefore, we will also wish to consider the best-response behavior

of a player given that all other players use the average empirical strategy in the

population, sa, which, for each history and type, gives the empirical frequency of

investment at that history by that type.9 10 However, in the ten-player games, we

will not compute exact best-responses.11 Instead we compute truncated best-response

(TBR) as best-response behavior under the restriction that it does not involve any

investment after round 3. TBR behavior and best-response behavior coincide in the

two-player games. In the ten-player games, TBR profits provide a lower bound for

best-response profits, though we believe the difference is very small.

As a useful summary statistic of the TBR round-2 behavior of each type in the

ten-player games, we interpolate the cutoff value of the number of observed round-1

investments that induces investment with probability 0.5 in round 2. In particular,

denoting this cutoff value by k
TBR

1 , we set it equal to the average of the highest k1

9If there are no observations at some history hr in our experiment, so that the relevant frequency
is not defined, we set sa(hr;Xi, ci) = sNE(hr;Xi, ci), where sNE is the NE strategy.

10More generally, one could look at the best-response behavior and profits given the distribution of
strategies in the population, rather than assuming that everyone uses the average empirical strategy.
However, for our purposes, this would be impractical because we do not observe subjects’ strategies.
In addition, requiring that a best-responder knows not just the empirical frequencies of play, but
the whole distribution of strategies, may be too demanding.

11For example, we cannot compute exact best response behavior given sa because, at each history
beyond round 2, we have few observations so that the empirical frequencies are either not defined
or are not reliable. Thus, it is not clear how a player, say, in round 4 should respond to observed
investment in round 3.
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for which TBR prescribes not investing and the lowest k1 for which TBR prescribes

investing. Thus, k
TBR

1 is the TBR analogue of k
NE

1 . The fourth row in the left and

right panels of Table 5 shows k
TBR

1 for each type in the one-cost ten-player games

and the two-cost ten-player game, respectively.

3 Experimental Design

The experiment consisted of the two-player random two-cost treatment (R2), the two-

player alternating one-cost treatment (A2), the ten-player random two-cost treatment

(R10), and the ten-player alternating one-cost treatment (A10). The R2 consisted

of four sessions (78 participants in total). The A2 also consisted of four sessions (96

participants in total). We conducted two sessions of the R10 (42 participants in total)

and two sessions of the A10 (54 participants in total).12

In the R10, each session consisted of 2 practice periods and 24 periods in which

subjects played for real money. At the start of each period, subjects were randomly

and anonymously matched in two groups of ten to form separate ten-player markets

that bore no relation to each other.13 In any given market, subjects played the two-

cost game.

The A10 was identical to the R10, except that subjects played the low-cost game in

odd numbered periods and the high-cost game in even numbered periods. The R2/A2

was identical to the R10/A10 except that there were two players per market.14 15

12The data from the two-player treatments is analyzed in ILP. The analysis in this paper addresses
new questions not considered in ILP, including the effect of market size and the other behavioral
biases we identify.

13Thus, in any given period, only twenty subjects played. The rest, who were randomly chosen
each period, sat out.

14To guarantee that the trials ended, without changing the equilibria, subjects in all treatments
were told that the game ended after either all subjects had invested or there were two consecutive
rounds with no investment.

15For 2 sessions of the R2 and of the A2, the investment game was followed by some lottery
problems and a questionnaire. ILP use these to test their interpretation of behavior. We do not use

15



In the two-player/ten-player treatments, subjects were given an initial cash bal-

ance of 20/30 experimental currency units (ECU). In addition, they could gain or lose

ECU in each trial, which were added to or subtracted from their cash balances. At

the end of the session in the two-player treatments, ECU were converted into dollars

at a rate of $0.6 per ECU. In the ten-player games, the exchange rate was $0.5 per

ECU. Subjects were paid the resulting dollar amount or $5, whichever was greater.

If a subject’s cash balances fell below 0 at any point during the session, that subject

was paid $5 and was asked to leave.16

Average earnings for the R2/A2/R10/A10 were $26.04/$26.49/$25.71/$26.32. Ses-

sions lasted between 1 hour 45 minutes and 2 hours.

Subjects in all treatments were undergraduate students at The Ohio State Uni-

versity (OSU). The sessions were held at the Experimental Economics Lab at OSU.

At the beginning of each session, the experimenter read the instructions aloud as

subjects read along, seated at their computer terminals. Subjects were invited to ask

questions during the instructions and after the practice periods. Once play for real

cash began, no more questions were allowed. See the Appendix for our Instructions

from the R1017 and a printout of the screen seen by a subject in the A2 with cost 6.5

and signal 1, who is deciding whether to invest in round 2 after the other subject has

invested in round 1.

4 Results

We will focus on actual behavior mostly in rounds 1 and 2. The right panel in Table 1

summarizes actual behavior in rounds 1 and 2 in the A2. The top row shows, for each

the data from the lottery problems and the questionnaire in our current study.
16This occurred for three/three/one/zero subjects in the R2/A2/R10/A10.
17The instructions for the other treatments are similar and are available upon request.
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type, the actual frequencies with which subjects invested in round 1; the subscripts

in parentheses show the number of decisions that these frequencies are based on.

For example, in round 1 subjects made 564 decisions as type (0, L) and 12.8 percent

of these decisions were decisions to invest in round 1. The remaining rows show,

for each type and each history of round-1 investment, the actual frequencies with

which subjects invested in round 2 and the number of decisions that these frequencies

are based on. For example, in round 2 subjects made 258 decisions as type (1, H)

after observing 0 investments in round 1; 25.6 percent of these 258 decisions were

decisions to invest. The right panels in Tables 2, 3, and 4 analogously summarize

actual behavior in rounds 1 and 2 in the R2, A10, and R10, respectively.

Before we proceed, let as make a brief note on statistical methodology. In the sta-

tistical analysis below, we treat the unit of observation as the subject-trial pair, taking

into account individual-specific unobserved effects but not session-level effects.18 To

the extent that within-session correlation exists, our econometric tests will presume

“too many” observations and will tend to reject the null hypothesis too often. We are

on safe ground, since our main results are about an absence of differences in behavior

across treatments. Thus, we fail to reject the null of no difference across treatments

despite using a possibly overly sensitive test.19

4.1 Basic Rationality

Let us start by checking if subjects respond to obvious incentives. ILP show that, for

the two-player markets, in the aggregate subjects respond to their investment cost

and common-value signal in a sensible way, corresponding to equilibrium prediction

(1). The same is true for the ten-player markets (see the first row in Tables 3 and 4).

18In the statistical analysis in the Appendix, there are some exceptions to this rule. These are
explicitly mentioned.

19Further details are provided in the appendix.
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(0,H) (0,L) (1,H) (1,L)
A2 0.085** 0.424*** 0.439*** 0.430***
R2 0.143*** 0.380*** 0.544*** 0.388***
A10 0.021** 0.150*** 0.064*** 0.108**
R10 0.040*** 0.099*** 0.165*** 0.129**

Table 6: Marginal Effect of k1 on the probability of investment in round 2. (*/**/***
indicates significance at the 10/5/1 percent level.)

