
1 General Equilibrium

1.1 Pure Exchange Economy

 goods,  consumers

agent : preferences < or utility  : R+ → R

initial endowments,  ∈ R+

consumption bundle,  = (
1
  · · ·   ) ∈ R+

Definition 1 An allocation,  = (1 · · ·   · · ·  ) ∈
R+ is feasible if

P
=1

 ≤
P
=1





An Edgeworth Box describes all of the feasible, non-

wasteful allocations (for  = 2)



Prices,  = (1 · · ·  )

Consumer Optimization

max


() s.t.  ·  ≤  · 

 ≥ 0

If  is continuous, the UMP has a solution for all  ∈
R++

If  is strictly quasi-concave, for all  ∈ R++ the opti-
mization problem gives rise to a demand function, ( ·
)



Assumptions

(1) Each  is continuous, strictly quasi-concave (upper

contour sets are convex sets) and satisfies local nonsa-

tiation (for any bundle, there is a nearby bundle yielding

higher utility)

(10) Strict monotonicity replaces local non-satiation.

(2)  À 0

(3) free disposal (not needed if each  is monotone, rules

out negative prices)



Definition 2 A competitive equilibrium is a pair (∗ ∗)
such that

1. given ∗, each ∗ solves the consumer optimization
problem

2. markets clear:
P
=1

∗ ≤
P
=1

 ( equations)

Alternatively, we can combine the two conditions using

the notation (  · ) for the utility maximizing de-
mand function. A CE is a pair, (∗ ∗), such that
P
=1

(
∗ ∗ ·) ≤

P
=1

 holds, where 
∗ is determined

by ∗ = (
∗ ∗ · ).





Fact: ( ·) is homogeneous of degree zero in prices.
(It requires assumption (1) to ensure (  · ) is a
function.)

We can, without loss of generality, normalize prices: 1 =

1 (as long as the good is not a free good) or  ∈ −1.

Definition 3 The price simplex, −1, is

{ ∈ 
+ |

P
=1

 = 1}.



Walras’ Law Assuming local nonsatiation, for any  in

−1 , we have  · () = 0, where () is excess de-

mand,

() =
P
=1
[(  · )− ]

Proof of Walras’ Law

 · () =  · [
P
=1

(  · )−
P
=1

] =

P
=1
[ · (  · )−  · ]

Since each  satisfies local nonsatiation, the budget con-

straint is satisfied with equality.

∴ ∀  · (  · )−  ·  ¥

Note: If utility is not continuous or if some good has a

zero price, then excess demand might not be well defined.

If utility is not strictly quasi-concave, then excess demand

might be a correspondence, in which can all selections

from the correspondence satisfy  · () = 0.



Fact: (Free Goods) Assuming (1) and (3), in a compet-

itive equilibrium, either (∗) = 0 or [if (∗)  0]

∗ = 0.

Proof

By free disposal, each ∗ ≥ 0. In any C.E. (∗) ≤ 0
. By Walras’ Law,

0 = ∗ · (∗) =
P
=1

∗(∗)

Suppose it is possible to have (∗)  0 and ∗  0

for some commodity . Then the  term in the above

sum is negative. All other terms are non-positive, a con-

tradiction.

Therefore, either (∗) = 0 or ∗ = 0 for all . ¥



Equilibrium Conditions: Counting Equations and Un-

knowns

Solve each consumer’s UMP for demand functions, and

(if utility is strictly monotonic), we have:

 market clearing equations (where supply equals de-

mand)

1 equation is redundant, by Walras’ law. If  =  in

 − 1 markets, the Kth term in
P
=1

∗(∗) is also
zero.

 components of the price vector.

1 of the prices can be normalized, so there are  − 1
unknowns to solve for.



1.2 Existence of C.E.

Price normalization: replace b with  given by
 = b

P
0=1

b0

This puts prices in the simplex, −1, where −1 =

{ ∈ R+ |
P
=1

 = 1}.

