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1. Introduction

In the extensive literature on bank runs emanating from the classic paper by Diamond

and Dybvig (1983), the usual assumption is that there are two types of agents: Impa-

tient agents receive utility only from period 1 consumption, and patient agents receive

utility from period 2 consumption. In this paper, we consider the implications of having

a continuum of agent types, indexed by the degree of patience, θ. Thus, instead of as-

suming a known fraction of impatient agents, we assume that there is a known density

of impatience describing the population of agents. We maintain the usual assumption

that only full withdrawals are feasible, and show that much of our understanding based

on the two-type model must be modified when we consider a continuum of types.

With a continuum of types, incentive compatibility binds, and there will be a cut-

off type below which agents withdraw in period 1 and above which agents wait. The

endogenous determination of this cutoff type resulting from the bank’s contract choice

is central to the analysis and contribution of this paper. We characterize the optimal

contract, which can be viewed as a constant consumption for all who withdraw early

and an induced cutoff type, (c∗1, θ̄
∗). We show that: (1) given c∗1, society would be bet-

ter off if more types waited and the cutoff was less than θ̄∗, and (2) given θ̄∗, society

would be better off with period 1 consumption higher than c∗1. The intuition is that,

at the socially optimal cutoff, period 1 consumption balances the benefits of insurance

against being impatient vs. the benefits of providing more consumption in period 2 due

to the investment technology. However, the benefits of waiting accrue primarily to the

most patient types, and agents near the socially optimal cutoff would actually prefer to

withdraw early. To achieve incentive compatibility, the bank accepts a cutoff with some

degree of socially excessive early withdrawals (point 1 above), but it also sacrifices some

insurance in order to encourage waiting and shift the cutoff type towards the socially

optimal level (point 2 above). Thus, even the best equilibrium exhibits some of the flavor

of a bank run.

What about other, less efficient, equilibria? When the bank is restricted to simple

contracts and offers c∗1 to everyone who withdraws in period 1, the post-deposit subgame

has a run equilibrium in which everyone withdraws, as in Diamond and Dybvig (1983).

More interestingly, the post-deposit subgame also has a partial run equilibrium, with an

interior cutoff type that is more patient than θ̄∗. Intuitively, it can be a self-fulfilling

prophecy that a chunk of types more patient than θ̄∗ also withdraw in period 1, because
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less per-capita consumption would be left for those who wait, thereby justifying the

new, more patient cutoff. If the bank is not restricted to simple contracts, we show

that suspending convertability when withdrawals reaches θ̄∗ implements the constrained-

efficient allocation as the unique equilibrium.

Now consider the case in which the bank cannot commit to a contract, but instead

offers consumption in period 1 as agents arrive to withdraw. Since the cutoff withdrawal

type is already determined before the bank chooses consumption, the bank will choose the

socially optimal c1, given the equilibrium cutoff. It follows from point (2) above that the

bank is unable to credibly promise to keep period 1 consumption at the full-commitment

level. We show that the most efficient equilibrium without commitment yields strictly

more early withdrawals and strictly lower welfare than the full-commitment equilibrium.

The paper is organized as follows. The next section relates our results to the existing

literature. Section 3 introduces the basic set-up. In Section 4 we study the case where

the bank is able to commit to a contract, and in Section 5 the case where commitment

is not possible. An example that illustrates our results is presented in Section 6. Proofs

that do not appear in the main text can be found in the Appendix.

2. Literature Review

For the two-type model with a known fraction of each type, Diamond and Dybvig

(1983) were the first to characterize the most efficient equilibrium as the solution to a

planner’s problem. The incentive compatibility constraint does not bind, and the full-

information first best allocation results. With a continuum of types, however, there is no

hope of achieving the first-best, because the binary withdraw/wait decision cannot fully

reveal each agent’s type.1 Moreover, the equilibrium is not even constrained efficient

– the equilibrium accommodates more early withdrawals than a planner choosing the

cutoff type but treating all agents who wait identically.

A number of papers, including Diamond and Dybvig (1983), consider two-type models

in which the fraction of impatient agents is uncertain. See Wallace (1990), Green and

Lin (2003), Peck and Shell (2003, 2010), Ennis and Keister (2009), Andolfatto, Nosal,

and Wallace (2007), and Nosal and Wallace (2009), among others. As in our model with

a continuum of types but no aggregate uncertainty, the full-information first-best is not

1Even if agents were to report their types, the full-information first-best requires consumption to be

an increasing function of θ for those agents receiving consumption in period 2. Clearly there is no way

to induce truthful revelation without sacrificing efficiency.
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feasible in these papers. However, the solution to the planner’s problem always induces

all patient agents to receive consumption in period 2. Thus, our excessive withdrawal

result at the best equilibrium is completely new to the literature, including the literature

with aggregate uncertainty.

Ennis and Keister (2010) consider a two-type model with no aggregate uncertainty

and without commitment. They show that partial run equilibria exist, characterized by

waves of further withdrawals as the crisis deepens. However, their model always has an

equilibrium in which the allocation is the full-information first-best. With a continuum

of types, the situation is different in two ways. First, the full-commitment outcome

is no longer first-best, and second, the most efficient equilibrium without commitment

yields strictly more early withdrawals and strictly lower welfare than the full-commitment

equilibrium.