We now move on to the question of whether subjects respond to the behavior

of the other subjects in their trial. We estimate the following random effects probit

model for each type in each treatment:

Pr(subject invests in round 2|k1, v, subject has not invested in round 1) = Φ(β0+β1k1+v)

(1)

where k1 is the number of players who invested in round 1, v is an individual-specific

random effect, and Φ(·) is the standard normal cdf. Table 6 shows the estimated

marginal effects of a one-unit increase in k1 on the probability of investment in round

2. All marginal effects are significant.

Let us summarize our results so far:

Result 1 In the aggregate, for all treatments, (i) types with higher expected profits

are more likely to invest in round 1, and (ii) for each type, there is a positive and

statistically significant marginal effect of k1 (the number of subjects who invest in

round 1) on the probability of investment in round 2.

4.2 Departures from NE

We now consider systematic departures from NE in rounds 1 and 2. Because some

departures from NE may still be optimal given the empirical frequencies of play, we
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(0,H) (0,L) (1,H) (1,L)

A2 -3.500 -0.812 0.022 0.350
R2 -3.500 -0.727 -0.110 0.350
A10 -3.624 -1.428 -0.556 0.063
R10 -3.608 -1.170 -0.598 0.301

Table 7: Expected profit of investing in round 1 minus expected profit from waiting
in round 1 and behaving according to TBR thereafter (in ECU).

will also consider TBR behavior given the empirical frequencies.

4.2.1 Round-1 Behavior

At various points below, we will consider, for each type, incentives for investing in

round 1 versus waiting given the empirical frequencies of play. Table 7 shows, for

each type in each treatment, the expected payoff of investing in round 1 minus the

expected payoff of waiting in round 1 and behaving according to TBR thereafter. We

call this difference the TBR net payoff from investing (in round 1).20

The next result summarizes our findings regarding round-1 behavior in the lab

based on Tables 1, 2, 3, and 4.

Result 2 In round 1 in all treatments of our experiment:

(i) there is almost no investment by (0, H) players (5-7 percent) and small but

nonnegligible investment by (0, L) players (11-17 percent);

(ii) the frequency of round-1 investment for type (1, H) is in the range 0.35-0.39;

(iii) the frequency of round-1 investment for type (1, L) is in the range 0.68-0.79.

(iv) for each type, the difference in round-1 investment between any two treatments

is not statistically significant.21

20Note that, on average, a player is each type six times per session. Thus, each number in the
table needs to be multiplied by six in order to obtain an idea of incentives for the whole session.

21Let dA2, dR2, dA10, dR10 be treatment dummies and v be an individual-specific random effect.
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Thus, by Result 2(i) subjects, in contrast with equilibrium prediction (3), make

mistakes in round 1 by sometimes investing despite a negative expected payoff from

doing so. The frequency of mistakes depends on the expected payoff from investing

and is nonnegligible when this expected payoff is only slightly negative.

By Result 2(iii), (1, L) subjects, in contrast with equilibrium prediction (4), also

make mistakes by failing to always invest in round 1 in the two-player games and

the two-cost ten-player game. In the two-player games, investing strictly dominates

waiting. In the two-player games and the two-cost ten-player game, the TBR net

payoffs from investing are strictly positive (see Table 7).

These departures from NE could be viewed as noise that inevitably moves the

empirical frequencies of play away from NE boundary values of 0 or 1. However,

Result 2 also provides evidence that subjects exhibit the following behavioral biases

that are at odds with equilibrium predictions (5) and (6).

Insensitivity to Market Size:

In contrast with equilibrium prediction (5), Result 2 indicates that, for a given

cost-structure of the game, round-1 behavior in the lab is insensitive to the size of

the market. Notably, the round-1 probability of investment of type (1, H) is slightly

higher in the ten-player high-cost game than in the two-player high-cost game (0.39

vs. 0.38, respectively) even though it is much lower in NE (0.07 vs. 0.49, respectively);

the round-1 probability of investment of type (1, L) is slightly higher in the ten-player

low-cost game than in the two-player low-cost game (0.79 vs. 0.78, respectively) even

though it is quite a bit lower in NE (0.75 vs. 1, respectively).

Further, for a given cost structure, the behavior of the various types is insensitive

to the size of the market despite differences in the TBR incentives to invest (see

To check for statistical significance, for each type we run the following random effects probit
Pr(subject invests in round 1|dA2, dR2, dA10, dR10, v) = Φ(β1dA2 + β2dR2 + β3dA10 + β4dR10 + v)
and, for any i, j ∈ {1, 2, 3, 4}, i ̸= j, we test the hypothesis βi = βj .
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Table 7). First, consider (1, H) subjects. In the high-cost games, the difference

between the TBR net payoffs from investing in the two-player and in the ten-player

game is | − 0.56 − 0.02| = 0.58 ECU. In the two-cost games, the difference between

the TBR net payoffs from investing in the two-player and in the ten-player game is

| − 0.60− (−0.11)| = 0.49 ECU.

In the case of (1, L) subjects, in the low-cost games the TBR incentives differ by

a modest but nonnegligible amount (|0.35− 0.06| = 0.29 ECU). In the case of (0, L)

subjects, for a given cost structure, the investment frequency in the lab is actually a

bit larger in the ten-player market even though the TBR net payoffs from investing

are actually quite a bit smaller. All this evidence suggests that subjects fail to ap-

preciate the relevant sample-size effects.

Insensitivity to Opportunities to Free-Ride:

In contrast with equilibrium prediction (6), we observe that, for a given market

size, round-1 behavior in the lab is insensitive to the cost structure of the game.

Notably, for a given market size, the round-1 probability of investment of type (1, H)

is very close between the high-cost and two-cost games (and any difference is not

statistically significant by 2(iv)) even though the NE probability of investment differs,

especially when n = 2; the round-1 probability of investment of type (1, L) is higher

in the ten-player low-cost game than in the ten-player two-cost game (0.79 vs. 0.68,

respectively) even though the reverse is true in NE (0.75 vs. 1, respectively).

Further, for a given market size, the behavior of the various types is insensitive

to the cost structure of the game despite differences in the TBR incentives to invest

(see Table 7). In the case of (1, H) subjects, the difference between the TBR net

payoffs from investing in the one-cost two-player and in the two-cost two-player game

is modest but nonnegligible (| − 0.11 − 0.02| = 0.13 ECU). In the case of (1, L)
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subjects, the TBR incentives differ by |0.30− 0.06| = 0.24 ECU between the low-cost

and the two-cost ten-player game. The corresponding number for (0, L) subjects is

|−1.43−(−1.17)| = 0.26 ECU. All this evidence suggests that subjects are insensitive

to opportunities to free-ride on the information provided by other subjects’ behavior.

4.2.2 Round-2 Behavior

Our first goal in this section is to check to what extent behavior in the ten-player

games in the lab conforms to equilibrium prediction (7). To do that, we consider again

the random effects probit model given in equation (1). Based on this, we compute k1

as the value of k1, such that the predicted probability of investment for the average

subject (i.e. for one with v = 0) equals 0.5.22 Thus, k1 is the actual-behavior analogue

of k
NE

1 and k
TBR

1 , which were introduced in section 2.

