
1 General Equilibrium

1.1 Pure Exchange Economy

 goods,  consumers

agent : preferences < or utility  : R+ → R

initial endowments,  ∈ R+

consumption bundle,  = (
1
  · · ·   ) ∈ R+

Definition 1 An allocation,  = (1 · · ·   · · ·  ) ∈
R+ is feasible if

P
=1

 ≤
P
=1





An Edgeworth Box describes all of the feasible, non-

wasteful allocations (for  = 2)



Prices,  = (1 · · ·  )

Consumer Optimization

max


() s.t.  ·  ≤  · 

 ≥ 0

If  is continuous, the UMP has a solution for all  ∈
R++

If  is strictly quasi-concave, for all  ∈ R++ the opti-
mization problem gives rise to a demand function, ( ·
)



Assumptions

(1) Each  is continuous, strictly quasi-concave (upper

contour sets are convex sets) and satisfies local nonsa-

tiation (for any bundle, there is a nearby bundle yielding

higher utility)

(10) Strict monotonicity replaces local non-satiation.

(2)  À 0

(3) free disposal (not needed if each  is monotone, rules

out negative prices)



Definition 2 A competitive equilibrium is a pair (∗ ∗)
such that

1. given ∗, each ∗ solves the consumer optimization
problem

2. markets clear:
P
=1

∗ ≤
P
=1

 ( equations)

Alternatively, we can combine the two conditions using

the notation (  · ) for the utility maximizing de-
mand function. A CE is a pair, (∗ ∗), such that
P
=1

(
∗ ∗ ·) ≤

P
=1

 holds, where 
∗ is determined

by ∗ = (
∗ ∗ · ).





Fact: ( ·) is homogeneous of degree zero in prices.
(It requires assumption (1) to ensure (  · ) is a
function.)

We can, without loss of generality, normalize prices: 1 =

1 (as long as the good is not a free good) or  ∈ −1.

Definition 3 The price simplex, −1, is

{ ∈ 
+ |

P
=1

 = 1}.



Walras’ Law Assuming local nonsatiation, for any  in

−1 , we have  · () = 0, where () is excess de-

mand,

() =
P
=1
[(  · )− ]

Proof of Walras’ Law

 · () =  · [
P
=1

(  · )−
P
=1

] =

P
=1
[ · (  · )−  · ]

Since each  satisfies local nonsatiation, the budget con-

straint is satisfied with equality.

∴ ∀  · (  · )−  ·  ¥

Note: If utility is not continuous or if some good has a

zero price, then excess demand might not be well defined.

If utility is not strictly quasi-concave, then excess demand

might be a correspondence, in which can all selections

from the correspondence satisfy  · () = 0.



Fact: (Free Goods) Assuming (1) and (3), in a compet-

itive equilibrium, either (∗) = 0 or [if (∗)  0]

∗ = 0.

Proof

By free disposal, each ∗ ≥ 0. In any C.E. (∗) ≤ 0
. By Walras’ Law,

0 = ∗ · (∗) =
P
=1

∗(∗)

Suppose it is possible to have (∗)  0 and ∗  0

for some commodity . Then the  term in the above

sum is negative. All other terms are non-positive, a con-

tradiction.

Therefore, either (∗) = 0 or ∗ = 0 for all . ¥



Equilibrium Conditions: Counting Equations and Un-

knowns

Solve each consumer’s UMP for demand functions, and

(if utility is strictly monotonic), we have:

 market clearing equations (where supply equals de-

mand)

1 equation is redundant, by Walras’ law. If  =  in

 − 1 markets, the Kth term in
P
=1

∗(∗) is also
zero.

 components of the price vector.

1 of the prices can be normalized, so there are  − 1
unknowns to solve for.



1.2 Existence of C.E.

Price normalization: replace b with  given by
 = b

P
0=1

b0

This puts prices in the simplex, −1, where −1 =

{ ∈ R+ |
P
=1

 = 1}.