An interesting paper by Lin (1996) studies a banking model similar to ours, with a

continuum of types representing degrees of impatience. In Lin (1996), agents desire to

consume in both period 1 and period 2, and the optimal allocation is characterized. The

bank or planner offers a menu of consumptions over the two periods, with a different

menu item targeted to each type, maximizing welfare subject to feasibility and incentive

compatibility. Incentive compatibility entails a higher interest rate paid to more patient

agents. In our model, as in Diamond and Dybvig (2003), agents cannot consume during

both period 1 and period 2.2

Global games models also employ a continuum of types, but the structure of the types

and the results are quite different. See Carlsson and van Damme (1993), Morris and Shin

(1998), or for a bank-runs application, Goldstein and Pauzner (2005). In these models,

each agent receives a signal about a population parameter or common value, but an

agent’s signal itself does not directly affect his payoff. In our model, an agent’s type is

a private value that directly affects his payoff. For example, in Goldstein and Pauzner

(2005), patient agents also receive a signal that is correlated with the probability that

long-run asset return is 0 instead of R. Unlike our model, global games models often

generate a unique equilibrium when signals are not perfectly accurate.

2One can interpret this specification as reflecting the prohibitive complexity of running more general

mechanisms, or perhaps reflecting the nature of “consumption opportunities” that motivate withdrawals.

See Peck and Shell (2010) for a discussion.
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3. Set up

There are three periods, t = 0, 1, 2. There is a continuum of potential depositors in

the population, and at the beginning of period 1 each depositor privately observes his

type 0 ≤ θ ≤ 1. The distribution of agents’ types is given by a CDF, F (θ), which admits

a continuous density function f(θ) with f(θ) > 0 for 0 ≤ θ ≤ 1 and f(θ) = 0 otherwise.

We also assume that the hazard rate f(θ)
1−F (θ)

is non-decreasing on [0, 1).

Each agent is endowed with one unit of consumption which he can deposit in the bank

at period t = 0. Each unit of consumption invested yields a return of R > 1 units of

consumption if held until period 2. Each unit of consumption invested yields one unit of

consumption if liquidated in period 1.

Agents can consume either in period t = 1 or in period t = 2 (but not in both). The

utility of an agent consuming c1 units in period t = 1 is u(c1), and is independent of

his type. The utility of an agent of type θ who consumes c2 units in period t = 2 is

θu(c2). This specification is a natural extension of Diamond and Dybvig (2003). With

two types, one could interpret patient agents as having to consume in period 2, where

a patient agent that withdraws in period 1 costlessly stores the consumption until it

is consumed in period 2. With a continuum of types, this dichotomy, between patient

being required to consume in period 2 and impatient being required to consume in period

1, is no longer possible. One must interpret agents as being able to consume in either

period (but not both), with θ representing the degree to which future consumption is

discounted.

We make the following assumptions on the utility function u : [0,∞) → R:

• u is strictly increasing, concave and twice differentiable.

• u(0) = 0 and u′(1) < u′(0) ·R · E(θ).
• The coefficient of relative risk aversion is greater than 1 whenever c ≥ 1. That is

−cu′′(c)
u′(c)

> 1 whenever c ≥ 1.

The bank offers a contract to the depositors, which specifies the amount of consump-

tion that will be given to depositors who decide to withdraw in the first period t = 1.

Formally, a contract is given by a (measurable) function c1 : [0, 1] → R+, where c1(z)

is the consumption level given to a depositor who withdraws in period t = 1 after a

measure z of depositors already withdrew. Thus, service is sequential. We assume that

the order of arrivals is random, and that agents do not know their place in line as they

decide whether to withdraw. A contract is feasible if
∫ 1

0
c1(z)dz ≤ 1, and we consider
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only feasible contracts from now on. Any consumption that was not liquidated in the

first period (and the interest on this consumption) is equally divided among the agents

who did not withdraw in the first period.3

We will have special interest in constant contracts. These are contracts in which

the first period consumption level c1(z) is independent of z. More formally, a constant

contract is any contract of the form

c1(z) =

{
c1 0 ≤ z ≤ min(1/c1, 1)

0 otherwise.

If no confusion may result we abuse notation and denote a constant contract by the

number c1.

4. The game with commitment

In this section we consider the case where the bank can commit to a contract before the

agents make their withdrawal decisions. Thus, the timing of the game is as follows. In

period t = 0 the bank announces the contract c1(z) and the agents deposit their money

in the bank. Then, in period t = 1, each agent learns his type and decides whether to

withdraw early. Agents who do not withdraw in the first period get their consumption

(which depends on the set of agents who withdrew in the first period) in period t = 2.