Table 5 reports, for each type in the ten-player games, k1 along with the estimated

standard error. We can state the following result.

Result 3

(i) For each type, k1 is similar in magnitude between the A10 and R10 and any

difference is not statistically significant.23

(ii) For each type in the A10 and R10, k1 is greater than k
NE

1 ; the difference is

statistically significant (at the 5-percent level) for types (0, L) and (1, H) in the

22That is, k1 = − β̂0

β̂1

, where β̂0 and β̂1 are the estimates of β0 and β1 from equation (1).

23To test for statistical significance between k1 from the A10 and k1 from the R10, we run
the following version of the probit model given in equation (1) jointly on the data from the A10
and the R10: Pr(subject invests in round 2|k1, dA10, dR10, v, subject has not invested in round 1) =
Φ(β0dA10 + β1dA10k1 + γ0dR10 + γ1dR10k1 + v), where dA10/dR10 is a dummy that equals 1 in
the A10/R10. (Thus, we’re allowing for treatment-specific constant and slope coefficient, which is
effectively the same thing as running the model in equation (1) separately on the data from the
A10 and the R10.) We test the hypothesis that k1 from the A10 equals k1 from the R10 by testing
β0

β1
= γ0

γ1
. Later, we will test more general hypotheses of the form k1 from the A10 minus k1 from

the R10 equals some constant c. This will be done by testing β0

β1
− γ0

γ1
= c.
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A10 and for all types in the R10. For each type in the A10 and R10, except for

type (1, L) in the A10, k1 is greater than k
TBR

1 ;24 the difference is statistically

significant (at the 5-percent level) for types (0, L) and (1, H) in the A10 and for

types (0, L), (1, H), and (1, L) in the R10.

Result 3 provides evidence that subjects exhibit two additional behavioral biases.

Insensitivity to the Informational Content of Market Activity:

By Result 3(i), round-2 behavior in the ten-player games in the lab is insensitive

to the cost structure of the game. This is true even when NE and TBR behavior vary

with cost-structure. Most notably, k1 for type (1, L) is slightly higher in the R10 than

in the A10, even though both k
NE

1 and k
TBR

1 are lower by at least 2 units in the R10.

We can reject the hypothesis that k1 in the A10 minus k1 in the R10 is at least 2

(p-value is 0.019; one-sided test). For type (1, H), k1 is higher in the A10 than in the

R10, even though both k
NE

1 and k
TBR

1 are lower in the A10 by at least 1.5 units. We

can reject the hypothesis that k1 in the R10 minus k1 in the A10 is at least 1.5 (p-value

is 0.039; one-sided test). Thus players fail to appreciate the different informational

content of observed investment activity in the ten-player one-cost and two-cost games.

Excessive Conservatism in Updating from Market Activity:

This bias follows directly from Result 3(ii). Note that it is consistent with a general

finding from the exogenous-timing herding literature that subjects underappreciate

the informational content of observed investment activity (see Weizsäcker (2010) for

a meta-analysis).

24For type (1, L) in the A10, k1 is lower than k
TBR

1 , but the difference is not statistically significant.
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4.3 Departures from Risk Neutrality

So far, we have been conducting our analysis under the assumption of risk neutrality.

To what extent are our conclusions robust to alternative attitudes to risk?

First, round-1 investment by (0, H) and (0, L) players could be due to risk-loving.

A failure by (1, L) players to always invest in round 1 even when investing dominates

waiting (under risk neutrality) could be due to risk aversion.25

Second, three of our biases–insensitivity to market size, to opportunities to free-

ride, and to the informational content of observed market activity–are about how

behavior fails to respond to changes in the structure of the game. The logic for why

behavior should respond to changes in the set of possible types and changes in market

size does not hinge on a particular attitude to risk. Thus, a failure to respond cannot

be explained by departures from risk neutrality.

Third, subjects’ excessive conservatism in round 2 could be explained by risk

aversion. One might even conjecture that more risk averse subjects wait in round 1,

so that self-selection would foster more risk averse behavior in round 2. To test this

conjecture, we split subjects into two equal-sized groups depending on their frequency

of investment in round 1 (averaged over types). We then check whether subjects in

the low-round-1-investment group are more conservative in round 2 than subjects

in the high-round-1-investment group. We find no evidence at all in favor of this

hypothesis. This finding casts a doubt on the view that attitudes to risk are a driving

force behind behavior in our experiment.26

25Nevertheless, our conclusions in the Appendix regarding how these types’ behavior affects in-
formational externalities and market efficiency in the lab relative to the risk-neutral NE remain
valid.

26In the appendix, we address two additional issues. First, we compare aggregate investment levels
in the lab vs. in NE. Second, we analyze learning over the course of our sessions, an issue that, for
simplicity, we have avoided in the main analysis.
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5 Concluding Remarks

We study experimentally behavior in a series of endogenous-timing investment games.

We find that subjects respond to their type and to observed investment activity in

a sensible way, but also make mistakes. Some mistakes can be viewed as noise while

other mistakes represent systematic biases reflecting subjects’ failure to appreciate

subtle aspects of the environment. From a more general perspective, our results can

be viewed as lending support to a particular notion of bounded rationality. According

to this notion, people respond to incentives when these incentives, as well as the

appropriate response, are fairly obvious. However, people may miss more subtle

considerations that play a crucial role in the theory.

Herding models have been used to study adoptions of new technologies or behavior

in financial markets. Entry models typically assume fully rational agents, and finance

models assume some people are fully rational and others are noise traders. Our study

suggests that people exhibit systematic biases such as the four we identify here.

Ideally, real-world applications should take into account the way that people actually

behave, rather than making convenient noise-trader assumptions.
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6 Appendix: A Note on Statistical Methodology

In the statistical analysis in the main text, we treat the unit of observation as the

subject-trial pair, taking into account individual-specific unobserved effects but not

session-level effects. To the extent that session-level effects are present, the effective

number of observations will be somewhere in between the number of subject-trial

pairs and the number of sessions. However, our main results center on the conclusion

that subjects do not respond to incentives reflecting subtle aspects of the game. In

other words, we show that the null hypothesis of no differences in behavior across

treatments cannot be rejected. Thus, by potentially overstating the number of effec-

tive observations, we are using an overly sensitive test that makes rejecting the null

hypothesis even more likely.

To further address this issue, for each type in each treatment, we tested the

hypothesis that there are no session-level effects on round-1 and round-2 behavior.

Regarding round-1 behavior, we ran the following random effects probit for each type

in each treatment:

Pr(subject invests in round 1|{ds}Ss=1, v) = Φ(
S∑

s=1

βsds + v),

where v is an individual-specific random effect, S is the number of sessions in the

given treatment, and ds is a session dummy that equals 1 in session s. Then we test

the hypothesis β1 = . . . = βS, which gives us 16 hypothesis tests (4 treatments × 4

types). We can reject the null at the 5-percent level in only one instance, which is in

line with what one would expect in the absence of session-level effects.

