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(1) In the following economy, there are two consumers, two …rms, and two
goods (labor/leisure and food). For i = 1,2, consumer i is endowed with zero
units of food and 1 unit of leisure, !i = (0; 1). Letting xi denote consumer
i’s consumption of food and `i denote consumer i’s consumption of leisure, the
utility function is: log(xi) + log(`i).
Let y1 denote …rm 1’s output of food and L1 denote …rm 1’s labor input (so

that L1 must be nonnegative). Then …rm 1’s production function, the frontier
of its production set, is given by: y1 = AL1, where the parameter A is a positive
real number. Firm 1 is owned by consumer 1.
Let y2 denote …rm 2’s output of food and L2 denote …rm 2’s labor input (so

that L2 must be nonnegative). Then …rm 2’s production function, the frontier
of its production set, is given by: y2 = (L2)1=2. Firm 2 is owned by consumer
2.
(a) De…ne a competitive equilibrium for this economy.
(b) Calculate the competitive equilibrium price vector and allocation, as a

function of the parameter, A. Assume that we have an interior solution, where
both …rms produce output.
(c) For what values of the parameter, A, will we have a corner solution,

where one of the …rms produces zero output?

Answer:
(a) Normalizing the price of food to be 1 and denoting the price of labor

as p, a Competitive Equilibrium is a price vector, (1; p), and an allocation,
(x1; `1; x2; `2; y1; L1; y2; L2), such that:
(i) (x1; `1) solves:

max log(x1) + log(`1)

subject to

x1 + p`1 = p

(x1; `1) ¸ 0:

This relies on the fact that utility is monotonic and …rm 1 has CRS and receives
zero pro…ts at the CE.
(ii) (x2; `2) solves

max log(x2) + log(`2)

subject to

x2 + p`2 = p+ ¼2

(x2; `2) ¸ 0:
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(iii) (y1; L1) solves

max y1 ¡ pL1
subject to

y1 = AL1

L1 ¸ 0:

(iv) (y2; L2) solves

max y2 ¡ pL2
subject to

y2 = (L2)
1=2

L2 ¸ 0:

(v)

x1 + x2 = y1 + y2

`1 + `2 + L1 + L2 = 2:

(Equalities follow from strict monotonicity of utility.)
(b) Starting with the pro…t maximization conditions, for an interior solution

where …rm 1 produces a …nite positive quantity, we must have zero pro…ts:
AL1 ¡ pL1 = 0; or p = A.
Plugging the constraint into the pro…t expression for …rm 2, we have the

unconstrained problem:

max
L2
(L2)

1=2 ¡ pL2:

Setting the derivative equal to zero and solving yields:

L2 =
1

4p2
; y2 =

1

2p
; and ¼2 =

1

4p
:

The …rst order conditions for consumer 1’s utility maximization problem are:

x1 = p`1 (MRS condition)

x1 + p`1 = p (budget)

Solving, we get:

x1 =
p

2
and `1 =

1

2
:

The …rst order conditions for consumer 2 are:

x2 = p`2

x2 + p`2 = p+
1

4p
:
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Solving, we get

x2 =
p

2
+
1

8p
and `2 =

1

2
+

1

8p2
:

To get the …nal allocation, substitute p = A into the demand functions.
Market clearing comes in, not to allow us to solve for the price, but instead to
allow us to determine …rm 1’s input and output. We get:

x1 =
A

2
; `1 =

1

2
; x2 =

A

2
+
1

8A
; `2 =

1

2
+

1

8A2
;

L2 =
1

4A2
; y2 =

1

2A
:

Market clearing for labor/leisure implies

1

2
+ (
1

2
+

1

8A2
) + L1 +

1

4A2
= 2:

Solving for L1, we have

L1 = 1¡ 3

8A2
, and therefore, y1 = A¡ 3

8A
:

(c) Firm 1 will shut down if the previous expression for L1 is negative,
which occurs if A is su¢ciently small. The condition is, A < (38)

1=2. If you
are wondering what the CE would be in this case, we could recalculate the CE,
assuming …rm 1 does not produce. The equilibrium wage will end up being
p = (38 )

1=2, and indeed …rm 1 does best not to produce.

(2) In the following economy, there are 2 consumers, one good, x, and 2
states of nature, a and b. The probabilities of the states are A and B, where A
+ B = 1. The utility functions and endowments of the consumers are given by

V1 = A log(xa1) +B log(x
b
1)

(!a1; !
b
1) = (2; 0)

V2 = Axa2 +Bx
b
2

(!a2; !
b
2) = (1; 1)

(a) Draw an Edgeworth box diagram, indicating the endowment point and
the contract curve.
(b) Calculate the C.E. of this economy, as a function of the parameters,