We assume that the bank’s objective is the ex ante expected utility of the representative

agent. Perfect competition between banks would force them to behave as if this were

their objective, although we do not model this competition formally. It is easy to see

that, in any equilibrium of the post-deposit subgame, the set of types that withdraw

in period 1 is an interval of the form [0, θ̄]. We therefore restrict attention to strategy

profiles of this form, and identify each such strategy profile with the cutoff type θ̄. In

equilibrium, the bank chooses a contract c1(z) and a cutoff type θ̄ that maximize welfare

subject to an Incentive Compatibility (IC) constraint and a resource constraint.

3While the bank might provide higher welfare by giving agents with higher θ more consumption in pe-

riod 2 than agents with lower θ who also withdraw in period 2, incentive compatibility and consumption

smoothing requires equal division at the optimal mechanism, so we simplify the exposition by requiring

this condition at the outset.
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Consider some contract c1(z) and some cutoff type θ̄. The consumption for agents

with types in (θ̄, 1] (those who wait until the second period) is given by

(1) c2(θ̄, c1(z)) =

(
1−

∫ F (θ̄)

0
c1(z)dz

)
R

1− F (θ̄)
.

The IC constraint corresponding to a contract c1(z) is satisfied if and only if the cutoff

type θ̄ is exactly indifferent between withdrawing early and waiting:

(2)
1

F (θ̄)

∫ F (θ̄)

0

u(c1(z))dz = θ̄u(c2(θ̄, c1(z))).

The social welfare when the contract is c1(z) and the agents strategy profile is θ̄ is given

by

(3) W (θ̄, c1(z)) =

∫ F (θ̄)

0

u(c1(z))dz +

∫ 1

F (θ̄)

f(θ)θu(c2(θ̄, c1(z)))dθ.

As will become clear below, for a given contract there may be multiple equilibria of the

post-deposit subgame. That is, for a given c1(z) there may be more than one θ̄ such that

(1) and (2) are satisfied. When we talk about an optimal contract we mean that we can

choose the best equilibrium - the one for which social welfare is maximized. Thus, the

optimal contract solves

max
θ̄,c1(z)

W (θ̄, c1(z))

s.t. (1) and (2).

4.1. Constant contracts are optimal. Our first result shows that limiting attention

to constant contracts is without loss of generality when considering the optimal contract.

Proposition 1. Let c1(z) be an arbitrary contract, and assume that (1) and (2) are

satisfied at θ̄ ∈ (0, 1). Assume further that c1(z) is not constant in the interval 0 ≤ z ≤
F
(
θ̄
)
. Then there is a constant contract c1 such that (1) and (2) are still satisfied at θ̄

under c1, and such that W (θ̄, c1) > W (θ̄, c1(z)). In particular, an optimal contract must

give the same consumption to all the agents that withdraw in the first period.

Before proving the proposition, we state a lemma that will be useful for many of the

results.

Lemma 1. For every 0 < θ̄ < 1 there is a unique constant contract c1 such that (1) and

(2) are satisfied at θ̄ under c1.
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We turn now to the proof of Proposition 1.

Proof. Let c1 be the (unique) constant contract such that (1) and (2) are satisfied at θ̄,

whose existence is guaranteed by Lemma 1. We show that W (θ̄, c1) > W (θ̄, c1(z)).

First, we claim that the total consumption given in the first period with the contract

c1 is strictly less than that given with the contract c1(z), i.e. c1F (θ̄) <
∫ F (θ̄)

0
c1(z)dz.

Indeed, concavity of u and Jensen’s inequality imply that

1

F (θ̄)

∫ F (θ̄)

0

u(c1(z))dz < u

(
1

F (θ̄)

∫ F (θ̄)

0

c1(z)dz

)
.

Thus, by smoothing the consumption given in the first period by the contract c1(z) we

get a constant contract which makes the type θ̄ strictly prefer to withdraw early. This

implies that the total consumption given in the first period, by the constant contract c1

(constructed to make θ̄ indifferent) is lower than the total consumption given by c1(z).

It follows that the second period consumption is higher under c1 than under c1(z). In

particular, the utility that an agent of type θ̄ obtains by waiting is higher under c1. But

since θ̄ is indifferent this implies that the (expected) first period utility is is also higher

under c1. Thus, both the types [θ̄, 1] who wait and the types [0, θ̄) who withdraw early

are better off under c1, so the total social welfare has increased. �

4.2. The IC constraint and equilibrium multiplicity. Now that we know that an

optimal contract is constant, we restrict attention to this type of contract. Note that

under a constant contract the objective function W becomes

(4) W (θ̄, c1) = F (θ̄)u(c1) +
(
1− F (θ̄)

)
· E(θ|θ > θ̄) · u(c2(θ̄, c1)),

and the constraints are

(5) u(c1) = θ̄u(c2(θ̄, c1))

and

(6) c2(θ̄, c1) =

(
1− F (θ̄)c1

)
R

1− F (θ̄)
.