Regarding round-2 behavior in the A10 and R10, we ran the following random

effects probit for each type in each of these two treatments:
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Pr(subject invests in round 2|d1, d2, k1, v, subject has not invested in round 1) =

Φ(β0d1 + β1d1k1 + γ0d2 + γ1d2k1 + v).

This model allows for session-specific constants and slope coefficients. We test the

hypothesis β0

β1
= γ0

γ1
, which tests whether the cutoff k1 is the same in both sessions.

This gives us 8 tests (2 treatments × 4 types). We can reject the null at the 5-percent

level in only one instance, which is in line with what one would expect in the absence

of session-level effects.

We also stepped back and considered whether any plausible sources of within-

session correlation might be present in our experiment. There were no differences

in how sessions of the same treatment were conducted, because we conducted all

sessions by adhering strictly to the same protocol with the same personnel. The

sessions were conducted using the same subject pool. We also feel that it is very

unlikely that a small group of outlier subjects might contaminate the behavior of the

other subjects in their session. The reason is that, in our experiment, a subject merely

decides whether to invest or not; given that her type (and subject number) is never

observed by others, neither decision appears particularly odd to the other players.

We feel that it is extremely unlikely that correlation is introduced through supergame

effects, because in our games there are no payoff externalities. It would take a fairly

sophisticated understanding of the game to even figure out how to reward or punish

other players by affecting information flows, and a sophisticated player would surely

realize that such rewards or punishments would not be recognized as such by the

other players.
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7 Appendix: Informational Externalities and Mar-

ket Efficiency

In endogenous-timing herding games, a crucial question is how well the market aggre-

gates information and yields efficient outcomes. In the NE of the games we consider,

information aggregation is suboptimal because of free-riding. In particular, in the

NE of each game, investment by the (1, H) type, as well as by the (1, L) type in the

ten-player low-cost game, is too low from an efficiency point of view.27 The joint-

profit-maximizing probability of investment is 1 for the (1, L) type in all games and

0.746/0.77/0.783/0.568 in the two-player high-cost/two-player two-cost/ten-player

high-cost/ten-player two-cost game for the (1, H) type.28 29

An important question is how the departures from NE that we identified earlier

affect information aggregation and market efficiency relative to the NE benchmark.

Note that this question may not have an unequivocal answer as the answer may

depend on the structure of the game.30 In this appendix, we explore how the interac-

tion between departures from NE and the structure of the game affects informational

externalities and market efficiency.

To study the effect of departures from NE on informational externalities, we de-

velop a measure of the latter. Our measure equals the expected profits of a player

who optimally exploits both her private information and the information available on

the market minus the expected profits of a player who optimally exploits her private

27We measure efficiency by average profits.
28(0,H) and (0, L) players should never invest in round 1 because (i) they have a negative expected

profit of doing so and (ii) any investment by these types only dilutes the informational externalities.
29In computing the joint-profit-maximizing behavior, we are assuming symmetric strategies. For

the ten-player games, we restricted attention to strategies where players invest in round 2 if and
only if it is profitable and otherwise never invest.

30The idea that different environments may cater differently to bounded rationality goes back
at least to Herbert Simon (e.g see Simon (1956); see also Gigerenzer and Selten (1999) as well as
Gigerenzer et al. (1999)).
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information but does not observe market activity. This measure captures the infor-

mational flows on the market that can potentially be exploited by a shrewd investor

who understands the market well.

In our experiment, informational externalities are either smaller or larger than in

NE, depending on how the specific structure of the game caters to different departures

from NE. For example, in larger markets subjects’ insensitivity to market size tends

to enhance informational externalities relative to NE. This occurs because, while

investment in the lab is insensitive to market size, in the NE players with favorable

private information respond to increases in market size by increasing their propensity

to delay investment, thereby reducing informational externalities.

We also compare market efficiency in the lab with the NE benchmark. Efficiency

is related to informational externalities, but the two notions are distinct because

players could be making mistakes in exploiting informational externalities or their

private information. Given that in NE players make no mistakes, a necessary (but

not sufficient) condition for increased efficiency in the lab is that the informational

externalities exceed those in NE. However, even in the one game where informational

externalities in the lab exceed the NE benchmark, average profits fail to exceed NE

profits.

Before we proceed, note that, because we have computed NE behavior only for

rounds 1 and 2 in the ten-player games, we cannot compute NE profits. Instead, we

define truncated Nash equilibrium (TNE) in which players behave according to the

NE in rounds 1 and 2, and, in round 3, invest if it is profitable to invest (given others’

NE behavior in rounds 1 and 2) and otherwise never invest. In the two-player games,

NE and TNE coincide. For types (1, H) and (1, L) in the ten-player games, TNE

profits equal NE profits.31 For types (0, H) and (0, L) in the ten player games, and

31It is straightforward to show that this follows from the one-step property.
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hence for each of the ten-player games as a whole, TNE profits provide a lower bound

for NE profits, though we believe the difference is very small.

7.1 Informational Externalities

Are the markets in the lab more or less informative than the NE benchmarks? To

answer this question, we start by defining a measure of the informational externalities

on a market, and we compute this measure given the empirical frequencies of play

as well as given NE play. Later, we will explore how the structure of the game and

subjects’ departures from NE affect the comparison.

Given a strategy s, we define our measure of the informational externalities as

IE(s) = ΠBR(s) − Π, where ΠBR(s) is the expected profit of a player who best-

responds to a population of players each of whom uses s, and Π is the expected profit

of someone who behaves optimally given her private information but does not observe

others’ behavior.32 Thus, IE(s) shows the expected profits of a player who knows s

and best responds to it, over and above what she can earn based solely on her private

information. Thus, it is a measure of the informational flows on the market that can

potentially be exploited by a shrewd investor.

Ideally, we would like to compute and compare the informational externalities

in NE, IE(sNE), and given the empirical frequencies of play, IE(sa). However, as

explained above, we cannot compute exact NE or best-response profits. Therefore, as

a proxy for IE(sNE), we use IET (sNE) = ΠTBR(sNE)−Π and, as a proxy for IE(sa),

we use IET (sa) = ΠTBR(sa) − Π. (ΠTBR(s) is the expected profit of someone who

plays according to TBR given that all other players use strategy s.)

Table 8 shows Π, as well as ΠTBR(sa) and ΠTBR(sNE) for each game in each

treatment. From the information in the table, IET (sa) and IET (sNE) can readily be

32In our games, the latter kind of player invests in round 1 for types (1,H) and (1, L) and otherwise
never invests.
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High-Cost Low-Cost Two-Cost

Game Game Game

Π 0.250 1.750 1
A2 ΠTBR(sNE) 0.250 2.034 -
A2 ΠTBR(sa) 0.250 1.906 -
R2 ΠTBR(sNE) - - 1.073
R2 ΠTBR(sa) - - 1.084
A10 ΠTBR(sNE) 0.295 2.380 -
A10 ΠTBR(sa) 0.590 2.214 -
R10 ΠTBR(sNE) - - 1.497
R10 ΠTBR(sa) - - 1.344

Table 8: Π, ΠTBR(sa), and ΠTBR(sNE) (in ECU)

computed for each game in each treatment. Based on this, we can state:

Result 4

(i) IET (sa) is much larger than IET (sNE) in the ten-player high-cost game (0.34

vs. 0.045).

