Department of Economics
 The Ohio State University Midterm Questions and Answers-Econ 8712

Prof. James Peck
Fall 2016

1. (30 points)

A decision maker (DM) is a von Neumann-Morgenstern expected utility maximizer. There are two states of nature, and the DM assigns a subjective probability to each state. The DM has a Bernoulli utility function over final wealth x given by the strictly concave function $u(x)=x^{1 / 2}$. This function does not vary with the state. Let $\left(x_{1}, x_{2}\right)$ denote the state-contingent allocation in which the DM consumes x_{1} in state 1 and x_{2} in state 2 .

Suppose the DM is indifferent between the state-contingent allocation $(1,25)$ and the state-contingent allocation $(4,9)$. What are the DM's subjective probabilities, and what is the certainty equivalent of the state-contingent allocation $(4,16)$? In other words, what constant state-contingent allocation (x, x) will the DM find indifferent to $(4,16)$?

Answer:

Denote the probability of state 1 as π. Because the DM is indifferent between $(1,25)$ and $(4,9)$, we have

$$
\begin{aligned}
\pi(1)^{1 / 2}+(1-\pi)(25)^{1 / 2} & =\pi(4)^{1 / 2}+(1-\pi)(9)^{1 / 2} \\
\pi+5(1-\pi) & =2 \pi+3(1-\pi) \\
\pi & =\frac{2}{3}
\end{aligned}
$$

The DM's subjective probabilities are $\left(\frac{2}{3}, \frac{1}{3}\right)$. The certainty equivalent is the solution to

$$
\begin{aligned}
x^{1 / 2} & =\frac{2}{3}(4)^{1 / 2}+\frac{1}{3}(16)^{1 / 2}=\frac{8}{3} \\
x & =\frac{64}{9} .
\end{aligned}
$$

2. (30 points)

The following partial equilibrim economy has 1 firm, with the cost function $c(y)=(y)^{2}$. There are 2 consumers, each of whom has an initial endowment of money (numeraire), $\omega_{i}^{m}=1$ and a zero endowment of the good. Also, each consumer owns a share, $\frac{1}{2}$, of each firm's profits. Letting x_{i} and m_{i} denote consumer i 's consumption of the good and money, respectively, for $i=1,2$, consumer i has the utility function, $\log \left(1+x_{i}\right)+m_{i}$.
(a) (20 points) Calculate the competitive equilibrium price and allocation.
(b) (10 points) Calculate the Marshallian Surplus associated with output X, given that this output is efficiently allocated to consumers.

Answer:

(a) To find the firm's supply function we equate marginal cost to the price, so the supply function is $y=\frac{p}{2}$. Profits are given by

$$
p y-y^{2}=\frac{p^{2}}{4} .
$$

The demand function for consumer $i(i=1,2)$ is computed by the marginal rate of substitution condition,

$$
\begin{aligned}
\frac{1}{1+x_{i}} & =p \\
x_{i} & =\frac{1}{p}-1
\end{aligned}
$$

Money consumption is determined by the budget equation,

$$
m_{i}=\frac{1}{2}\left(\frac{p^{2}}{4}\right)+1-p\left(\frac{1}{p}-1\right)=\frac{1}{2}\left(\frac{p^{2}}{4}\right)+p
$$

To find the price we equate demand and supply:

$$
\begin{aligned}
2\left(\frac{1}{p}-1\right) & =\frac{p}{2} \\
p^{2}+4 p-4 & =0 \\
p & =\frac{-4 \pm \sqrt{32}}{2}
\end{aligned}
$$

Since obviously we want the positive root, we have $p=2 \sqrt{2}-2$. Substituting into the demand and supply functions yields the allocation

$$
\begin{aligned}
y & =\sqrt{2}-1 \\
x_{i} & =\frac{\sqrt{2}-1}{2} \\
m_{i} & =\sqrt{2}-\frac{1}{2}
\end{aligned}
$$