In order to understand better the properties of an optimal contract we first need to

know more about the shape of the IC constraint, where (6) is substituted into (5). Note

that Lemma 1 implies that the IC constraint defines a function c̃1(θ̄) for θ̄ ∈ (0, 1). That

is, c̃1(θ̄) is the unique constant contract under which type θ̄ is indifferent given that types

with θ < θ̄ withdraw and types with θ > θ̄ wait. The corresponding function c̃2(θ̄, c̃1(θ̄))
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is denoted for short by c̃2(θ̄). We can interpret the inverse of the function c̃1(θ̄) as the

depositors’ “best-response correspondence” to the bank’s choice of contract: Given c1,

an equilibrium behavior of the depositors must result in a cutoff type θ̄ that satisfies

c̃1(θ̄) = c1. Figure 1 illustrates the results of the following lemma.

Lemma 2. The following hold:

(i) c̃1(θ̄) is continuously differentiable.

(ii) limθ̄→0 c̃1(θ̄) = 0 and limθ̄→1 c̃1(θ̄) = 1, so we can extend c̃1(θ̄) continuously to the

closed interval 0 ≤ θ̄ ≤ 1 by setting c̃1(0) = 0 and c̃1(1) = 1.

(iii) If θ̄ ∈
[
0, u(1)

u(R)

]
then 0 ≤ c̃1(θ̄) ≤ 1, and if θ̄ ∈ ( u(1)

u(R)
, 1) then c̃1(θ̄) > 1.

(iv) There exists u(1)
u(R)

< θ̄0 < 1 such that c̃1(θ̄) is strictly increasing in the interval

[0, θ̄0] and strictly decreasing in [θ̄0, 1].

The following is an immediate corollary of Lemma 2.

Proposition 2. Let c1 be a constant contract.

(i) If 0 ≤ c1 ≤ 1 then there is a unique interior equilibrium θ̄ to the post-deposit

subgame.

(ii) If 1 < c1 < c̃1(θ̄0) then there are exactly two interior equilibria.

(iii) If c1 = c̃1(θ̄0) then there is a unique interior equilibrium at θ̄ = θ̄0.

(iv) If c1 > c̃1(θ̄0) then there is no interior equilibrium.

In addition, whenever c1 ≥ 1 there is a “full-run equilibrium” where θ̄ = 1.

4.3. Necessary conditions for optimality. The purpose of this subsection is to find

the part of the curve defined by the IC constraint in which an optimal contract (and

corresponding equilibrium) must be located. Note that an optimal contract must exist,

as W is a continuous function over the compact graph of the IC constraint.

Proposition 3. Let
(
θ̄∗, c∗1 = c̃1(θ̄

∗)
)
be a point on the graph of the IC constraint where

W is maximized. Then c∗1 > 1 and c̃′1(θ̄
∗) ≥ 0. Equivalently, u(1)

u(R)
< θ̄∗ ≤ θ̄0.

It follows from the proof of Proposition 3 that, whenever there are multiple interior

equilibria for a given contract, the one at which welfare is maximized is the one with

the fewest types withdrawing early. Thus, for a given contract, we refer to the interior

equilibrium with the smaller θ̄ as the “best equilibrium”, and to the other (interior)

equilibrium as the “partial-run equilibrium”. The equilibrium in which θ̄ = 1 is referred

to as the “full-run equilibrium”.
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4.4. Excessive withdrawals. An immediate corollary of Proposition 3 is that, given

the optimal contract, social welfare increases if fewer agents withdraw in the first period

than in the best equilibrium under this contract. The intuition is that the cutoff type

is indifferent between withdrawing in period 1 and waiting. Since the bank provides

insurance against being impatient by offering those who withdraw more consumption

than they deposit, waiting provides a positive externality to others who wait, by reducing

this drain on resources. Thus, given c∗1, society would be better off if agents of type just

below θ̄∗, who are nearly indifferent, decided instead to wait.

Corollary 1. Let
(
θ̄∗, c∗1 = c̃1

(
θ̄∗
))

be an optimal contract and the corresponding best

equilibrium. Then for every θ̄ < θ̄∗ which is sufficiently close to θ̄∗ we have W (θ̄, c∗1) >

W (θ̄∗, c∗1).

Proof. We know from Proposition 3 that c∗1 > 1. But whenever c1 > 1 and the constraint

is satisfied the partial derivative ∂W (θ̄,c1)

∂θ̄
is strictly negative (see (7)). Thus, if θ̄ < θ̄∗ is

sufficiently close to θ̄∗ then W (θ̄, c∗1) > W (θ̄∗, c∗1). �

4.5. Suspension of convertibility. As should be clear from the previous results, when

the planner chooses the optimal constant contract there are three equilibria to the post-

deposit subgame. The best equilibrium is the one with the smallest θ̄, but there are also

the interior partial-run equilibrium and the full-run equilibrium at which social welfare

is strictly worse. The question we address in this subsection is whether the planner

can achieve the best equilibrium allocation as the unique equilibrium outcome of the

post-deposit subgame when non-constant contracts are considered. As in the literature

with only two types, a natural candidate for such a contract is one in which after the

“right” amount of consumption is given in the first period the bank suspends any further

withdrawals until the second period. The next proposition shows that such a contract

achieves the desired goal.