The key Mathematical result:

1.3 Brouwer’s Fixed Point Theorem

If  is a convex, compact set and  is a continuous

function from  to itself,  :  → , then  has a fixed

point. That is, there exists  ∈  such that  = ().



Note:

1. the simplex, −1, is a convex, compact set.
(Reason why we normalized prices so that they were

bounded.)

2. If  is not convex:

rotate by 90◦ - no fixed point. ex.  = [0 1
4
] ∪ [3

4
 1]

and () = 1− 

3. If  is not closed: () = 
2 and  ∈ (0 1] = 



4. If  is not bounded: () = + 1 and  = R

5.  is not continuous

 : unit circle. outside of donut rotates by 90◦, donut

hole is mapped to outside the hole.



Proof of Brouwer’s Thm is very difficult, and the 2-good

one dimensional case in Varian is misleadingly simple.



1.4 Existence of C.E.

Under assumptions (10)− (2), there exists a C.E. (Argu-
ment assumes () exists and is continuous, so we will

have to patch the argument to deal with prices that can

be zero.)

Proof

Let  ∈ −1 and consider the map, → e
e = +max(0())

1+
P

0=1
max(0

0
())

,

note: it will not work to use the simpler function,  +

()

Since we have e ≥ 0 and
P
=1

e = 1, then e ∈ −1.

The function  → e is continuous since composition of
continuous functions are continuous.



Apply Brouwer’s theorem: there exists ∗ s.t.

∗ = ∗+max(0(∗))

1+
P

0=1
max(0

0
(∗))

for  = 1 · · · .

Cross multiply: for all ,

∗
P
0=1

max(0 0(∗)) = max(0 (∗))

multiply by (∗)

(∗)∗
P
0=1

max(0 0(∗)) = (∗)max(0 (∗))



sum over 

[
P
=1

∗(∗)][
P
0=1

max(0 0(∗))] =

[
P
=1

(∗)max(0 (∗))]

from Walras’ Law,  = 0.

Each term of  sum is either 0 or [(∗)]2, but for
the sum to be 0, each term is therefore 0,max(0 (∗)) =
0 for ∀

∴ (∗) ≤ 0 for all , which implies ∗ is a C.E.
¥



This proof (from Varian) assumes that () is a continu-

ous function, but this assumption generally does not hold

at the boundary of the simplex.

• demand can be infinite

• we can’t forget about zero prices, because Brouwers’
theorem requires  to be closed

1.4.1 Existence "Patch"

Let () be the solution to the bounded utility max

problem:

max


() s.t.  ·  ≤  · 

 ≥ 0, 

 ≤

P
=1



 + 1 for  = 1 · · · 

Note: () is a continuous function, even at some zero

prices.



Claim: If (

 )
() 

P
=1



 + 1 for ∀ (so artificial

bound is not binding), then the bounded demand equals

the demand without the artificial constraint,

() = ()

Proof of Claim

By strict quasi-concavity, a local optimum in the (un-

bounded) utility max problem is a global optimum in that

problem.

() is a local optimum in the unbounded problem, be-

cause the extra constraint is slack in the bounded prob-

lem, so the set of local bundles satisfying the constraints

is the same in both problems. It therefore is a global

optimum in the unconstrained problem.



Constraint binds Constraint does not bind



Does () satisfy Walras’ Law?

Strict monotonicity implies  · () = 0.

replace  for  in the mapping e.



Since () is continuous for all prices in the simplex, we

can use it instead of () in the mapping to conclude

there is a fixed point. Since () satisfies Walras’ Law,

we can go through the previous algebra to conclude that

the fixed point satisfies (∗) ≤ 0 for all .

Since aggregate bounded excess demand is non-positive,

this implies the strict inequality,
P
 


 (

∗)  P
 


+

1. Therefore, we have (

 )
(∗) 

P
=1



 + 1 for ∀.

From our claim, (
∗) = (

∗) holds, so (∗) =
(∗).

Therefore, ∗ is a C.E. price.



1.5 Pareto Optimality (efficiency)

Definition 4 A feasible allocation, , is weakly P.O. if

there is no feasible allocation, 0 such that all agents
strictly prefer 0 to : (0)  () for ∀.

