
2 Production

 : production possibility set for firm 

 ∈  : a net output vector, where negative compo-

nents are inputs.

 ·  : firm  ’s profits

firm’s problem

max


 ·  s.t.  ∈ 

If  is a strictly convex set, then the firm’s optimal

supply is a function, ().

Aggregate production possibility set:

 ≡ { ∈ R :  =
P
=1

 and  ∈  ∀}



Proposition 9  maximizes aggregate profit if and only if

each  maximizes firm  ’s profit. That is,  solves

max  ·  s.t.  ∈  implies there exist 1   with

each  ∈  , s.t.  =
P
=1

 and  ·  ≥  · 0
for all 01  0 with each 

0
 ∈  , and conversely, for

 = 1   , if  solves max
 ·  s.t.  ∈  then

 =
P
=1

 solves max  ·  s.t.  ∈  .

Proof sketch ⇒ Let ∗() denote the aggregate profit
associated with the solution to the aggregate profit max-

imization problem, and let 1   be a way to feasibly

achieve ∗(). Suppose the conclusion is false, so there
exists some 0 ∈  , such that  · 0   ·  . Then
1  

0
    is feasible and yields profits greater than

∗(), contradicting the optimality of .



Proof sketch⇐ Suppose for  = 1   , each  solves

max


 ·  s.t.  ∈  , but the conclusion is false, so

there exists feasible 01  0 such that  ·
P
=1

0 

 ·
P
=1

 . Then at least one component of the left sum

exceeds that of the right sum, so  · 0   ·  . This
contradicts the fact that  is profit maximizing for firm

 .

What about duopoly and higher profits of forming a car-

tel?



Modeling labor supply

Workers have endowments of leisure. Supply of labor is

( − ).

Must require  ≤  for consumer  in Definition of

consumption set

Accounting for Profits

0 ≤  ≤ 1 consumer ’s share of firm  , where
P
=1

 = 1 for all 

Consumer’s Problem

max () s.t.  ·  ≤  ·  +
P
=1

 · () and
 ∈ 

() =
P
=1

()−
P
=1

()−
P
=1





Walras’ Law: If utility satisfies local nonsatiation,  ·
() = 0 for all 

Proof.  ·() =
P
=1

 ·()−
P
=1

 ·()−
P
=1

 ·

and
P
=1

 · () =
P
=1

 ·  +
P
=1

P
=1

 · () by
local n.s.

 · () =
P
=1

[ · ()
P
=1

 ]−
P
=1

 · () = 0



Definition 10 A C.E. is a price vector  ∈ −1 and
an allocation, ( ) satisfying

(1) each consumer maximizes utility subject to his/her

budget constraint

(2) each firm maximizes profits s.t. technology

(3) markets clear:
P
=1

 =
P
=1

 +
P
=1





Existence of C.E.

• Assumption (1)

• Consumption sets are closed, convex, and bounded
from below. Endowments are in the interior of con-

sumption sets

•  contains 0, is closed and convex

• irreversibility:  ∩ (− 0) = {0}, ∀  0

• free disposal

Since we are allowing for constant returns, () might be

a correspondence, requiring Kakutani’s thm.



Definition 11 ( ) is feasible if  ∈  for all ,  ∈
 for all  , and

P
=1

 ≤
P
=1

 +
P
=1

.

Definition 12 A feasible allocation is P.O. if there is no

other feasible allocation, (0 0) s.t. (0) ≥ () for

all  and (
0
)  () for some .

FFTWE: Under local nonsatiation, any C.E. allocation

( ) is P.O.



SFTWE: Suppose (∗ ∗) is P.O., ∗À 0. Preferences

are convex, continuous, strictly monotonic.  convex.

Then for some endowments and firms’ shares, (∗ ∗) is
a C.E. allocation.

Sketch: Separate the aggregate preferred bundles, ,

from the feasible aggregate bundles,

{ : for some 1   with each  ∈  , we have

 =
P


=1
+

P
=1

 }



Note: When you are solving for a C.E.,

(i) If technologies are constant returns, for a solution to

the profit maximization problem to exist in which the firm

produces output, this gives an equation restricting prices

(yielding zero profits). You will not be able to solve for

supply functions.

(ii) With strictly convex production sets, you can solve

for supply functions, but you must account for profits in

the consumer opt. problems.