Proposition 4. Let
(
θ̄∗, c∗1 = c̃1(θ̄

∗)
)
be an optimal (constant) contract and the corre-

sponding best equilibrium. Consider the (non-constant) contract defined by

c∗1(z) =

{
c∗1 0 ≤ z ≤ F

(
θ̄∗
)

0 otherwise.

Then the unique equilibrium under c∗1(z) is at θ̄
∗, and W (θ̄∗, c∗1(z)) = W (θ̄∗, c∗1).
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Proof. It is obvious that W is the same under these two contracts (assuming that θ̄∗

is played in the post-deposit subgame). It is also clear that θ̄∗ is an equilibrium under

c∗1(z). It remains to show that θ̄∗ is the unique equilibrium.

First, there cannot be an equilibrium with θ̄ < θ̄∗ since c∗1(z) and c∗1 are identical in

this interval, and θ̄∗ is the smallest equilibrium of c∗1. Second, if θ̄ > θ̄∗ then it cannot be

an equilibrium: When the strategy profile θ̄∗ is played, an agent of type θ̄ > θ̄∗ strictly

prefers to wait. Compared to that strategy profile, when the strategy profile θ̄ is played

the utility from withdrawing early is lower and from waiting is higher. Thus, it cannot

be that θ̄ is indifferent. �

5. The no commitment case

We now move to the case in which the bank has no ability to commit to the contract

that it offers. Without commitment, the situation can be thought of as a simultaneous-

move game, in which the bank chooses a contract c1(z) and each depositor chooses

whether to withdraw or wait. An equilibrium of this game is a profile of strategies (for

the bank and the depositors) in which c1(z) is a best response (i.e., maximizes welfare)

given the strategies of the depositors, and each depositor is best responding to c1(z) and

the withdrawal behavior of the other depositors.

Notice first that, like in the commitment case, in any equilibrium the set of types

withdrawing early is an interval [0, θ̄]. Further, since the agents best respond to the

contract, the constraints (1) and (2) must be satisfied in equilibrium. Thus, given a

constant contract c1, θ̄ must satisfy c̃1(θ̄) = c1 as in the commitment case. What differs

will be the bank’s choice of c1.

Moving on to the bank’s side, we know from Proposition 1 that a best response to

θ̄ must give a constant consumption in the interval [0, F (θ̄)]. Thus, we can restrict

attention to this kind of contract. The following lemma describes additional properties

of the best response of the bank to a given θ̄.

Lemma 3. For every fixed 0 < θ̄ < 1 there exits a unique maximizer ĉ1(θ̄) to the function

W (θ̄, c1) as specified in (4), with (6) substituted into the objective function. Furthermore,

ĉ1(θ̄) is continuously differentiable, decreasing, satisfies ĉ1(θ̄) > 1 for every 0 < θ̄ < 1,

and limθ̄→1 ĉ1(θ̄) = 1.

To summarize the discussion so far, a strategy profile for the depositors and the bank

(θ̄, c1) is an equilibrium if and only if c1 = c̃1(θ̄) = ĉ1(θ̄). The reason is that the function
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ĉ1(θ̄) is the bank’s best response function, and given c1 depositors are best-responding if

and only if c1 = c̃1(θ̄) is satisfied for the corresponding θ̄.

Proposition 5. The game without commitment admits at least one equilibrium with

0 < θ̄ < 1.

The main result of this section compares the no-commitment to the commitment case.

Proposition 6 below shows that the optimal contract without commitment yields strictly

more types withdrawing in period 1 and strictly lower welfare than the optimal contract

with commitment. Intuitively, in the optimal contract with commitment, (θ̄∗, c∗1), given

θ̄∗, welfare would be higher if c1 were increased above c∗1. The bank commits to c∗1 in

order to manipulate θ̄. However, without commitment, depositors have already made

their withdrawal decisions, so given a cutoff θ̄∗, the bank would choose consumption

above c∗1; anticipating that, more types would withdraw in period 1.

Proposition 6. Let (θ̄∗, c∗1) be an optimal contract in the case with commitment, and let

(θ̄∗∗, c∗∗1 ) be an equilibrium of the no-commitment game. Then θ̄∗ < θ̄∗∗ and W (θ̄∗, c∗1) >

W (θ̄∗∗, c∗∗1 ).

Proof. From Proposition 3 we know that (θ̄∗, c∗1) is on the part of the IC constraint where

c̃1(θ̄) > 1 and c̃1(θ̄) is increasing. In this part of the curve the partial derivative ofW with

respect to θ̄ is negative. Since at the optimal contract the gradient of W is orthogonal

to c̃′1(θ̄), it must be that the partial derivative of W with respect to c1 is strictly positive

at (θ̄∗, c∗1). Thus, it follows from the proof of Lemma 3 that c∗1 < ĉ1(θ̄
∗), that is, (θ̄∗, c∗1)

lies below the function ĉ1(θ̄). Since, by Lemma 3, ĉ1(θ̄) is decreasing, all intersections

of ĉ1(θ̄) and c̃1(θ̄) must occur at θ̄ > θ̄∗, which establishes that θ̄∗ < θ̄∗∗. Finally, since

(θ̄∗∗, c∗∗1 ) cannot be an optimal contract for the commitment game, it follows that we

have W (θ̄∗, c∗1) > W (θ̄∗∗, c∗∗1 ). �

Ennis and Keister (2010) study the game without commitment for the two-type model.