Definition 5 A feasible allocation, , is strongly P.O. if

there is no feasible allocation, 0 such that (0) ≥
() for all  and (

0
)  () for some .

: strongly P.O. =⇒ : weakly P.O.

If you can’t make one person strictly better off, you can’t

make everyone strictly better off.



Theorem 6 If assumption (10) holds (strict monotonic-
ity), then  is weakly P.O. =⇒  is strongly P.O.

Proof

Suppose  is not strongly P.O., but is weakly P.O.

∃ 0 s.t. (0) ≥ () for all  and

(
0
)  () for some .



00, defined below, is a feasible allocation:


00
 = 0

00 = 0 +
1−
−1

0
 for  6= 

By continuity,  is still strictly better off for  close enough

to 1.

By monotonicity, all other consumers are strictly better

off.

 is not weakly P.O., a contradiction.

∴  is strongly P.O. ¥



1.6 First Fundamental Theorem of Wel-

fare Economics

FFTWE - Assume that all consumers satisfy local non-

satiation. Let (∗ ∗) be a C.E. Then, ∗ is strongly
P.O.

Proof

Suppose ∗ is not strongly P.O. There exists a dominating
allocation  such that

() ≥ (
∗
 ) for all 

()  (
∗
) for some .

From local nonsatiation, ∗ ·  ≥ ∗ · for all . (Oth-
erwise, you can afford an open neighborhood around ,

so there is some 0 such that ∗ · 0 ≤ ∗ ·  and
(

0
)  () ≥ (

∗
 ) contradicts the fact that 

∗


is demanded.)



∗ ·   ∗ · 

Otherwise,  is in the budget set and strictly preferred

to ∗

Sum these inequalities over  = 1 · · ·  ,

∗ ·
P
=1
( − )  0

Therefore, for some commodity , we have

()
P
=1
(


 − 


 )  0.

P
=1



 

P
=1



 , so  is not feasible. It contradicts  is

a dominating allocation (feasible)

∴ ∗ is strongly P.O. ¥



Remark 7 The argument does not need quasi-concavity

or continuity. Without these assumptions, we cannot

guarantee existence, but if a CE exists, it is PO.

Remark 8 Implicitly assumes that  and are finite, or

at least that the value of aggregate resources is finite. If 

and are infinite, we might not be able to conclude that

aggregate consumption exceeds endowment for some .

(The overlapping generations model has a CE that is not

PO.)



SFTWE - Under assumptions (10), every P.O. allocation
∗ À 0 is a C.E. for the economy with endowments

 = ∗ . (no need for free disposal if monotonicity holds)

Proof

Define  = { ∈ R+ : ()  (
∗
 )} and upper

contour set,  =
P
=1

 = { ∈ R+ :  =
P
=1



 ∈ }

 is a commodity bundle, not an excess demand.



Since each  is a convex set,  is also convex.

To see this, suppose  0 ∈ . Then there exist al-

locations (not necessarily feasible)  and 0 such that
 ∈ , 

0
 ∈ ,  =

P
=1

 and 
0 =

P
=1

0 hold.

Now consider 00 =  + (1 − )0. We need to show
that 00 ∈ . Let 00 =  + (1− )0 for all . We
know

X
=1

00 =



X

=1

 + (1− )
X
=1

0 =  + (1− )0 = 00

(
00
 )  (

∗
 ) (by strict quasi-concavity).



Since ∗ is P.O.,
P
=1

∗ ∈ .



1.6.1 Separating Hyperplane Theorem

If  ⊂ R and  ⊂ R are disjoint, convex sets (non-

empty also), there exists a linear functional  6= 0 such

that  ·  ≥  ·  for all  ∈  and  ∈ .



Let  ≡ ,  = {
P
=1

∗ }: single point.

