1 General Equilibrium

1.1 Pure Exchange Economy

K goods, n consumers
agent 1. preferences >=; or utility u; : Rff — R
initial endowments, w; € Rf

consumption bundle, z; = (z1, - - ,a:{() e Rf

1?

Definition 1 An allocation, x = (x1, - ,x;,

RQK is feasible if

mn mn
> x; < Y w;
i—1 i—1

7xn) S



An Edgeworth Box describes all of the feasible, non-
wasteful allocations (for n = 2)
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Prices, p = (pt, - - -, p¥*)
Consumer Optimization

max ui(z;) st p-x; <pew;
1

If u; is continuous, the UMP has a solution for all p €
RK
e

If u; is strictly quasi-concave, for all p € Ri& the opti-
mization problem gives rise to a demand function, x;(p, p-

w;)



Assumptions

(1) Each w; is continuous, strictly quasi-concave (upper
contour sets are convex sets) and satisfies local nonsa-
tiation (for any bundle, there is a nearby bundle yielding
higher utility)

(1’) Strict monotonicity replaces local non-satiation.
(2) w; >0

(3) free disposal (not needed if each wu; is monotone, rules
out negative prices)



Definition 2 A competitive equilibrium is a pair (p*, x*)
such that

1. given p*, each z7 solves the consumer optimization
problem

n n
2. markets clear: Y x7 < > w; (K equations)
1=1 1=1

Alternatively, we can combine the two conditions using
the notation x;(p, p - w;) for the utility maximizing de-

mand function. A CE is a pair, (p*,z*), such that
n n
> xi(p*, p*w;) < 3° wj holds, where z* is determined

1=1 1=1

by 7 = z;(p*, p* - w;).



Consumer 2

Consumer 1 p>>0 z=0

Consumer 2 Consumer 2

7R\ |

Consumer 1 pt =0,z'=0 Consumer 1 p=0z<0
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Fact: z;(p, p-w;) is homogeneous of degree zero in prices.
(It requires assumption (1) to ensure z;(p,p - w;) is a
function.)

We can, without loss of generality, normalize prices: pl =

1 (as long as the good is not a free good) or p € SE—1

Definition 3 The price simplex, S¥—1 s

K .
{p e RE | > =1}
J:



Walras' Law Assuming local nonsatiation, for any p in
SE=1 e have p - z(p) = 0, where z(p) is excess de-

mand,

1=

z(p) = fﬁl[%‘(pap - w;) — wil.

Proof of Walras' Law

p2p) =p- [Loip.p-wi) — L] =

g:l[P - zi(p,p - wi) — - wil

Since each u; satisfies local nonsatiation, the budget con-
straint is satisfied with equality.

Note: If utility is not continuous or if some good has a
zero price, then excess demand might not be well defined.
If utility is not strictly quasi-concave, then excess demand
might be a correspondence, in which can all selections
from the correspondence satisfy p - z(p) = 0.



Fact: (Free Goods) Assuming (1) and (3), in a compet-
itive equilibrium, either zJ(p*) = 0 or [if 2J(p*) < 0]
pl* = 0.

Proof

By free disposal, each p/* > 0. In any C.E. 2J(p*) < 0
. By Walras’' Law,

K . .
)=

Suppose it is possible to have zJ(p*) < 0 and p/* > 0
for some commodity 5. Then the jth term in the above
sum is negative. All other terms are non-positive, a con-
tradiction.

Therefore, either 2J(p*) = 0 or p/* = 0 for all 3. _



Equilibrium Conditions:  Counting Equations and Un-
knowns

Solve each consumer's UMP for demand functions, and
(if utility is strictly monotonic), we have:

K market clearing equations (where supply equals de-
mand)

1 equation is redundant, by Walras’ law. If D = § in

K ..
K — 1 markets, the Kth term in 3° p/*27(p*) is also

J=1
ZEro.

K components of the price vector.

1 of the prices can be normalized, so there are K — 1
unknowns to solve for.



1.2 Existence of C.E.

Price normalization: replace p with p given by

pi = 7
I/?\j/
j'=1
This puts prices in the simplex, SE—1 \where SE-1 —

K .
{p e RE | > =1}
j:

The key Mathematical result:

1.3 Brouwer’s Fixed Point Theorem

If S is a convex, compact set and f is a continuous
function from S to itself, f : S — S, then f has a fixed
point. That is, there exists x € S such that z = f(x).



