Backward Induction and Subgame Perfection

In extensive-form games, we can have a Nash equilibrium
profile of strategies where player 2's strategy is a best
response to player 1's strategy, but where she will not
want to carry out her plan at some nodes of the game
tree.

For example, consider the following game, given in both

normal-form and extensive-form.

player 2
L R
player1 A | 1,2 1,2
B|0,0 2,1







This game has two Nash equilibria: (A,L) and (B,R). If
we think of the players as selecting plans before the game
starts, then the NE profile (A,L) makes some sense. If
player 2 is absolutely convinced that player 1 will play A,
then playing L is a best response. In fact, she would do
everything in her power to convince player 1 that she will
play L, so that he plays A.

While player 2 might "threaten" to play L before the
game starts, if the game proceeds and it is actually her
turn to move, then L is not rational. The threat is not
credible, and player 1 should realize this and play B.

Thus, L might be a reasonable plan for player 2 if she
thinks player 1 will play A, but it is not rational to carry
out the plan after player 1 plays B. It is not sequentially
rational for player 2 to play L.



Definition: A player’s strategy exhibits sequential ratio-
nality if it maximizes his or her expected payoff, condi-
tional on every information set at which he or she has
the move. That is, player 1’s strategy should specify an
optimal action at each of player 1’s information sets, even
those that player © does not believe will be reached in the
game.

If sequential rationality is common knowledge, then play-
ers will look ahead and realize that players will not take
actions down the tree that are not rational at that point.



For games of perfect information (all singleton informa-
tion sets), backward induction is the process of "looking
ahead and working backwards" to solve a game based on
common knowledge of sequential rationality:

1. Start at each node that is an immediate predecessor
of a terminal node, find the optimal action for the player
who moves at that node, and change that node into a
terminal node with the payoffs from the optimal action.

2. Apply step 1 to smaller and smaller games until we
can assign payoffs to the initial node of the game.



Looking ahead to player 2's decision node, her optimal
choice is R, so we can convert her decision node into a
terminal node with payoffs (2,1).



In the smaller game, player 1 can either choose A and
reach the terminal node with payoffs (1,2), or B and reach
the terminal node with payoffs (2,1). Player 1's optimal
choice is B. Backward induction leads to the strategy
profile (B,R), with payoffs (2,1).



Here is a more complicated example, based on the Cuban
Missile Crisis.

During 1962, the Soviet Union installed nuclear missiles
in Cuba. When the US found out, President Kennedy
discussed the options (i) do nothing, (ii) air strike on
the missiles, (iii) a naval blockade of Cuba. JFK de-
cided on the naval blockade. Negotiations ensued, and
Khrushchev threatened to escalate the situation: both
sides believed that nuclear war was a possibility. Fi-
nally, the Soviet Union agreed to remove the missiles if
the United States agreed not to invade Cuba. Privately,
Kennedy agreed to remove some missiles based in Turkey.



First, Khrushchev must decide whether to place the mis-
siles in Cuba or not.

If the missiles are in place, JFK must decide on (i) noth-
ing, (ii) air strike, or (iii) blockade.

If JFK decides on air strike or blockade, Khrushchev must
decide whether to acquiesce or escalate.

Utility ranking of outcomes for Khrushchev: missiles al-
lowed, status quo, acquiesce to blockade, acquiesce to air
strike (lose resources), escalate after air strike (risk war
but JFK is the initial aggressor), escalate after blockade
(risk war and Khrushchev is the initial aggressor).

Utility ranking for JFK: blockade and have Khrushchev
acquiesce, air strike and have Khrushchev acquiesce (be
tough but use resources), status quo, allow missiles, Khrushchev
escalates after blockade, Khrushchev escalates after air
strike.
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Backward Induction (first payoff is Khrushchev's, second
is JFK's):

Khrushchev does not want to risk nuclear war and would
optimally acquiesce to either a blockade or an air strike.
Payoff to blockade is (3,5) and payoff to air strike is (2,4).

JFK would optimally choose blockade, leading to payoff
(3,5).

Khrushchev's optimal choice is status quo (4,3), since he
receives a higher payoff than placing the missiles (3,5).



Every finite game of perfect information can be solved
using backward induction.

If each player has a strict preference over his possible
terminal node payoffs (no ties), then backward induction
gives a unique sequentially rational strategy profile.

Because no player has an incentive to deviate at any infor-
mation set, the resulting strategy profile is a Nash equi-
librium.



Related to backward induction is Zermelo's Theorem: In
finite, two-player, "win-lose-draw" games of perfect in-
formation, then either one of the players has a strategy
that guarantees a win, or both players have a strategy
that guarantees a draw.

Since Chess is essentially a finite game of perfect informa-
tion, then either player 1 (playing the white pieces) can
guarantee a win, player 2 (playing the black pieces) can
guarantee a win, or each player can guarantee a draw.



The Game of Northeast: Draw a rectangular grid of di-
mension 1 X k.

Starting with player 1 on the full grid, the players take
turns choosing a square remaining in the grid, removing
that square and all the other squares to the northeast
of that square. The player who is forced to choose the
southwest square in the grid loses, and the other player
wins.

For grids of equal dimensions n X n, we know a winning

strategy for player 1.

For grids of dimension n X k, we know that player 1 has
a winning strategy, even though we do not know what
that winning strategy is.



Subgame Perfection

In extensive-form games with imperfect information, back-
ward induction can be problematic because a player’s op-
timal action depends on which node she is at in her in-
formation set.