From the Sep. Hyp. Th.,  ·  ≥  ·
P
=1

∗ for ∀ ∈ 

[Equation 1]  · ( −
P
=1

∗ ) ≥ 0 for ∀ ∈ 

(Step 1)  ≥ 0,  ≡ (0 · · ·  0 1|{z}
 component

 0 · · ·  0)

in R

Proof

P
=1

∗+ ∈  by monotonicity from (Eq 1), · ≥ 0
for  = 1 · · ·  which implies  ≥ 0 ¥



(Step 2) If ()  (
∗
), then  · ≥  ·∗ (holds

for all )

Proof

Construct a bundle in  by taking a little away from 

and giving it to other agents

0 = (1− )

0 = ∗ +


−1 for  6= 

Monotonicity implies (
0
)  (

∗
 ) for  6= . Conti-

nuity implies (
0
)  (

∗
) for  close to 0.

∴
P
=1

0 ∈ , so from (Eq 1),  ·
P
=1

0 ≥  ·
P
=1

∗

Hence,  · [(1− )+ +
P
6=

∗ ] ≥  · [∗+
P
6=

∗ ]

∴  ·  ≥  · ∗ ¥



(Step 3) For all  ()  (
∗
) implies  ·  

 · ∗

Proof

From Step 2 and ()  (
∗
), we have  ·  ≥

 · ∗. Suppose the conclusion of Step 3 is false. Then
it must be that  ·  =  · ∗.

By continuity, ()  (
∗
) for some  close to 1

(different  from step 2).

Again using Step 2,  ·  ≥  · ∗ =  · 

∴ (1− ) ·  ≤ 0 =⇒  ·  ≤ 0

But, ∗ À 0 implies  · ∗  0

∴  ·   0 a contradiction ¥



Step 3 says that anything preferred to ∗ is not afford-
able. Therefore, ∗ is utility maximizing (

∗
 is affordable

since it is the initial endowment). Since ∗ is feasible,
utility maximization and market clearing are satisfied, so

( ∗) is a C.E. ¥



1.6.2 Maximize a weighted sum of utilities

(P) max
P
=1

() s.t.
P
=1



 ≤

P
=1



 for  =

1 · · · 

Assume that utility is differentiable, strictly concave, and

strictly monotonic.

Lagrangeans for (P): 

Necessary and sufficient FOC:

FOC (P): [ w.r.to 

 ] : 







=  for ∀ and P



 =P








Claim: Any ∗À 0 that solves (P) is Pareto optimal.

Proof

First, note that a solution to (P) must be feasible. If some

feasible 0 dominates ∗, then it satisfies the constraint
and yields a higher value to the objective. ¥

Claim: Any P.O. allocation ∗ À 0 solves (P) for some

weights, .



Proof

By the SFTWE, ∗ is a C.E. allocation for the economy
with endowments,  = ∗ , for some price vector ∗

∴ ∗ solves (for all )

(C: consumer’s problem)

max () s.t.
P

∗ ≤

P

∗∗ and 


 ≥ 0 for ∀.

FOC (C):
(

∗
 )





= b∗ for some b
We want to find  and {}=1 that solve the necessary
and sufficient FOC (P), with  = ∗ for ∀.

Let  =
1b and  = ∗.

FOC (C), which we know is true, implies FOC (P), which

we needed to show.¥



Claim: A feasible allocation, ∗À 0 is P.O. iff
P
=1

∗ =
P
=1

 and

(
∗
 )





(
∗
 )


0


is the same for all .

Proof=⇒

If ∗ is P.O., it solves FOC (P) for some weights. From

FOC (P), it follows that

(
∗

)





(
∗

)


0


= 


0 for ∀ , and

monotonicity implies
P
=1

∗ =
P
=1

.



Proof⇐

Suppose = for ∀ . Then, define
(

∗

)





(
∗

)

1


≡

e for ∀ .
Then, ∗ = e is a CE price, because FOC (C) are satisfied
for b = (

∗
 )

1
, because

(
∗
 )





= b∗ becomes
(

∗
 )





=
(

∗
 )

1

e

Thus, (∗ e) is a C.E. for the economy with  = ∗ .

∴ By the FFTWE, ∗ is P.O. ¥