3 Uncertainty



 ,  ∈ states of nature = {1 2 · · ·  }

: probability of state 

Definition 13 A C.E. is a price vector,

 = {11 · · ·  1 21 · · ·  2 · · ·  1 · · ·  }
and an allocation { }|=1|=1|=1 ∈ R

+ such that

(1) utility maximization,  solves

max
P
=1

(
1
  · · ·  

 ) ≡ () : expected utility

subject to  ·  ≤  ·  and  ≥ 0

(2) market clearing for all  and ,
P
=1



 ≤

P
=1







Note:

(1) 

 is a state-contingent commodity. good  is de-

livered iff the state is 

(2) all trade takes place before any information about the

state is received (no pre-existing conditions)

(3) setup presumes that the equilibrium can be enforced—

questionable when commodities have an uncertainty di-

mension or a time dimension.

(4) Specification is not completely general, because the

Bernoulli utility function does not depend on the state.

Von Neumann-Morgenstern does not allow utility of con-

suming an umbrella to depend on the state (except through

)



Here is an example where the Bernoulli utility function

is strictly quasi-concave but the overall utility function is

not.

 ( ) = ()2 + ()2

each () = 2 is strictly quasi-concave, 2  2 =⇒
[+ (1− )]2  2

 is not strictly quasi-concave

tradeoffs are being made across states - the level of utility

within a state matters. Risk aversion



If each  is strictly increasing continuous, strictly con-

cave,  ∈ R
++

(1) consumers are risk-averse

(2) equilibrium exists and is Pareto optimal

(3) any P.O. allocation is a C.E. allocation for some re-

distribution of state-contingent endowments



Special Case:  = 1, no aggregate uncertainty

: differentiable, strictly monotonic, strictly concave

 of consumer’s problem:


(


)




0
(

0

)


0


= 


0 for all

 0

and
P
=1

 =
P
=1



Assume no aggregate uncertainty:
P
=1

 =
P
=1


0
 for

all  0



Claim

(i) Any interior Pareto Optimal allocation satisfies

(∗)  = 
0
 for all  

0 and for all 

(ii) Any nonwasteful allocation satisfying (∗) is Pareto
Optimal



Proof of (i)

Since  is P.O., each consumer has the same MRS at .

(


)




(
0

)


0


=

(


)




(
0

)


0


 ∀   0

Suppose   
0
 for some   0. Since we have no

aggregate uncertainty,   
0
 for some consumer .

Since  and  are concave,

(

 )




(
0
 )


0



(



)





(

0

)


0


Contradicts Pareto optimality. Therefore,  = 
0
 ∀  0.



Proof of (ii) Any point satisfying (∗) has


(


)




0
(

0

)


0


=


0

for all   0 and is therefore Pareto optimal. ¥

Note: unique C.E. (1 · · ·   · · ·  )

= (1 · · ·   · · ·  ), only relies on  = 1



Aggregate Uncertainty ( = 1)



The argument for the no-aggregate-uncertainty case also

says that, with aggregate uncertainty, Pareto optimality

implies that for any  0 with
P
=1

 
P
=1


0
 , all con-

sumers receive higher Bernoulli utility in state  than state

0. This illustrates how incomplete our markets really are.

Incompleteness of Markets

(1) A country experiencing an earthquake is dispropor-

tionally hit financially

(2) State of nature must specify whose hard disk crashes,

who has an accident, who is having a tough time concen-

trating,...

(3) moral hazard problems

(4) asymmetric information—adverse selection can destroy

insurance

(5) it is costly to set up markets - is there a more eco-

nomical way? Arrow Securities



3.1 Arrow Securities Market

Stage 1: before the state is observed, consumers buy and

sell securities, where a security, , pays 1 unit of account

on the state− spot market.

Stage 2: after the state of nature is observed, securities

are redeemed and commodities are traded on a spot mar-

ket.

 : consumer ’s holdings of security . 

  0 implies 

receives  "dollars" in state .

: the price of security 



 (): consumption of commodity  received from the

state- spot market

(): price of commodity  on the state− spot market



Utility Max Problem

max
()




(·) =
P
=1

(()) s.t.
P
=1

 ≤ 0 and

P
=1

()

 () ≤

P
=1

()

 ()+


 for all  


 () ≥ 0

Market Clearing

P
=1

 ≤ 0 for all 

P
=1



 () ≤

P
=1



 () for all  and 

Definition 14 A C.E. is a set of prices { ()}, security
holdings {}|=1|=1, and consumption {


 ()}|=1|=1|=1

satisfying market clearing and utility maximization.



Notice:

(1)   0 and monotonicity implies   0

(2) We can normalize 1 = 1 without affecting the set

of affordable bundles for any consumer

 ( ) =  ( )

(3) We can normalize 1() = 1 without loss of general-

ity, for each 

 (1 · · ·   · · ·   (1) · · ·  () · · · ()) =
 (1 · · ·   · · ·   (1) · · ·  ()


 · · ·  ())



Theorem 15 (Arrow) The contingent commodities model

and the Arrow Securities model are equivalent.