(ii) IET (sa) is smaller than IET (sNE) in the two-player low-cost game (0.156 vs.

0.284), the ten-player low-cost game (0.464 vs. 0.63), and the ten-player two-

cost game (0.344 vs. 0.497).

(iii) In the remaining games, IET (sa) and IET (sNE) are very similar.

Thus, informational flows in the actual experimental markets can be larger, smaller,

or similar in size to those in NE. Note that, at any point in the game, a ceteris paribus

increase in the probability of investment by some type with favorable common-value

signal tends to increase informational flows because it strengthens the inference that

anyone who invested has Xi = 1 and anyone who didn’t invest has Xi = 0. Similarly,

a ceteris paribus increase in the probability of investment for some type with unfavor-
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able common-value signal tends to decrease informational flows because it weakens

this inference. These effects tend to be largest in round 1.

Based on our findings about how behavior in the lab departs from NE, the fol-

lowing features of the game can be expected to systematically affect the comparison

between informational externalities in the lab and in NE.

Possible presence of type with unfavorable common-value signal but with

low enough investment cost so that expected profit of investing in round

1 is only slightly negative (type (0, L) in our settings):

The presence of such a type has a negative effect on informational externalities

relative to NE–such a type invests, unsurprisingly, with nonnegligible frequency in

round 1 in the lab (see Result 2(i)) while it never invests in round 1 in NE.

Possible presence of type with favorable common-value signal but with

high enough investment cost so that expected profit of investing in round

1 is only slightly negative:

Although there is no such type in our experiment, the presence of such a type

can be expected to have a positive effect on informational flows relative to NE–such

a type would invest, presumably, with nonnegligible frequency in round 1 in the lab

while it would never invest in round 1 in NE.

Possible presence of “strong” type with favorable common-value signal

and low cost in small markets (type (1, L) in our two-player games):

When the market is small, the information that can be acquired by waiting is

limited so that, in NE, a strong type would invest in round 1 with probability 1.

On the other hand, in the lab, such a type would invest with a probability that falls
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considerably short of 1 (see Result 2(iii)). Thus, the presence of a strong type on

a small market has a direct negative effect on informational externalities in the lab

relative to NE.

The presence of a strong type also has an indirect positive effect on informational

externalities relative to NE when there are types with favorable common-value signal

but with a higher cost (type (1, H) in our settings). This indirect effect occurs

because, in NE, players with a favorable common-value signal but with a higher cost

can free-ride on the information provided by round-1 investment by the strong type

while, by subjects’ insensitivity to opportunities to free-ride, such players in the lab

do not do so and, by Result 2(ii), go ahead and invest with a substantial frequency.

Thus, in games where there are players with favorable common-value signal but with

a higher cost, the direct and indirect effects work in opposite directions so that the

overall effect is ambiguous.

The indirect effect could also be negative if there are types with an unfavorable

common-value signal but with a low enough investment cost so that the expected

profit of investing in round 1 is positive (there is no such type in our experiment)–the

latter type could free-ride on strong types in NE (thus improving informational flows)

while it is unlikely to do so in actual play.

Possible but relatively unlikely presence of a strong type with favorable

common-value signal and low cost (type (1, L) in our two-cost games):

When the ex ante probability of the strong type is relatively small, players with

this type cannot free-ride on each other in round 1 in NE.33 As a result, this type

invests with probability 1 in NE while, in the actual data, it invests with a probability

that falls considerably short of 1 (see Result 2(iii)). This leads to a negative effect

33What is meant by a ”relatively small” ex ante probability of the strong type depends largely on
the market size. For example, in our two-cost ten-player game, an ex ante probability of 0.25 for
type (1, L) is sufficiently small so that (1, L) players cannot free-ride on each other in round 1.
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on informational externalities in the lab relative to NE. The possible indirect effects

mentioned above also remain valid.

Market Size:

Fixing all types’ round-1 behavior, the option value of waiting is higher on a

larger market because players who wait observe a larger, and hence more informa-

tive, sample coming from the same distribution conditional on the investment return.

In response to the changing incentives to wait in round 1, NE behavior adjusts accord-

ingly. For example, in our one-cost games, the NE round-1 investment probabilities by

the type with a favorable common-value signal decrease as the market size increases,

partially offsetting the informational advantages of a larger sample. In the two-cost

environment, the round-1 investment probability by type (1, L) would also decrease

in sufficiently large markets. In general, as Chamley and Gale (1994) and Levin and

Peck (2008) show, the NE adjustments may be such that even as the market size

goes to infinity, round-1 investment may not reveal very much about the investment

return. In contrast, given subjects’ insensitivity to market size, round-1 behavior in

the lab does not adjust in a way that offsets the informational advantages of the larger

sample. As a result, a larger market size has a positive effect on the informational

externalities in the lab relative to NE.

In our ten-player high-cost game, there are no (0, L) subjects and the market size

is fairly large. As a result, markets in the lab are more informative than the Nash

benchmark.
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7.2 Market Efficiency

Informational externalities have to do with the profits of a shrewd investor. But this is

not the whole story–unless play is in NE, some players are not best responding to the

empirical frequencies of play and average actual profits will be below best-response

profits. Thus, larger informational externalities do not necessarily imply increased

market efficiency.

To shed light on the connection between informational externalities and market

efficiency, we assume for simplicity that all players on a given market are using the

same strategy s and we decompose the expected profit on this market, π(s), into two

components (plus a constant) both of which are related to informational externalities.

In particular, we can write:

π(s) ≡ ΠBR(s)− Π︸ ︷︷ ︸
IE(s)

− (ΠBR(s)− π(s))︸ ︷︷ ︸
cost of mistakes

+Π (2)

The first component is IE(s) and, thus, captures the size of the informational

externalities. The second component, the cost of mistakes, shows to what extent

players are failing to exploit the informational externalities (as well as their private

information).

Outside of NE, it is instructive to distinguish between two kinds mistakes. The

first kind occurs either when players with favorable common-value signal invest de-

spite a higher option value of waiting or when players with unfavorable common-value

signal wait despite a higher expected payoff from investing. Although such mistakes

increase the cost of mistakes, they also increase informational externalities. The

efficiency-maximizing investment probabilities balance the two effects optimally. For

example, in our ten-player high-cost game, the round-1 efficiency-maximizing invest-

ment probabilities for types (0, H) and (1, H) are 0 and 0.78, respectively. Any
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additional investment by type (1, H) increases informational externalities but does

not contribute to efficiency because too many players are not around after round 1

and hence cannot take advantage of the increased informational externalities.