The key Mathematical result:

1.3 Brouwer’s Fixed Point Theorem

If  is a convex, compact set and  is a continuous

function from  to itself,  :  → , then  has a fixed

point. That is, there exists  ∈  such that  = ().



Note:

1. the simplex, −1, is a convex, compact set.
(Reason why we normalized prices so that they were

bounded.)

2. If  is not convex:

rotate by 90◦ - no fixed point. ex.  = [0 1
4
] ∪ [3

4
 1]

and () = 1− 

3. If  is not closed: () = 
2 and  ∈ (0 1] = 



4. If  is not bounded: () = + 1 and  = R

5.  is not continuous

 : unit circle. outside of donut rotates by 90◦, donut

hole is mapped to outside the hole.



Proof of Brouwer’s Thm is very difficult, and the 2-good

one dimensional case in Varian is misleadingly simple.



1.4 Existence of C.E.

Under assumptions (10)− (2), there exists a C.E. (Argu-
ment assumes () exists and is continuous, so we will

have to patch the argument to deal with prices that can

be zero.)

Proof

Let  ∈ −1 and consider the map, → e
e = +max(0())

1+
P

0=1
max(0

0
())

,

note: it will not work to use the simpler function,  +

()

Since we have e ≥ 0 and
P
=1

e = 1, then e ∈ −1.

The function  → e is continuous since composition of
continuous functions are continuous.



Apply Brouwer’s theorem: there exists ∗ s.t.

∗ = ∗+max(0(∗))

1+
P

0=1
max(0

0
(∗))

for  = 1 · · · .

Cross multiply: for all ,

∗
P
0=1

max(0 0(∗)) = max(0 (∗))

multiply by (∗)

(∗)∗
P
0=1

max(0 0(∗)) = (∗)max(0 (∗))



sum over 

[
P
=1

∗(∗)][
P
0=1

max(0 0(∗))] =

[
P
=1

(∗)max(0 (∗))]

from Walras’ Law,  = 0.

Each term of  sum is either 0 or [(∗)]2, but for
the sum to be 0, each term is therefore 0,max(0 (∗)) =
0 for ∀

∴ (∗) ≤ 0 for all , which implies ∗ is a C.E.
¥



This proof (from Varian) assumes that () is a continu-

ous function, but this assumption generally does not hold

at the boundary of the simplex.

• demand can be infinite

• we can’t forget about zero prices, because Brouwers’
theorem requires  to be closed

1.4.1 Existence "Patch"

Let () be the solution to the bounded utility max

problem:

max


() s.t.  ·  ≤  · 

 ≥ 0, 

 ≤

P
=1



 + 1 for  = 1 · · · 

Note: () is a continuous function, even at some zero

prices.



Claim: If (

 )
() 

P
=1



 + 1 for ∀ (so artificial

bound is not binding), then the bounded demand equals

the demand without the artificial constraint,

() = ()

Proof of Claim

By strict quasi-concavity, a local optimum in the (un-

bounded) utility max problem is a global optimum in that

problem.

() is a local optimum in the unbounded problem, be-

cause the extra constraint is slack in the bounded prob-

lem, so the set of local bundles satisfying the constraints

is the same in both problems. It therefore is a global

optimum in the unconstrained problem.



Constraint binds Constraint does not bind



Does () satisfy Walras’ Law?

Strict monotonicity implies  · () = 0.

replace  for  in the mapping e.



Since () is continuous for all prices in the simplex, we

can use it instead of () in the mapping to conclude

there is a fixed point. Since () satisfies Walras’ Law,

we can go through the previous algebra to conclude that

the fixed point satisfies (∗) ≤ 0 for all .

Since aggregate bounded excess demand is non-positive,

this implies the strict inequality,
P
 


 (

∗)  P
 


+

1. Therefore, we have (

 )
(∗) 

P
=1



 + 1 for ∀.

From our claim, (
∗) = (

∗) holds, so (∗) =
(∗).

Therefore, ∗ is a C.E. price.



1.5 Pareto Optimality (efficiency)

Definition 4 A feasible allocation, , is weakly P.O. if

there is no feasible allocation, 0 such that all agents
strictly prefer 0 to : (0)  () for ∀.