Note:

1. the simplex, SK_l, IS a convex, compact set.
(Reason why we normalized prices so that they were

bounded.)

2. If S is not convex:

rotate by 90° - no fixed point. ex. S = [0, %] U [%, 1]
and f(x) =1—=

3. If S'is not closed: f(xz) =5 and z € (0,1] =S




4, If S is not bounded: f(z) =x+4+1and S =R

b. f is not continuous

i

2

S : unit circle. outside of donut rotates by 90°, donut

hole is mapped to outside the hole.



Proof of Brouwer's Thm is very difficult, and the 2-good

one dimensional case in Varian is misleadingly simple.

Must cross
the 45° line




1.4 Existence of C.E.

Under assumptions (1’) — (2), there exists a C.E. (Argu-
ment assumes z(p) exists and is continuous, so we will
have to patch the argument to deal with prices that can
be zero.)

Proof
Let p € S5 =1 3nd consider the map, p — D,

§ = P max(027(p)

1+ 3 max(O,zj/(p)),
ji=1

note: it will not work to use the simpler function, pi +
21(p)-

Since we have p/ > 0 and > pi =1, then p € S©*7-.
J=1
The function p — p is continuous since composition of

continuous functions are continuous.



Apply Brouwer’s theorem: there exists p* s.t.

o p* +max(0 2(p*)) forj=1,---, K.

1+ Z max(0,27' (p*))
j'=1

Cross multiply: for all 7,

pI* Zl max (0, z7'(p*)) = max(0, z7(p*))
=

multiply by zJ(p*)

i (p*)pJ* max(0, 27’ (p*)) = 2 (p*) max(0, 27 (p*))
7=



sum over j

K . K
[ X p7*2i(p*)] 22 max(0, 27 (p*))] =
j=1 J'=1

K
[ 22 29(p™) max(0, 27 (p*))]
j=1

from Walras' Law, LHS = 0.

Fach term of RHS sum is either 0 or [27(p*)]?, but for
the sum to be 0, each term is therefore 0, max(0, z7(p*)) =
0 for Vj

z3(p*) < 0 for all j, which implies p* is a C.E.
H



This proof (from Varian) assumes that z(p) is a continu-
ous function, but this assumption generally does not hold
at the boundary of the simplex.

e demand can be infinite

e we can't forget about zero prices, because Brouwers’
theorem requires .S to be closed

1.4.1 Existence "Patch"

Let ac,i’(p) be the solution to the bounded utility max
problem:

max ui(z;) st p-x; <pew;
1
n .
x; > 0, xgghzlw%—klfor]: : , K

Note: wi’(p) is a continuous function, even at some zero
prices.



Claim: |If (azj)b(p) < Z wh + 1 for Vj (so artificial
=1

bound is not binding), then the bounded demand equals
the demand without the artificial constraint,

z2(p) = z(p)

Proof of Claim

By strict quasi-concavity, a local optimum in the (un-
bounded) utility max problem is a global optimum in that
problem.

wi’(p) is a local optimum in the unbounded problem, be-
cause the extra constraint is slack in the bounded prob-
lem, so the set of local bundles satisfying the constraints
is the same in both problems. It therefore is a global
optimum in the unconstrained problem.



AN
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Constraint binds Constraint does not bind



Does zP(p) satisfy Walras' Law?

Strict monotonicity implies p - z%(p) = 0.

n . J
ZC’)_J-I-l
1

Ji—

replace 2P for z in the mapping p.



Since z(p) is continuous for all prices in the simplex, we
can use it instead of z(p) in the mapping to conclude
there is a fixed point. Since z°(p) satisfies Walras' Law,
we can go through the previous algebra to conclude that
the fixed point satisfies z7:(p*) < 0 for all j.

Since aggregate bounded excess demand is non-positive,
this implies the strict inequality, >, az‘z’b(p*) <> w{ﬁ—

. n .
1. Therefore, we have (a:;Z)b(p*) < > wy + 1 for Vj.
h=1

From our claim, x,?(p*) = x;(p*) holds, so z(p*) =
2 (p*).