A and B. Be careful to remember the constraint that consumption must be
nonnegative.
(c) Interpret the C.E. as an insurance market. In other words, who is o¤ering

the insurance, what is the amount of the premium, what is the amount of the
claim in the event of an “accident,” and how does the premium compare with
the expected value of the claim?
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Answer:
(a) The contract curve follows the 45-degree line from (0,0) to (1,1), then

follows the top of the box from (1,1) to (3,1). On the ‡at segment, marginal
rates of substitution are not equal, but these points are Pareto optimal.
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(b) To calculate the CE, we …rst notice that the probabilities will determine
whether we have an interior solution, with all consumptions positive, or a corner
solution, with xb2 = 0. Let us calculate the demand function for consumer 1.
Normalizing pb = 1, the …rst order conditions are

Axb1
Bxa1

= pa

paxa1 + x
b
1 = 2pa:

Solving, we have

Axb1
B

+ xb1 = 2pa; or

xb1 =
2Bpa

A+B
= 2Bpa:

xa1 =
Axb1
Bpa

= 2A:

If we have an interior solution, consumer 2’s marginal rate of substitution must
equal the price ratio, so

A

B
= pa:
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The allocation is found by plugging the price to determine consumer 1’s con-
sumption, and using market clearing to determine consumer 2’s consumption.
We have

xa1 = 2A; xb1 = 2A;

xa2 = 3¡ 2A; xb2 = 1¡ 2A:
This interior equilibrium applies if consumption is nonnegative, A · 1

2 .
If we have A > 1

2 , then we have a corner solution. Consumer 2’s demand is
determined by the two equations,

xb2 = 0; and

paxa2 + x
b
2 = pa + 1:

Solving, we have

xa2 =
pa + 1

pa
:

Using market clearing for state b, we have:

2Bpa + 0 = 1; so

pa =
1

2B
:

The allocation is:

xa1 = 2A; xb1 = 1;

xa2 = 1 + 2B = 3¡ 2A; and xb2 = 0:

(c) For the interior equilibrium, consumer 2 (who is risk neutral) winds up on
the same indi¤erence curve as his initial endowment. He provides insurance to
consumer 1, at fair odds. To see this, the insurance premium paid by consumer
1 is her endowment in the good state (no accident), less her consumption:

premium = 2¡ 2A = 2B:
In the bad state, she submits a claim, where her …nal consumption equals her
endowment plus her claim, minus her premium:

2A = 0 + claim ¡ 2B; so
claim = 2:

The premium is 2B, and the expected claim is 2 multiplied by the probability
of submitting the claim, B, or 2B.

(3) Consider the following exchange economy with two von Neumann-Morgenstern
expected utility maximizers, two states of nature, s = ® and s = ¯, and one
commodity per state. We have

Vi =
X
s=®;¯

¼sui(x
s
i );
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where Vi is consumer i’s utility function, ¼s is the probability of state s, and
xsi is the consumption of consumer i in state s. Assume that each ui is twice
continuously di¤erentiable, and that we have u0i > 0 and u

00
i < 0. Also assume

that the initial endowments, !si , are strictly positive for each consumer in each
state.
(a) If the following statement is true, then carefully argue why, and if it

is false, then present a counterexample: If the initial endowments of state-
contingent commodities are Pareto optimal for ¼® = ¼¯ = 1

2 , then the endow-
ments are Pareto optimal for any other speci…cation of the probabilities.
(b) De…ne a competitive equilibrium for this economy.
(c) Does this economy satisfy the assumptions required to apply the Second

Welfare Theorem?

Answer:
(a) This statement is true. Because of our assumptions of di¤erentiability,

etc., Pareto optimality at the original probabilities implies

1
2
1
2

@u1(!
®
1 )

@x®1

@u1(!
¯
1 )

@x¯1

=
1
2
1
2

@u2(!
®
2 )

@x®2

@u2(!
¯
2 )

@x¯2

:

It follows that

¼®
¼¯

@u1(!
®
1 )

@x®1

@u1(!
¯
1 )

@x¯1

=
¼®
¼¯

@u2(!
®
2 )

@x®2

@u2(!
¯
2 )

@x¯2

holds,

which implies that the allocation is Pareto optimal for the new endowments.
(b) A CE is a price vector, (p®; p¯), and an allocation, (x®1 ; x

¯
1 ; x

®
2 ; x

¯
2 ), such

that
(i) (x®1 ; x

¯
1 ) solves

max¼®u1(x
®
1 ) + ¼¯u1(x

¯
1 )

subject to

p®x®1 + p
¯x¯1 = p®!®1 + p

¯!¯1
x1 ¸ 0;

(ii) (x®2 ; x
¯
2 ) solves

max¼®u2(x
®
2 ) + ¼¯u2(x

¯
2 )

subject to

p®x®2 + p
¯x¯2 = p®!®2 + p

¯!¯2
x2 ¸ 0;

(iii)

x®1 + x
®
2 = !®1 + !

®
2

x¯1 + x
¯
2 = !¯1 + !

¯
2 :
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(c) Because we have u0i > 0 for each consumer, strict monotonicity is sat-
is…ed. Because we also have u00i < 0 for each consumer, the Bernoulli util-
ity functions, and the overall utility functions Vi, are strictly concave. Strict
concavity implies strict quasiconcavity. Also, the initial endowments, !si , are
strictly positive for each consumer in each state. Thus, all of the assumptions
required to apply the SFTWE are satis…ed.
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