Definition 5 A feasible allocation, , is strongly P.O. if

there is no feasible allocation, 0 such that (0) ≥
() for all  and (

0
)  () for some .

: strongly P.O. =⇒ : weakly P.O.

If you can’t make one person strictly better off, you can’t

make everyone strictly better off.



Theorem 6 If assumption (10) holds (strict monotonic-
ity), then  is weakly P.O. =⇒  is strongly P.O.

Proof

Suppose  is not strongly P.O., but is weakly P.O.

∃ 0 s.t. (0) ≥ () for all  and

(
0
)  () for some .



00, defined below, is a feasible allocation:


00
 = 0

00 = 0 +
1−
−1

0
 for  6= 

By continuity,  is still strictly better off for  close enough

to 1.

By monotonicity, all other consumers are strictly better

off.

 is not weakly P.O., a contradiction.

∴  is strongly P.O. ¥



1.6 First Fundamental Theorem of Wel-

fare Economics

FFTWE - Assume that all consumers satisfy local non-

satiation. Let (∗ ∗) be a C.E. Then, ∗ is strongly
P.O.

Proof

Suppose ∗ is not strongly P.O. There exists a dominating
allocation  such that

() ≥ (
∗
 ) for all 

()  (
∗
) for some .

From local nonsatiation, ∗ ·  ≥ ∗ · for all . (Oth-
erwise, you can afford an open neighborhood around ,

so there is some 0 such that ∗ · 0 ≤ ∗ ·  and
(

0
)  () ≥ (

∗
 ) contradicts the fact that 

∗


is demanded.)



∗ ·   ∗ · 

Otherwise,  is in the budget set and strictly preferred

to ∗

Sum these inequalities over  = 1 · · ·  ,

∗ ·
P
=1
( − )  0

Therefore, for some commodity , we have

()
P
=1
(


 − 


 )  0.

P
=1



 

P
=1



 , so  is not feasible. It contradicts  is

a dominating allocation (feasible)

∴ ∗ is strongly P.O. ¥



Remark 7 The argument does not need quasi-concavity

or continuity. Without these assumptions, we cannot

guarantee existence, but if a CE exists, it is PO.

Remark 8 Implicitly assumes that  and are finite, or

at least that the value of aggregate resources is finite. If 

and are infinite, we might not be able to conclude that

aggregate consumption exceeds endowment for some .

(The overlapping generations model has a CE that is not

PO.)



SFTWE - Under assumptions (10), every P.O. allocation
∗ À 0 is a C.E. for the economy with endowments

 = ∗ . (no need for free disposal if monotonicity holds)

Proof

Define  = { ∈ R+ : ()  (
∗
 )} and upper

contour set,  =
P
=1

 = { ∈ R+ :  =
P
=1



 ∈ }

 is a commodity bundle, not an excess demand.



Since each  is a convex set,  is also convex.

To see this, suppose  0 ∈ . Then there exist al-

locations (not necessarily feasible)  and 0 such that
 ∈ , 

0
 ∈ ,  =

P
=1

 and 
0 =

P
=1

0 hold.

Now consider 00 =  + (1 − )0. We need to show
that 00 ∈ . Let 00 =  + (1− )0 for all . We
know

X
=1

00 =



X

=1

 + (1− )
X
=1

0 =  + (1− )0 = 00

(
00
 )  (

∗
 ) (by strict quasi-concavity).



Since ∗ is P.O.,
P
=1

∗ ∈ .



1.6.1 Separating Hyperplane Theorem

If  ⊂ R and  ⊂ R are disjoint, convex sets (non-

empty also), there exists a linear functional  6= 0 such

that  ·  ≥  ·  for all  ∈  and  ∈ .



Let  ≡ ,  = {
P
=1

∗ }: single point.