Therefore, p* is a C.E. price.



1.5 Pareto Optimality (efficiency)

Definition 4 A feasible allocation, x, is weakly P.O. if
there is no feasible allocation, x' such that all agents
strictly prefer ' to x: up(x}) > up(xp) for Vh.

Definition 5 A feasible allocation, x, is strongly P.O. if
there is no feasible allocation, «' such that up(x}) >
up(zp) for all h and u;(x}) > wi(x;) for some i.

x: strongly P.O. — x: weakly P.O.

If you can’'t make one person strictly better off, you can't
make everyone strictly better off.



Theorem 6 If assumption (1') holds (strict monotonic-
ity), then x is weakly P.O. = x is strongly P.O.

Proof

Suppose x is not strongly P.O., but is weakly P.O.

3 &’ st up(x)) > up(xy) for all b and
wi(xt) > w;(z;) for some .



x!. defined below, is a feasible allocation:

/"

o
T, —Hmi

x%zaz}b—ki;_?a:éforh;éi

By continuity, ¢ is still strictly better off for 8 close enough
to 1.

By monotonicity, all other consumers are strictly better
off.

x is not weakly P.O., a contradiction.

x is strongly P.O. H



1.6 First Fundamental Theorem of Wel-

fare Economics

FFTWE - Assume that all consumers satisfy local non-
satiation. Let (p*,x*) be a C.E. Then, =* is strongly
P.O.

Proof

Suppose x* is not strongly P.O. There exists a dominating
allocation x such that

wi(x;) > ui(x;) for all 4

up(zp) > up(x}) for some h.

From local nonsatiation, p* - x; > p* - w; for all 2. (Oth-
erwise, you can afford an open neighborhood around «;,
so there is some  such that p* - z; < p* - w; and
wi(xl) > wui(x;) > ui(x}) contradicts the fact that z
is demanded.)



p*-xp > pF - wy

Otherwise, x;, is in the budget set and strictly preferred
to x}.

Sum these inequalities over 1 = 1,--- | n,

mn
p* - > (zp, —wp) >0

=1

Therefore, for some commodity 7, we have
N = (] J
(pﬂ)i;:l(acz- —w;) > 0.

n . n .
> azg > > wg, so x is not feasible. It contradicts x is
1=1 1=1

a dominating allocation (feasible)

x* is strongly P.O. |



Remark 7 The argument does not need quasi-concavity
or continuity. Without these assumptions, we cannot
guarantee existence, but if a CE exists, it is PO.

Remark 8 Implicitly assumes that n and K are finite, or
at least that the value of aggregate resources is finite. Ifn
and K are infinite, we might not be able to conclude that
aggregate consumption exceeds endowment for some j.

(The overlapping generations model has a CE that is not
PO.)



SFTWE - Under assumptions (1’), every P.O. allocation
x* > 0 is a C.E. for the economy with endowments
w; = x;. (no need for free disposal if monotonicity holds)

Proof

Define UC; = {x; € Rﬁ_{ s ui(x;) > wi(x))} and upper
n mn
contour set, UC = Y UC; = {z € Ri{ Lz = > xy,
1=1 =1
T; € UCZ}

1=

z i1s a commodity bundle, not an excess demand.



Since each UC; is a convex set, UC' is also convex.
To see this, suppose z,z’ € UC. Then there exist al-

locations (not necessarily feasible) x and z’ such that
n

n
z; € UC;, z € UC;, z = Y x; and 2/ = 3« hold.
=1 =1

1 1=

Now consider 2z = Az + (1 — A\)z’. We need to show
that 2" € UC. Let 2! = Ax; + (1 — N)a, for all i. We
know

mn n n

Yal = A z+ 1 -X)) z =+ (1-N) =27,
1=1 1=1 1=1
ui(z) > wui(x}) (by strict quasi-concavity).