All other mistakes unequivocally hurt efficiency both by diluting informational

externalities and increasing the cost of mistakes. In our experiment, important in-

stances of such mistakes occur when: (a) subjects with unfavorable common-value

signal invest in round 1 despite a negative expected value of doing so; (b) subjects

with favorable common-value signal fail to invest in round 1 even though the expected

payoff from doing so exceeds the option value of waiting; and (c) in round 2, subjects

display excessive conservatism in responding to observed round-1 investment.

To compare market efficiency in the lab with the NE benchmark, we compute

TNE average profits ex post for each market trial, i.e., given the realization of the

investment return, the common-value signals, and the costs. The ex post calculations

allow us to eliminate any differences between actual and TNE profits that are due to

noise in the realization of the investment return, the common-value signals, and the

costs.

Note that, because the cost of mistakes is strictly positive outside of NE, the

only way for actual markets to exceed NE efficiency is to generate an increase in

informational externalities relative to NE that is larger than the cost of mistakes.

Thus, our only hope of observing increased efficiency in the lab relative to NE is in

the ten-player high-cost game. In this game, not only are informational externalities

larger in the lab, but the probability of round-1 investment by type (1, H) is closer

in the lab (0.39) than in NE (0.07) to the efficiency-maximizing probability (0.78).

Table 9 shows, for each treatment, the average actual profits per subject as well

as ex post TNE profits. All numbers are broken down by type and game. The table

shows that, for each type in each game, average actual profits are lower than ex post
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(0,H) (0,L) (1,H) (1,L) Overall Overall Overall

High-Cost Low-Cost Two-Cost

Game Game Game

A2 TNE ex post 0.000 0.397 0.442 3.364 0.212 1.894 -
A2 actual, all rounds -0.335 -0.124 0.392 3.156 0.014 1.530 -
R2 TNE ex post 0.000 0.324 0.489 3.936 - - 1.166
R2 actual, all rounds -0.612 0.003 0.178 3.733 - - 0.801
A10 TNE ex post 0.109 1.557 0.555 4.056 0.333 2.926 -
A10 actual, all rounds -0.482 0.730 0.467 3.973 -0.006 2.507 -
R10 TNE ex post 0.427 0.926 1.07 3.769 - - 1.543
R10 actual, all rounds -0.283 0.06 0.386 3.478 - - 0.906

Table 9: Average actual profits vs. ex post TNE profits (in ECU)

TNE profits. We test the hypothesis that expected actual profits equal expected TNE

profits. We do this via a two-tailed paired t-test in which each pair of observations

consists of the actual observed aggregate level of profits in one market trial and

the aggregate level of profits in the corresponding ex post TNE. The difference is

significant in all two-player games (p-value is 0.008/0.000/0.000 in the high-cost/low-

cost/two-cost game) as well as in the low-cost and two-cost ten-player games (p-value

is 0.005/0.000 in the low-cost/two-cost game). However, it is not significant in the

high-cost ten-player game (p-value is 0.1378). Thus, in this game, the increase in

informational externalities relative to NE is nearly equal to the cost of mistakes, so

that the difference does not attain statistical significance.

Let us summarize:

Result 5 Average actual profits are lower than ex post TNE profits for all types and

for all games. The difference is statistically significant in all games, except in the

high-cost ten-player game.

An important question is whether efficiency in actual markets may actually rise

above efficiency in NE on very large markets. This is possible, given that a larger
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(0,H) (0,L) (1,H) (1,L) Overall Overall Overall

High-Cost Low-Cost Two-Cost

Game Game Game

A2 actual, all rounds 0.168 0.486 0.648 0.953 0.399 0.723 -
A2 NE ex post 0.000 0.401 0.624 1.000 0.300 0.703 -
R2 actual, all rounds 0.198 0.393 0.675 0.952 - - 0.553
R2 NE ex post 0.000 0.200 0.290 1.000 - - 0.367
A10 actual, rounds 1-3 0.155 0.521 0.618 0.966 0.387 0.765 -
A10 TNE ex post 0.051 0.384 0.324 0.941 0.188 0.689 -
R10 actual, rounds 1-3 0.203 0.394 0.616 0.882 - - 0.525
R10 TNE ex post 0.194 0.273 0.443 1 - - 0.478

Table 10: Investment Frequencies

market size enhances informational externalities on actual markets relative to the NE

benchmark. However, if players are insensitive to the informational content of market

activity, they may not be able to fully exploit this.

8 Appendix: Aggregate Investment

In this appendix we compare aggregate investment levels between markets in the lab

and markets in NE. Note that since we have computed the NE actions only for rounds

1 and 2 in the ten-player games, we cannot compute exact NE investment. Instead

we consider ex post TNE investment in each market.34 In the two-player games, NE

and TNE coincide. In the ten-player games, ex post TNE investment provides an

upper bound on ex post NE investment in the first three rounds, since in the NE,

players may prefer to wait beyond round 3 even if it is profitable to invest in round

3.

Table 10 shows the actual investment frequencies for all rounds in the two-player

34The ex post calculations allow us to eliminate any differences between actual and TNE invest-
ment which are due to noise in the realization of the gross return, the common-value signals, and
the costs.
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games and for rounds 1-3 in the ten-player games along with TNE investment frequen-

cies.35 All numbers are broken down by type and game. Actual investment exceeds ex

post TNE investment for each game as well as for each type in each treatment, except

for (1, L) in the A2, R2, and R10 (where (1, L) always invests in round 1 in NE so

that overinvestment is impossible). Overinvestment relative to TNE is mainly driven

by overinvestment in round 1 by (0, L) players and (except in the two-player high-cost

game) by (1, H) players. In the two-player games, investment by (0, H) players also

contributes significantly towards overinvestment. Players’ excessive conservatism in

round 2 provides a countervailing force which, however, is insufficient to eliminate or

reverse overinvestment. Overinvestment relative to TNE is especially pronounced in

the R2 and in the high-cost game in the A10, largely due to overinvestment in round

1 by (1, H) players.

For each game, we test the hypothesis that expected actual investment (in all

rounds for the two-player games and in rounds 1-3 for the ten-player games) is different

from expected TNE investment. We do this via a two-tailed paired t-test in which

each pair of observations consists of the actual level of investment in one market trial

and the level of investment in the corresponding ex post TNE for the same market

trial. The differences are significant (at the 5-percent level) in all games, except in

the low-cost game in the A2 and in the R10.

Let us summarize our findings regarding investment:

Result 6 Actual investment (in all rounds for the two-player games and in rounds

1-3 for the ten-player games) exceeds ex post TNE investment for each game as well

as for each type in each treatment (except for (1, L) in the A2, R2, and R10). Over-

35In the ten-player low-cost game, the actual investment frequency for all rounds equals 0.82;
61/85/93 percent of all investment occurs by round 1/2/3. In the ten-player high-cost game, the
actual investment frequency for all rounds equals 0.44; 51/78/89 percent of all investment occurs by
round 1/2/3. In the ten-player two-cost game, the actual investment frequency for all rounds equals
0.58; 54/78/90 percent of all investment occurs by round 1/2/3.
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investment is especially pronounced (and the difference is statistically significant) in

the R2 and in the high-cost game in the A10.