Still, sequential rationality can be captured by the con-
cept of subgame perfection. First we need to define what
we mean by a subgame.

Definition: Given an extensive-form game tree, a node x
initiates a subgame if neither x nor any of its successors
are in an information set containing nodes that are not
successors of x. The tree defined by x and its successors
Is called a subgame.



Here is a game with 3 subgames.

¥ 0.0.1
N’ 1.1.0
Y 1.1,0
N’ 00,1



Notice that:

1. Any game is a subgame of itself. Subgames other than
the original game itself are called proper subgames.

2. For games of perfect information, every node other
than a terminal node defines a subgame.

3. Any subgame is a game in its own right, satisfying all
of our rules for game trees.

4. A strategy for the original game also defines a strategy
for each of its subgames, sometimes called a continuation
strategy.



Definition: A strategy profile for an extensive-form game
is a subgame perfect Nash equilibrium (SPNE) if it spec-
ifies a Nash equilibrium in each of its subgames.

The idea behind SPNE is that even if a NE strategy pro-
file dictates that certain subgames are not reached, we
require that what the players would do conditional on
reaching those subgames should constitute a NE. The
"off-the-equilibrium-path" behavior can be important, be-
cause it affects the incentives of players to follow the
equilibrium.

Notice that every SPNE must also be a NE, because the
full game is also a subgame.

For finite games of perfect information, any backward
induction solution is a SPNE and vice-versa. The ad-
vantage of SPNE is that it can be applied to games of
imperfect information too.



The Chain Store Game

A chain store has branches in K cities, and in each city,
k =1,..., K, there is a competitor. In period k, the
competitor in city £ decides whether to enter the market
or stay out, and if firm k enters, the chain store must
decide whether to fight or cooperate. This is a game of
perfect information, with the payoffs in each city given
in the figure (next slide). Firm k cares only about the
actions taken in its city, but the chain store’s payoff is
the sum of the payoffs it generates in each city.
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Every path of the game in which the outcome in any
period is either out or (in,C) is a Nash equilibrium
outcome.

There is a unique subgame perfect equilibrium, where
each competitor chooses in and the chain store always
chooses C.

For K = 1, subgame perfection eliminates the bad NE.

For large K, isn't it more reasonable to think that the
chain store will establish a reputation for being tough?
Moreover, if we see the chain store fighting the first 10
competitors, is it reasonable for the next competitor to
enter? That is, if we see that the assumption of common
knowledge of sequential rationality is violated, does it

make sense to continue to assume it?



The Centipede Game

At each stage, a player can either stop the game, or con-
tinue the game, thereby sacrificing one dollar so that the
other player can receive more than one dollar.

There is a unique subgame perfect equilibrium, where
each player stops the game after every history.

There are several Nash equilibria, but all of them involve
both players stopping the game at their first opportunity.



For a very long centipede, with payoffs in the hundreds,
will player 1 stop immediately?

Since player 1 starting with C'is not consistent with back-
ward induction, is it reasonable for player 2 to believe that
player 1 will use backward induction in the future?



Stackelberg Competition

With quantity competition, the timing of production mat-
ters. In the Stackelberg Game, firm 1 produces its output
first. Then firm 2 observes g1 before deciding its own
output.

Let us adapt the Cournot model covered earlier. Marginal
production cost is equal to 100, and market inverse de-
mand is given by p = 1000 — g1 — ¢o. (If the expression
is negative, we take the price to be zero.)

Firm 1's strategy set is

S1 = {q1:q1 > 0}.

Firm 2's strategy set is more complicated, reflecting the
extensive-form nature of the game. Firm 2 can let ¢»
depend on gqj.

So> = {functions g2(q1) : g2(q1) > O for each q1 }.



A Nash equilibrium is a profile of strategies, (g7, 95(q1))-

In any SPNE, the subgame following any g1 must be a
NE. In other words, g5(q1) must be a best-response to

q1.

q1
q5(q1) = BR2(q1) = 450 — >

Notice the distinction: Under simultaneous-move Cournot
competition, firm 2 chooses a quantity, which in the NE
is a best response to firm 1's quantity q7.

Under Stackelberg competition, firm 2 chooses a function
describing firm 2's choice at each information set, and in

the SPNE this function is BR>(q1). Firm 2 must best
respond to every possible output from firm 1, not just 7.



Now that we have found the strategy of firm 2 satisfying
sequential rationality, we can work backwards and find
q7. Firm 1's payoff function is

u1(q1,92) = [1000 — g1 — g2]q1 — 100q;.

In a SPNE, firm 1 chooses a best response to firm 2's
strategy function, which we can substitute into the payoff

function:

; d1
u1(q1,95(q1)) = [1000 — g3 — (450 — 5)]@1 — 1004

— [550 — %]ql — 100¢;

- d1
= 450 — —=|qg1.
| 5 la1

Taking the derivative with respect to g7, setting it equal
to zero, and solving for qq yields
450 —q1 = 0
q; = 450.



The SPNE is (450,450 — %4-).

Along the equilibrium path, we see that firm 1 chooses
output of 450, and firm 2 chooses an output of 225. The
corresponding price is 325. This is very different from the

Cournot quantities, (300, 300), and price, 400.

You can check that there is a first mover advantage. Firm
1 receives a higher payoff than firm 2, and a higher payoff
than it would receive under simultaneous play.

Although the game has one SPNE, there are many NE
that violate sequential rationality, for example:

q1 = 64

q2(q1) 418 if g1 = 64
— 1000 otherwise.