From the Sep. Hyp. Th.,  ·  ≥  ·
P
=1

∗ for ∀ ∈ 

[Equation 1]  · ( −
P
=1

∗ ) ≥ 0 for ∀ ∈ 

(Step 1)  ≥ 0,  ≡ (0 · · ·  0 1|{z}
 component

 0 · · ·  0)

in R

Proof

P
=1

∗+ ∈  by monotonicity from (Eq 1), · ≥ 0
for  = 1 · · ·  which implies  ≥ 0 ¥



(Step 2) If ()  (
∗
), then  · ≥  ·∗ (holds

for all )

Proof

Construct a bundle in  by taking a little away from 

and giving it to other agents

0 = (1− )

0 = ∗ +


−1 for  6= 

Monotonicity implies (
0
)  (

∗
 ) for  6= . Conti-

nuity implies (
0
)  (

∗
) for  close to 0.

∴
P
=1

0 ∈ , so from (Eq 1),  ·
P
=1

0 ≥  ·
P
=1

∗

Hence,  · [(1− )+ +
P
6=

∗ ] ≥  · [∗+
P
6=

∗ ]

∴  ·  ≥  · ∗ ¥



(Step 3) For all  ()  (
∗
) implies  ·  

 · ∗

Proof

From Step 2 and ()  (
∗
), we have  ·  ≥

 · ∗. Suppose the conclusion of Step 3 is false. Then
it must be that  ·  =  · ∗.

By continuity, ()  (
∗
) for some  close to 1

(different  from step 2).

Again using Step 2,  ·  ≥  · ∗ =  · 

∴ (1− ) ·  ≤ 0 =⇒  ·  ≤ 0

But, ∗ À 0 implies  · ∗  0

∴  ·   0 a contradiction ¥



Step 3 says that anything preferred to ∗ is not afford-
able. Therefore, ∗ is utility maximizing (

∗
 is affordable

since it is the initial endowment). Since ∗ is feasible,
utility maximization and market clearing are satisfied, so

( ∗) is a C.E. ¥



1.6.2 Maximize a weighted sum of utilities

(P) max
P
=1

() s.t.
P
=1



 ≤

P
=1



 for  =

1 · · · 

Assume that utility is differentiable, strictly concave, and

strictly monotonic.

Lagrangeans for (P): 

Necessary and sufficient FOC:

FOC (P): [ w.r.to 

 ] : 







=  for ∀ and P



 =P








Claim: Any ∗À 0 that solves (P) is Pareto optimal.

Proof

First, note that a solution to (P) must be feasible. If some

feasible 0 dominates ∗, then it satisfies the constraint
and yields a higher value to the objective. ¥

Claim: Any P.O. allocation ∗ À 0 solves (P) for some

weights, .



Proof

By the SFTWE, ∗ is a C.E. allocation for the economy
with endowments,  = ∗ , for some price vector ∗

∴ ∗ solves (for all )

(C: consumer’s problem)

max () s.t.
P

∗ ≤

P

∗∗ and 


 ≥ 0 for ∀.

FOC (C):
(

∗
 )





= b∗ for some b
We want to find  and {}=1 that solve the necessary
and sufficient FOC (P), with  = ∗ for ∀.

Let  =
1b and  = ∗.

FOC (C), which we know is true, implies FOC (P), which

we needed to show.¥



Claim: A feasible allocation, ∗À 0 is P.O. iff
P
=1

∗ =
P
=1

 and

(
∗
 )





(
∗
 )


0


is the same for all .

Proof=⇒

If ∗ is P.O., it solves FOC (P) for some weights. From

FOC (P), it follows that

(
∗

)





(
∗

)


0


= 


0 for ∀ , and

monotonicity implies
P
=1

∗ =
P
=1

.



Proof⇐

Suppose = for ∀ . Then, define
(

∗

)





(
∗

)

1


≡

e for ∀ .
Then, ∗ = e is a CE price, because FOC (C) are satisfied
for b = (

∗
 )

1
, because

(
∗
 )





= b∗ becomes
(

∗
 )





=
(

∗
 )

1

e

Thus, (∗ e) is a C.E. for the economy with  = ∗ .

∴ By the FFTWE, ∗ is P.O. ¥