In that setting, the optimal contract and allocation under commitment remains an equi-

librium without commitment. With a continuum of types, Proposition 6 shows that the

inability to commit entails a loss of welfare at the best equilibrium.
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6. An example

We illustrate our results with the following example. Let the distribution of types in

the population be uniform on [0, 1], and assume that the utility function is given by

u(c) =
(c+ b)1−γ − b1−γ

1− γ
,

where b > 0 and γ > 1 are parameters.4 Social welfare under a (constant) contract c1

and given a threshold type θ̄ is given by

W (θ̄, c1) = θ̄ · (c1 + b)1−γ − b1−γ

1− γ
+ (1− θ̄) · 1 + θ̄

2
· (c2 + b)1−γ − b1−γ

1− γ
.

The incentive compatibility constraint is given by

(c1 + b)1−γ − b1−γ

1− γ
= θ̄ · (c2 + b)1−γ − b1−γ

1− γ
,

where

c2 =
(1− θ̄c1)R

1− θ̄
.

For concreteness, assume that R = 2, b = 1/2 and γ = 2. We note that for these

parameter values all of our assumptions are satisfied. Solving the incentive compatibility

constraint for c1 (as a function of θ̄) we get the function c̃1(θ̄):

c̃1(θ̄) =
−2θ̄2 + 5θ̄ − 5 +

√
4θ̄4 + 12θ̄3 + 13θ̄2 − 50θ̄ + 25

8θ̄(θ̄ − 1)
.

The optimal contract c∗1 and the corresponding best equilibrium θ̄∗ are given by (θ̄∗ =

0.856, c∗1 = 1.016). Social welfare is given by W (θ̄∗, c∗1) = 1.356.

For the no-commitment case, we first find the planner’s best response function ĉ1(θ̄).

This yields

ĉ1(θ̄) =
−θ̄3 + 3θ̄2 − 9θ̄ − 1 +

√
θ̄5 + 9θ̄4 + 14θ̄3 − 34θ̄2 − 15θ̄ + 25

2θ̄3 − 10θ̄2 − 2θ̄ + 2
.

Equilibria of the no-commitment game are the intersection points of ĉ1(θ̄) with c̃1(θ̄). For

this particular example, there is only one such intersection at (θ̄∗∗ = 0.883, c∗∗1 = 1.027).

Social welfare at the equilibrium isW (θ̄∗∗, c∗∗1 ) = 1.355. Notice that more types withdraw

when there is no commitment, and that social welfare decreases in this case. Figures 2

and 3 show the curves ĉ1
(
θ̄
)
and c̃1

(
θ̄
)
, and the equilibria of the games with and without

commitment.

4This utility function is used in Gu (2010).
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Appendix A. Proofs

A.1. Proof of Lemma 1.

Proof. Fix θ̄ ∈ (0, 1) and consider the function g(c1) = u(c1) − θ̄u(c2(c1, θ̄)) defined for

c1 ∈ (0, 1/F (θ̄)]. When c1 is close to 0 g is negative, and at c1 = 1/F (θ̄) it is positive.

Further, it is easy to see that g is continuous and strictly increasing on its domain. Thus,

there is a unique c1 such that g(c1) = 0, as required. �
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A.2. Proof of Lemma 2.

Proof. Property (i) follows immediately from the implicit function theorem (see, e.g., de

la Fuente (2000), Theorem 2.1 on page 207). As for (ii), the right-hand side of the IC

constraint is bounded above by θ̄u
(

R
1−F (θ̄)

)
, which converges to 0 when θ̄ goes to 0. It

follows that limθ̄→0 u(c̃1(θ̄)) = 0, which implies that limθ̄→0 c̃1(θ̄) = 0. The other limit

follows from the facts that c̃1(θ̄) ≤ 1/F (θ̄) for every θ̄, and that c̃1(θ̄) > 1 when θ̄ is close

to 1 (since for c1 = 1 any type θ sufficiently close to 1 prefers to wait).

We now prove (iii) and (iv). The derivative of c̃1(θ̄) is obtained from the identity

u(c̃1(θ̄)) − θ̄u(c̃2(c̃1(θ̄), θ̄)) = 0. Taking derivative gives (the argument θ̄ is sometimes

omitted to make the reading easier)

u′(c̃1) · c̃′1(θ̄) = u(c̃2) + θ̄ · u′(c̃2) · c̃′2(θ̄) =

u(c̃2) + θ̄ · u′(c̃2)

[
−RF (θ̄)c̃′1(θ̄)

1− F (θ̄)
+

Rf(θ̄)(1− c̃1(θ̄))

(1− F (θ̄))2

]
.