9 Appendix: Learning

In our main analysis, we have for simplicity been ignoring the possibility of learning

as sessions progress. In this section, we explicitly consider learning. First, we focus

on changes in round-1 behavior across time. In order to do that, we run, for each type

in each treatment, the following random effects probit with period, t, as a right-hand

side variable:

Pr(subject invests in round 1|t, v) = Φ(β0 + β1t+ v)

Table 11 shows, for each type in each treatment, the p-value for the hypothesis

that β1 = 0 (i.e. that there is no effect of the period number on round-1 behavior), the

predicted probability of investment in rounds 1 and 24, as well as the NE probability

of investment. From the table, we see that there is a reduction in the probability of

round-1 investment for type (1, H) in all treatments. This reduction is substantial in

size and statistically significant in the A2, R2 and R10. Note that the observed shift

in the behavior of (1, H) players over time is towards the NE in the R2, A10, and

R10, but away from the NE in the A2. We also observe a substantial and statistically

significant reduction in the round-1 probability of investment for (0, H) and (0, L)

players in the A10.

Importantly, note that in period 24 we do not observe any dilution of the be-

havioral biases that were identified earlier based on aggregate round-1 behavior from

periods 1-24. Regarding insensitivity to market size: for a given cost-structure, the

predicted probability of round-1 investment in period 24 does not differ between the
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two-player game and the ten-player game in a statistically significant way (at the

5-percent level) for any type. Regarding insensitivity to opportunities to free-ride:

for a given market size, the predicted probability of round-1 investment in period 24

does not differ between the one-cost game and the two-cost game in a statistically

significant way (at the 5-percent level) for any type; the only exception is for type

(0, H) in the ten-player high-cost and ten-player two-cost games.36

We also investigate whether there is any learning in round 2. In particular, we

run the probit model:

Pr(subject invests in round 2|k1, t, v, subject has not invested in round 1) =

= Φ(β0 + β1k1 + β2t+ β3k1t+ v)

Our estimate of β2 is significant at the 5-percent level only for the (0, H) type in

the A2 and for the (1, L) type in the R10. Our estimate of β3 is significant at the

5-percent level only for the (1, L) type in the R10. Given that we have 16 estimates of

β2 and 16 estimates of β3 (one for each type in each treatment), it is not unexpected

for a few of the estimates to be significant. Thus, we find little evidence that learning

eliminates the behavioral biases that were identified earlier based on aggregate round-

2 behavior from periods 1-24.

36Here is how we test for statistically significant differences in the predicted probability of round-1
investment in period 24 for a given type between two games. First, we estimate the random effects
probit model Pr(subject invests in round 1|t, d, v) = Φ(β0 + β1t + β3d + β4dt + v), where d is a
dummy that equals 1 in one of the games and 0 in the other game. This model allows for a separate
constant and slope coefficient in each game. Then, we test the hypothesis β3 + β424 = 0.

44



A2
(0,H) (0,L) (1,H) (1,L)

p-value for H0: β1 = 0 0.253 0.915 0.003 0.760
Predicted prob. of investment in round 1 for t = 1 0.022 0.058 0.473 0.860
Predicted prob. of investment in round 1 for t = 24 0.003 0.055 0.234 0.843
NE prob. of investment in round 1 0 0 0.492 1

R2
(0,H) (0,L) (1,H) (1,L)

p-value for H0: β1 = 0 0.147 0.440 0.000 0.229
Predicted prob. of investment in round 1 for t = 1 0.049 0.023 0.475 0.942
Predicted prob. of investment in round 1 for t = 24 0.009 0.009 0.145 0.882
NE prob. of investment in round 1 0 0 0 1

A10
(0,H) (0,L) (1,H) (1,L)

p-value for H0: β1 = 0 0.037 0.017 0.27 0.167
Predicted prob. of investment in round 1 for t = 1 0.153 0.213 0.442 0.825
Predicted prob. of investment in round 1 for t = 24 0.005 0.072 0.338 0.738
NE prob. of investment in round 1 0 0 0.071 0.746

R10
(0,H) (0,L) (1,H) (1,L)

p-value for H0: β1 = 0 0.653 0.949 0.006 0.562
Predicted prob. of investment in round 1 for t = 1 0.054 0.154 0.441 0.671
Predicted prob. of investment in round 1 for t = 24 0.074 0.15 0.228 0.714
NE prob. of investment in round 1 0 0 0 1

Table 11: Round-1 Investment and Learning.
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10   Appendix: Instructions for R10 
 
This is an experiment on decision-making in investment markets.  The National 
Science Foundation has provided funds for conducting this research.  The 
instructions are simple, and if you follow them carefully and make good decisions, 
you may earn a CONSIDERABLE AMOUNT OF MONEY, which will be PAID 
TO YOU IN CASH at the end of the experiment.  
 
Every participant in the experiment is guaranteed a payment of at least $5, 
independent of their performance in the experiment. All monetary values in the 
experiment, such as investment costs, investment returns, and account balances, 
are written in experimental currency units (EC). Your balance of ECs at the end of 
the experiment will be converted to US dollars at the exchange rate of $0.50 for 
each EC.  Because your decisions may involve losses, we will endow you with a 
starting cash balance of 30 ECs.  Your gains (losses) during the experiment will be 
added to (subtracted from) your cash balance. However, if your cash balance falls 
below zero, you will no longer be allowed to continue. At the end of the 
experiment you will receive in cash your end of experiment balance of ECs 
converted to US dollars, or $5, whichever is greater.  
 
1. In this experiment we will create a sequence of market trials. In each given 
market trial, the participants will act as potential investors. Each potential investor 
will have to decide whether, and when, s/he wishes to invest, based on the 
information s/he is provided (and which we will explain later). 
 
2. In the experimental session today we will have between 20-25 market trials.  
Each market trial has several rounds. The initial round is round 1, the next is round 
2, and so on.  In each round you and the other potential investors in your market 
trial will have to decide (simultaneously) whether to invest in that round or not.  
The decision to invest is irreversible. Any potential investor who has not yet 
invested will be told how many of the other potential investors have invested 
during each previous round of that trial. 
 
3. In each trial, the market in which you are a potential investor has several 
more potential investors besides yourself. In a typical session we will recruit 
(about) 24 students. The computer will randomly select 2 groups of 10 students, 
with the remaining students selected to sit out that trial. Each such group of 10 
constitutes a separate market trial that has no relation to the other market. A given 
market trial keeps the same matched students over the several rounds of that 
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market trial. However, after the market trial is over, the computer randomly 
rematches students to form two new market trials. This matching procedure makes 
it very unlikely that you will be matched with the same group of students from one 
trial to the next. 
 
4. The structure of information.  
 
Information about investment cost: Each potential investor will know, before 
each market trial starts, her/his investment cost for that trial. There are two possible 
levels of investment cost: low cost, CL=3.5 and high cost, CH =6.5. Each potential 
investor will be assigned one of the two cost levels with equal probability (1/2). In 
other words, in your market trial, you will know your investment cost, and that the 
investment cost of each other potential investor is equally likely to be either 3.5 or 
6.5.  
  