{ } is a C.E. allocation (of the cont. comm. model)
⇒ { () } is a C.E. allocation (of the Arrow sec.

model) for some {}, where 

 () = 


 , ∀  

AND { () } is a C.E. allocation (of the Arrow sec.
model) ⇒ 


 is a C.E. allocation (of the cont. comm.

model), where 

 = 


 ()



Proof sketch

Construct the Arrow Security Prices from the A-D prices

and vice versa.

Relative price of consumption in the Arrow securities model

determined as follows:

• reduce consumption of 1() by one unit

• receive 1() additional units of account on the spot
market

• allows you to demand 1() fewer state- securities

• allows you to have 1() ·  more income on the
securities market



• allows you to buy 1()


0 more state-0 securities

• allows you to buy 1()

2(0)0
more units of 2(0)

• price of 1() [in terms of 2(0)] is 1()

2(0)0



example: (

 ) = log( )  = 14  = 34

1 = (1 2) 2 = (2 1)

normalize () = () = 1

consumer 1: max
11

1
4 log(


1 ) +

3
4 log(


1)

s.t. 1 + 

1 = 0, 


1 = 1 + 1 , 


1 = 2 + 


1

substitute spot market budget constraints into sec. mar-

ket, to get

(1 − 1) + (

1 − 2) = 0 · · · · · · (1)

 (multiplies 1):

1
41

− 1
 = 0 · · · · · · (2)

3

4

1

− 1
 = 0 · · · · · · (3)



solving, 1 =
1

41
= 3

4

1

,

so 

1 =

31


· · · · · · (4)

Solving (1) and (4), we have

1 −  + 31 − 2 = 0

∴ 1 =
+2

4
and 


1 =

3(+2)

4



Going through the same steps for consumer 2 yields

2 =
2+

4
and 


2 =

3(2+)

4

Let us normalize,  = 1

Market clearing on the −spot market:

3(+2)
4 +

3(+2)
4 = 3

∴  = 13

1 = (
7
4
 7
4
) 2 = (

5
4
 5
4
) 1 = (

3
4
−1

4
) 2 = (−34 14)

note: no aggregate uncertainty



3.2 Production and Uncertainty in the Con-

tingent Commodities Model

now  is a set in R

• usually, output in state  only depends on inputs in
state .

• often, input of commodity ( ) must be the same
as input of ( 0). For example, a worker is hired to
work, no matter what the state is.

• Setup allows for "technology shocks," since output
depends on , even for the same inputs.

• usually, there is joint production, since output is not
only produced in one state.



• The firm’s profits,  ·  , do not depend on the re-
alized state. It buys and sells state-contingent con-

tracts before the state is known.

• Models in which profits depend on the state and
firms maximize expected profits are based on prof-

its being received on a spot market, not complete

contingent commodity trading.

• If firms are risk neutral, how can a C.E. be Pareto
Optimal, then? Ultimately, consumption risk must

fall on consumers, since firms do not consume.



introducing more complicated securities

(an example with 5 states)

firm’s gross return, () =

⎛⎜⎜⎜⎜⎜⎜⎝
0

1

5

5

10

⎞⎟⎟⎟⎟⎟⎟⎠ vs an Arrow security

such as

⎛⎜⎜⎜⎜⎜⎜⎝
0

1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠
One unit of security  is the equivalent of a portfolio of

1 state-2 Arrow security, 5 state-3 Arrow securities, etc.

Security  could be written to pay off based only on the

returns received by this firm. The example partitions the

zillions of states into 5 relevant "events." More realistic

than specifying all aspects of the state of nature.



debt level: 3

() = min[() 3] () =

⎛⎜⎜⎜⎜⎜⎜⎝
0

1

3

3

3

⎞⎟⎟⎟⎟⎟⎟⎠

equity: () = ()−() () =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

2

2

7

⎞⎟⎟⎟⎟⎟⎟⎠

• no-arbitrage condition:  +  = 

• spot market budget constraint is ()·() ≤ ()·
() + () + () + ()

• real vs nominal securities



In general, if there are  = 1   nominal securities

traded and one unit of security  on the spot market in

state  pays  units of account, the spot market budget

constraint in state  is given by

() · () ≤ () · () +
X
=1



We can express the securities market by the × matrix
with typical component . Then one can prove that the

competitive equilibrium is equivalent to complete markets

if and only if the matrix has full rank, .

Even if there are fewer securities than states so the mar-

ket is incomplete, if a limited number of securities are

designed to cover the most important risky events faced

by the economy, maybe the CE is close to what would

prevail under complete markets.