After some algebra we get

c̃′1(θ̄)

[
u′(c̃1) +

θ̄u′(c̃2)RF (θ̄)

1− F (θ̄)

]
= u(c̃2) +

θ̄u′(c̃2)Rf(θ̄)(1− c̃1(θ̄))

(1− F (θ̄))2
.

It follows that as long as c̃1(θ̄) ≤ 1 it is strictly increasing.

We know from (ii) of this lemma that c̃1(0) = 0. Further, c̃1(θ̄) = 1 implies that

θ̄ = u(1)/u(R) or θ̄ = 1. Thus, in the interval
[
0, u(1)

u(R)

]
we have 0 ≤ c̃1(θ̄) ≤ 1 and c̃1(θ̄)

is strictly increasing. Now, at the point θ̄ = u(1)/u(R) (where c̃1(θ̄) = 1) the derivative

c̃′1(θ̄) is still strictly positive, so c̃1(θ̄) > 1 in a small interval to the right of this point.

But it cannot happen that c̃1(θ̄) falls to 1 at any point u(1)/u(R) < θ̄ < 1, since the

derivative c̃′1(θ̄) is positive whenever c̃1(θ̄) = 1. This concludes the proof of (iii).

Let θ̄0 > u(1)/u(R) be the first point where c̃′1(θ̄) = 0, whose existence is guaranteed

by the fact that c̃1(θ̄) cannot increase on the entire interval [0,1] (recall that c̃1(1) = 1 by

(ii)). Then c̃1(θ̄) is increasing in [0, θ̄0]. To complete the proof of (iv) we need to show

that c̃1(θ̄) is strictly decreasing in [θ̄0, 1].

Fix some number t > 1 and consider the function

h(θ̄) = θ̄u

(
(1− F (θ̄)t)R

1− F (θ̄)

)
.

The derivative h′(θ̄) is

h′(θ̄) = u

(
(1− F (θ̄)t)R

1− F (θ̄)

)
+ θ̄ · u′

(
(1− F (θ̄)t)R

1− F (θ̄)

)
· Rf(θ̄)(1− t)

(1− F (θ̄))2
.
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Since t > 1 and because the hazard rate is non-decreasing, h′(θ̄) is decreasing. Thus, h

is a concave function. In particular, it can obtain any specific value at most twice. It

follows that for any fixed c1 > 1 there can be at most two solutions to the IC constraint

with the constant contract c1. To conclude, after c̃1(θ̄) reaches its pick at θ̄0, it must

strictly decrease from that point; otherwise there will be a fixed contract c1 such that

the IC constraint is satisfied at three different points θ̄. �

A.3. Proof of Proposition 3.

Proof. We start by showing that the solution is interior, i.e. that (θ̄ = 0, c1 = 0) and

(θ̄ = 1, c1 = 1) are not maxima. Indeed, we show that (θ̄ = u(1)/u(R), c1 = 1) is

strictly better than both of them.

We have W (0, 0) = u(R)E(θ) and W (1, 1) = u(1). Denoting α = u(1)/u(R) we also

have W (α, 1) = F (α)u(1) + (1− F (α))E(θ|θ > α)u(R). Thus,

W (α, 1) = u(R)[F (α)α+ (1− F (α))E(θ|θ > α)] >

u(R)[F (α)E(θ|θ ≤ α) + (1− F (α))E(θ|θ > α)] = u(R)E(θ) = W (0, 0),

and

W (α, 1) = u(1)

[
F (α) +

(1− F (α))E(θ|θ > α)

α

]
>

u(1)[F (α) + (1− F (α))] = u(1) = W (1, 1).

Since the solution is interior we can use the necessary condition for optimality obtained

from the Lagrangian. This condition says that the gradient of W should be orthogonal

to the derivative of the curve c̃1 at θ̄∗. The partial derivatives of W are given by

∂W (θ̄, c1)

∂θ̄
= f(θ̄)

[
u(c1)− θ̄u(c2)−

(c1 − 1)Ru′(c2)E(θ|θ ≥ θ̄)

1− F (θ̄)

]
(7)

∂W (θ̄, c1)

∂c1
= F (θ̄)[u′(c1)−RE(θ|θ > θ̄)u′(c2)].(8)

From (7), if c1 < 1 and the IC constraint is satisfied then ∂W (θ̄,c1)

∂θ̄
> 0. We claim that

whenever c1 ≤ 1 it is also true that ∂W (θ̄,c1)
∂c1

> 0. Indeed, when c1 = 1 we get from (8)

∂W (θ̄, 1)

∂c1
= F (θ̄)[u′(1)−Ru′(R)E(θ|θ ≥ θ̄)] ≥ F (θ̄)[u′(1)−Ru′(R)].

Since the coefficient of relative risk aversion is greater than 1, the function cu′(c) is

decreasing. Thus, u′(1) > Ru′(R), and the derivative is positive. Furthermore, the
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second partial derivative is

∂2W (θ̄, c1)

∂c21
= F (θ̄)

[
u′′(c1) +R2u′′(c2)E(θ|θ ≥ θ̄)

F (θ̄)

1− F (θ̄)

]
< 0.