Information about investment gross returns: The computer assigns a gross 
return to every market trial. The gross return remains the same for all rounds of the 
same market trial, and is completely uncorrelated with your investment cost. The 
computer randomly picks the gross return to be either 10 or 0, with equal 
probabilities. Once the gross return is picked, high or low, it is the same for all 
potential investors in your trial, and it remains the same for all rounds of that trial. 
You will NOT observe whether the gross return for your trial is high or low. 
Instead, each potential investor will be given her/his own signal, which takes the 
value of either 0 or 1. Signals are 70% accurate, in the following sense:  
 
If the gross return is 10, you have a 70% chance of observing signal 1 and a 30% 
chance of observing signal 0.  If the gross return is 0, you have a 70% chance of 
observing signal 0 and a 30% chance of observing signal 1.   
 
Each potential investor’s signal is related to the gross return, but the computer 
randomizes separately for each potential investor, so different potential investors 
can receive different signals. For example, suppose there are 10 potential investors 
in a trial. If the gross return is 10, then on average there are 7 people who receive 
signal 1 and 3 people who receive signal 0. If the gross return is 0, then on average 
there are 7 people who receive signal 0 and 3 people who receive signal 1. 
However, the actual numbers can vary.  
 
The signal for each potential investor is chosen at the beginning of the trial and 
remains the same for all rounds of that trial. Each potential investor observes 
her/his own signal, but not the signal of the other potential investors in that trial.  
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Observing your signal may help you better predict the likelihood that the gross 
return in your market trial is high or low.  
 
Information about other investors in your market: You will NOT be told the 
signals of the other potential investors in your market trial. However, you will be 
informed about how many other potential investors have already invested, and 
during which rounds. If this information reveals something about others’ signals, it 
could improve your decision about if and when to invest.  
 
You are not allowed to reveal or discuss your information with other students or 
look at another student’s screen (this will be strictly monitored and violators will 
be removed from the experiment). 
 
5. The structure of the game. 
 
Once you are randomly assigned to a market trial, you privately observe your cost 
and your signal, which remain constant for that market trial. The other potential 
investors observe their cost and signal. In round 1, you are asked to decide if you 
wish to invest. If you do not invest in round 1, you are informed about how many 
other potential investors invested in round 1, and you are asked if you wish to 
invest in round 2. If you have not invested by round 2, we move to round 3, and so 
on. Once you have decided to invest, there are no more decisions to make in that 
market trial. That is, an investment decision in a given trial is irreversible. You 
cannot disinvest or invest a second time. After two consecutive rounds in which no 
one in your trial invests, that trial is over. 
 
In order to make good decisions, you must understand how your gains and losses 
are determined.  This will be carefully explained below. 
 
Once a market trial is over, the whole process starts again. The computer randomly 
selects two groups of 10 to form a new set of market trials, those selected will be 
assigned an investment cost and a signal, etc. 
 
If we start with more than 20 students, then some of you will be sitting out from 
time to time. For example, with 24 students, 4 students are randomly selected to sit 
out each trial, but since the computer performs a new randomization each time, it is 
very unlikely that anyone will sit out very often.  
 
If a student’s cash balance falls below zero, then that student must stop playing, so 
one fewer student will sit out each trial. If the number of remaining students falls 
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below 20, then everyone will be assigned to a market trial and you will be told how 
many potential investors are in your trial. 
 
Your screen will inform you of the trial number, and the round number within the 
trial. 
 
     
How your gains (discounted net returns) or losses are determined. 
 
If you invest, your gains from that trial are the discounted difference between the 
gross return and your investment cost. Let us illustrate what this means by using a 
simple example. Suppose that in the current market trial your investment cost is 
3.5. If you decide to invest in round 1, then your gains are:  6.5 if the gross return 
is 10 (10 – 3.5 = 6.5) or – 3.5, a loss of 3.5, if gross return is 0 (0 – 3.5 = -3.5).  
Note that gains or losses in round 1 are not discounted; they are just the difference 
between the market gross return and your investment cost. For each round that you 
wait, your gains or losses are discounted by a factor of 0.9, as shown in the 
following table. 
 

Discounted Net Returns when Cost is 3.5 
Round that you invest If return is 10 (high)  If return is 0 (low)  
1 6.5 - 3.5 
2 5.85 - 3.15 
3 5.26 - 2.84 
 
There are several important things to note here: 
 
(i) If for whatever reason you have decided not to invest at all in a particular 
market trial, you will earn zero for that market trial.  
 
(ii) You will not be told the actual gross return during a market trial. After each 
trial is over, the gross return is revealed and you will learn your discounted net 
gains or losses, which will be added to, or subtracted from, your cash balances. 
 
(iii) It is up to you to decide if and when to invest. Clearly, your investment cost 
and your signal can affect your decision. Observing the activity of the other 
potential investors in your trial might indirectly yield useful information about the 
gross return, by telling you something about the other potential investors’ signals.       
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6.  Information on the computer screen. Throughout the experimental session, 
the computer screen will show your ID number and current cash balances, in the 
upper left corner. The upper left corner of the screen will also remind you of the 
number of potential investors in each trial (usually 10), the discount factor (0.9), 
and the “accuracy parameter” of your signal (70%).  
 
At the beginning of each round of each market trial, you will see the number of the 
market trial, your cost of investment (either 3.5 or 6.5), and your signal (0 or 1). 
This information stays the same during the trial. In the middle of the screen, you 
will see the current round number. At the bottom of the screen, you will see a 
“history” of investment in previous rounds of that trial. For example, if the history 
lists 2 investors in round 1 and 3 investors in round 2, then the total number of 
investors during the first two rounds is 5. 
 
In the shaded area at the very bottom, you will also see your personal statistics 
from your previous trials. (If you are listed as investing in round -1, this means that 
you never invested during that trial. A row of all -1s means that you sat out during 
that trial.) 
 
You will have 10 seconds to think about whether to invest in that round. At that 
time, boxes marked “YES” and “NO” will appear, and you should mark a box to 
indicate whether you want to invest or not. Please make your choice within 5 
seconds. 
 
At the end of the market trial, you will see a screen that tells you the market trial 
number, your investment cost, your signal, the actual gross return, and your net 
discounted gains or losses from that trial. You will also see your personal statistics 
from your previous trials. 
 
7.  We will start the session with two practice “dry runs” that do not count towards 
your earnings, at which point we will stop and answer additional questions. At the 
end of the experiment, while we are calculating your earnings, we ask that you 
answer the short questionnaire on your computer. 
 
8.  Are there any questions?  
 



11   Appendix: Screen Printout 
 
 
Printout of the screen seen by a subject in the A2 with cost 6.5 and signal 1, who is 
deciding whether to invest in round 2 after the other subject has invested in round 1: 
 
 

 
 
 
The screen in the R2, A10, and R10 looks the same (except that in the ten-player games 
we would have “Investors in Market trial 10”). 