* #
X +x2

Since z* is P.O., % z; ¢ UC.
1=1



Q)) @ )

1.6.1 Separating Hyperplane Theorem

If A C RE and B ¢ R¥ are disjoint, convex sets (non-
empty also), there exists a linear functional p # 0 such
that p-x > p-yforallx € Aand y € B.



n
Let A=UC, B={) x}: single point.
1=1

n
From the Sep. Hyp. Th.,p-2>p- > x7 for V2 € UC
1=1

n
[Equation 1] p-(z— >z )>0forvVzc UC
1=1

(Stepl)sz,eﬂ'E(O,---,O, \];./ 707”'70)
4t component

in RE

Proof

n

> x;+ei € UC by monotonicity from (Eq 1), p-ei > 0
1=1
fory =1,---, K which implies p > 0 H



(Step 2) If up(yp) > up(zy), then p-y;, > p-x7 (holds
for all h)

Proof

Construct a bundle in UC' by taking a little away from h
and giving it to other agents

Yy = (1= 0)yp,
y—ac*—i— 1yhforh7£z

Monotonicity implies u;(y.) > w;(z}) for h # i. Conti-
nuity implies up(y7,) > up(z7) for 6 close to 0.

ZyZEUC' so from (Eq 1), p - Zyz>p Za:

1= =1 =1

Hence, p- [yp(1 —0) +yn0+ > zi| > p-[z] + 3 z7]
hti iZh

p-yp=p-xz; N



(Step 3) For all h, up(yn) > up(xy) implies p - yp, >
p-xy.

Proof

From Step 2 and up(yp) > up(x7), we have p - yp >
p - T3 . Suppose the conclusion of Step 3 is false. Then
it must be that p-yp, = p- 7.

By continuity, up,(0yp) > up(x}) for some 6 close to 1
(different 6 from step 2).

Again using Step 2, p- Oyp, > p-x}y = p -y,
S(1=0)p-y, <0 —  p-yp, <0

But, =3 > 0 implies p - x; > 0

p -y, > 0, a contradiction |



Step 3 says that anything preferred to x} is not afford-
able. Therefore, 7 is utility maximizing (z7 is affordable
since it is the initial endowment). Since z* is feasible,
utility maximization and market clearing are satisfied, so

(p,x*) is a C.E. H



1.6.2 Maximize a weighted sum of utilities

(P) max > ajui(z;) st Yol < Ywl forj =
1=1 1=1 1=1
1,--- K

Assume that utility is differentiable, strictly concave, and
strictly monotonic.

Lagrangeans for (P): A
Necessary and sufficient FOC:

FOC (P): [ w.r.to azg] : aiaui = \ for Vj and Zm‘g =

o J
J




Claim: Any x* > 0 that solves (P) is Pareto optimal.
Proof
First, note that a solution to (P) must be feasible. If some

feasible ' dominates =*, then it satisfies the constraint
and yields a higher value to the objective. H

Claim: Any P.O. allocation x* > 0 solves (P) for some
weights, a.



Proof

By the SFTWE, x* is a C.E. allocation for the economy
with endowments, w; = x7, for some price vector p*.

. x; solves (for all 7)
(C: consumer’s problem)

max u;(x;) s.t. Zp*jazg < Zp*jaz;kj and :r;g > 0 for Vj.
J J

Ouy(x7)
(9:13‘@7

— \;p*J for some \;.

FOC (C):

We want to find a; and {)\j}JKzl that solve the necessary
and sufficient FOC (P), with x; = x for Vi.

Let a; = % and N = p*J.

1

FOC (C), which we know is true, implies FOC (P), which
we needed to show.ll



Claim: A feasible allocation, z* > 0 is P.O. iff % Ty =
4

7

n
> w; and
1=1
c%cg
Ou;(z})
o’

1

Is the same for all 7.
Proof—

If * is P.O., it solves FOC (P) for some weights. From
: o bV :

FOC (P), it follows that Wi‘f) = 7 for Vi , and
(9le

n n
monotonicity implies Y x7 = > w;.
1=1 1=1



Proof<«
8U@($;)
8xj

1 p—

Suppose M RS; = M RS}, for Vi, h. Then, define )
axlz

Xj for V7, J.

Then, p* = Xis a CE price, because FOC (C) are satisfied

~ Ow: (z* O (z* ~ .
for \; = ul(fz), because Ouila) _ A;p* becomes

i i

Oui(w7) _ Oui(a);

1
ax‘g 3$Z~

Thus, (z*, ) is a C.E. for the economy with w; = T;.

By the FFTWE, x* is P.O. |