Thus, for any fixed 0 < θ̄ < 1, W is a concave function of c1. This implies that
∂W (θ̄,c1)

∂c1
> 0 for every 0 < θ̄ < 1 and every c1 ≤ 1, as claimed.

It follows that in the interval 0 < θ̄ ≤ u(1)/u(R) the gradient of W points to the

north-east (exactly north at the the point θ̄ = u(1)/u(R)). Since we know from Lemma

2 that c̃1(θ̄) is increasing in this interval the necessary condition cannot be satisfied. This

proves that θ̄∗ > u(1)/u(R).

Finally, it is not possible that an equilibrium where θ̄0 < θ̄ < 1 is optimal, since the

equilibrium with the smaller θ̄ under the same contract gives higher welfare. Indeed, at

any point (θ̄, c1) which is (weakly) below the curve of the IC constraint and where c1 > 1

we have u(c1) − θ̄u(c2) < 0; thus, the partial derivative ∂W (θ̄,c1)

∂θ̄
is negative. It follows

that, when moving from the equilibrium with the lower θ̄ to the one with the higher θ̄

(keeping c1 constant), welfare strictly decreases. �

A.4. Proof of Lemma 3.

Proof. Fix θ̄ ∈ (0, 1) and consider W (c1, θ̄) as a function of c1 only. We know from the

proof of Proposition 3 that this is a strictly concave function, and that the derivative of

this function (see (8)),

∂W (c1, θ̄)

∂c1
= F (θ̄)[u′(c1)−RE(θ|θ > θ̄)u′(c2)],

is positive in an interval of c1, [0, 1 + ϵ] for sufficiently small ϵ > 0. Furthermore, it

follows from the assumption that u′(1) < u′(0) ·R ·E(θ) that the derivative is negative at
c1 = 1/F (θ̄), since c2 = 0 at this point. Thus, the maximizer ĉ1(θ̄) is the unique number

c1 that satisfies

u′(c1) = RE(θ|θ > θ̄)u′(c2),

and ĉ1
(
θ̄
)
> 1. The implicit function theorem implies that ĉ1(θ̄) is a continuously

differentiable function of θ̄ (see de la Fuente (2000), Theorem 2.1 on page 207). Since

1 < ĉ1(θ̄) < 1/F (θ̄) it follows that limθ̄→1 ĉ1(θ̄) = 1.

It remains to show that ĉ1(θ̄) is decreasing. For this purpose we take the derivative

with respect to θ̄ of the identity

u′(ĉ1(θ̄)) = RE(θ|θ > θ̄)u′(ĉ2(θ̄)).
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This yields

(9) u′′(ĉ1)ĉ
′
1(θ̄) =

Rf(θ̄)(E(θ|θ > θ̄)− θ̄)u′(ĉ2)

1− F (θ̄)
+RE(θ|θ > θ̄)u′′(ĉ2)ĉ

′
2(θ̄).

We claim that this equation cannot be satisfied if ĉ′1(θ̄) ≥ 0. Indeed, if this were the case

then the left-hand side of (9) would be negative. The first term on the right-hand side

is obviously positive. As for the second term, the derivative ĉ′2(θ̄) is given by

ĉ′2(θ̄) =
−RF (θ̄)ĉ′1(θ̄)

1− F (θ̄)
+

Rf(θ̄)(1− ĉ1(θ̄))

(1− F (θ̄))2
,

which is negative when ĉ1(θ̄) > 1 and ĉ′1(θ̄) ≥ 0. But we have already shown that ĉ1(θ̄) is

always greater than 1. This proves that the second term on the right-hand side must be

positive as well if ĉ′1(θ̄) ≥ 0, a contradiction. This completes the proof of the lemma. �

A.5. Proof of Proposition 5.

Proof. To prove the proposition we need to show that the two functions c̃1 and ĉ1 intersect

at some θ̄ ∈ (0, 1). Notice that, by Lemma 2, c̃1(θ̄) is close to 0 when θ̄ is close to 0, while

ĉ1(θ̄) is always greater than 1 by Lemma 3. Thus, c̃1(θ̄) > ĉ1(θ̄) holds for θ̄ sufficiently

close to 0, and the proposition will be proved if we can show that c̃1(θ̄) < ĉ1(θ̄) for θ̄

sufficiently close to 1.

We know from Lemmas 2 and 3 that limθ̄→1 c̃1(θ̄) = limθ̄→1 ĉ1(θ̄) = 1. From the

definition of c̃1(θ̄) it follows that limθ̄→1 c̃2(θ̄) = 1, while from the definition of ĉ1(θ̄) it

follows that limθ̄→1 ĉ2(θ̄) > 1 (see the proof of Lemma 3). Thus, for θ̄ sufficiently close

to 1, we have ĉ2(θ̄) > c̃2(θ̄). But whenever this is the case the inequality ĉ1(θ̄) < c̃1(θ̄)

holds. This completes the proof. �
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Figure 1. The function c̃1.
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Figure 2. The functions c̃1 and ĉ1 from the example.
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Figure 3. The optimal contract with commitment and the equilibrium

of the game without commitment from the example.