Note: there are correct answers whose expressions look different, but are equivalent.
(b) The Marshallian Surplus for this problem is given by

$$
\log \left(1+x_{1}\right)+\log \left(1+x_{2}\right)-X^{2}
$$

where $x_{1}+x_{2}=X$. Since X is distributed efficiently, we must have $x_{1}=x_{2}=$ $\frac{X}{2}$, so the Surplus is equal to

$$
2 \log \left(1+\frac{X}{2}\right)-X^{2}
$$

Another way to solve for the surplus is to compute the area between the (inverse) supply and demand curves. Since market demand is $X(p)=2\left(\frac{1}{p}-1\right)$, the inverse demand curve is

$$
P(X)=\frac{2}{X+2}
$$

The inverse supply curve is marginal cost, so

$$
C^{\prime}(X)=2 X
$$

Using t as the dummy index in the integrals, Surplus is given by

$$
\begin{aligned}
& \int_{0}^{X} \frac{2}{t+2} d t-\int_{0}^{X} 2 t d t \\
= & 2 \log (X+2)-2 \log (2)-X^{2}
\end{aligned}
$$

which is the same as the above expression.

3. (40 points)

Consider the following pure-exchange economy with n consumers and two goods. Each consumer i has the utility function

$$
u_{i}\left(x_{i}^{1}, x_{i}^{2}\right)=\log \left(x_{i}^{1}\right)+\log \left(x_{i}^{2}\right)
$$

Consumer 1 has the initial endowment vector, $(A, 0)$, and consumers $2,3, \ldots, n$ have the initial endowment vector, $(0, B)$, where A and B are positive numbers.
(a) (10 points) Define a competitive equilibrium for this economy.
(b) (20 points) Compute the competitive equilibrium price vector and allocation as a function of the endowment parameters.
(c) (10 points) Is it possible for a decrease in A to benefit consumer 1? Justify your answer.

Answer:

(a) In defining a C.E., I will normalize prices to be $(p, 1)$, and use monotonicity to conclude that budget constraints and market clearing hold with equality.

A C.E. is a price vector, $(p, 1)$, and an allocation, $\left(x_{i}^{1}, x_{i}^{2}\right)$ for $i=1, \ldots, n$, such that
(i) $\left(x_{1}^{1}, x_{1}^{2}\right)$ solves

$$
\begin{aligned}
& \max \log \left(x_{1}^{1}\right)+\log \left(x_{1}^{2}\right) \\
& \text { subject to } \\
p x_{1}^{1}+x_{1}^{2}= & p A \\
x_{1} \geq & 0
\end{aligned}
$$

(ii) for $i=2, \ldots, n,\left(x_{i}^{1}, x_{i}^{2}\right)$ solves

$$
\begin{aligned}
& \max \log \left(x_{i}^{1}\right)+\log \left(x_{i}^{2}\right) \\
& \text { subject to } \\
& p x_{i}^{1}+x_{i}^{2}= B \\
& x_{i} \geq 0
\end{aligned}
$$

(iii) markets clear:

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}^{1}=A \\
& \sum_{i=1}^{n} x_{i}^{2}=(n-1) B
\end{aligned}
$$

(b) The demand function for consumer 1 is characterized by the budget equation and the marginal rate of substitution condition,

$$
\frac{x_{1}^{2}}{x_{1}^{1}}=p
$$

yielding

$$
\begin{aligned}
x_{1}^{1} & =\frac{A}{2} \\
x_{1}^{2} & =\frac{p A}{2} .
\end{aligned}
$$

For $i=2, \ldots, n$, the demand function for consumer 2 is characterized by the budget equation and the marginal rate of substitution condition,

$$
\frac{x_{i}^{2}}{x_{i}^{1}}=p
$$

yielding

$$
\begin{aligned}
x_{i}^{1} & =\frac{B}{2 p} \\
x_{i}^{2} & =\frac{B}{2} .
\end{aligned}
$$

Market clearing for good 2 implies

$$
\begin{aligned}
\frac{p A}{2}+(n-1) \frac{B}{2} & =(n-1) B \\
p & =\frac{(n-1) B}{A}
\end{aligned}
$$

Substituting the price into the demand functions yields the equilibrium allocation,

$$
\begin{aligned}
x_{1} & =\left(\frac{A}{2}, \frac{(n-1) B}{2}\right) \\
x_{i} & =\left(\frac{A}{2(n-1)}, \frac{B}{2}\right) \text { for } i=2, \ldots, n
\end{aligned}
$$

(c) Looking at the equilibrium consumption for consumer 1, it is clear that a decrease in A decreases his/her consumption of good 1 , and it does not affect his/her consumption of good 2. Therefore, consumer 1's utility cannot increase if A decreases.

