Department of Economics
 The Ohio State University
 Final Exam Answers-Econ 8712

Prof. Peck
Fall 2013

1. (30 points)

The following economy has one consumer, two firms, and three goods. Good 1 is food, good 2 is clothing, and good 3 is leisure/labor. The consumer has the initial endowment vector, $\omega=(0,0,1)$, and the utility function,

$$
u\left(x^{1}, x^{2}, x^{3}\right)=\log \left(x^{1}\right)+\log \left(x^{2}\right)
$$

Notice that the third good provides no utility, so the consumer will demand 0 units whatever the prices.

Firm 1 produces food using labor as an input. Denoting firm 1's output of food by y_{1}^{1} and its non-negative input of labor by L_{1}, the firm's production function (the boundary of the production set) is given by:

$$
y_{1}^{1}=\left(L_{1}\right)^{1 / 2}
$$

Firm 2 produces clothing using labor as an input. Denoting firm 2's output of clothing by y_{2}^{2} and its non-negative input of labor by L_{2}, the firm's production function (the boundary of the production set) is given by:

$$
y_{2}^{2}=\left(2 L_{2}\right)^{1 / 2}
$$

(a) (10 points) Define a competitive equilibrium for this economy.
(b) (20 points) Compute the competitive equilibrium price vector and allocation.

Answer:

(a) A C.E. is a price vector, $\left(p^{1}, p^{2}, p^{3}\right)$, and an allocation, $\left(x^{1}, x^{2}, x^{3}, y_{1}^{1}, L_{1}, y_{2}^{2}, L_{2}\right)$, such that:
(i) $\left(x^{1}, x^{2}, x^{3}\right)$ solves

$$
\begin{aligned}
& \max \log \left(x^{1}\right)+\log \left(x^{2}\right) \\
& \text { subject to } \\
& p^{1} x^{1}+p^{2} x^{2}+p^{3} x^{3} \leq p^{3}+\pi_{1}+\pi_{2} \\
&\left(x^{1}, x^{2}, x^{3}\right) \geq 0
\end{aligned}
$$

(where π_{1} and π_{2} are the profits of firms 1 and 2),
(ii) $\left(y_{1}^{1}, L_{1}\right)$ solves

$$
\begin{aligned}
& \max p^{1} y_{1}^{1}-p^{3} L_{1} \\
& \text { subject to } \\
& y_{1}^{1} \leq \quad\left(L_{1}\right)^{1 / 2}
\end{aligned}
$$

(iii) $\left(y_{2}^{2}, L_{2}\right)$ solves

$$
\begin{aligned}
& \max p^{2} y_{2}^{2}-p^{3} L_{2} \\
& \text { subject to } \\
y_{2}^{2} \leq & \left(2 L_{2}\right)^{1 / 2}
\end{aligned}
$$

(iv) markets clear:

$$
\begin{aligned}
x^{1} & \leq y_{1}^{1} \\
x^{2} & \leq y_{2}^{2} \\
x^{3}+L_{1}+L_{2} & \leq 1
\end{aligned}
$$

(b) Normalize $p^{3}=1$ and note that all inequalities will hold as equalities, due to strict monotonicity of utility. Substituting the constraint into firm 1's profit expression and differentiating with respect to L_{1}, we have the first order condition

$$
\frac{1}{2}\left(L_{1}\right)^{-1 / 2} p^{1}=1
$$

which we can solve for

$$
\begin{aligned}
L_{1} & =\frac{\left(p^{1}\right)^{2}}{4} \\
y_{1}^{1} & =\frac{p^{1}}{2} \\
\pi_{1} & =\frac{\left(p^{1}\right)^{2}}{4}
\end{aligned}
$$

Substituting the constraint into firm 2's profit expression and differentiating with respect to L_{2}, we have the first order condition

$$
2 \cdot \frac{1}{2}\left(2 L_{2}\right)^{-1 / 2} p^{2}=1
$$

which we can solve for

$$
\begin{aligned}
L_{2} & =\frac{\left(p^{2}\right)^{2}}{2} \\
y_{2}^{2} & =p^{2} \\
\pi_{2} & =\frac{\left(p^{2}\right)^{2}}{2}
\end{aligned}
$$

The solution to the consumer's problem is found by imposing $x^{3}=0$ and solving the budget equation and the marginal rate of substitution condition for the remaining demands,

$$
\begin{aligned}
p^{1} x^{1}+p^{2} x^{2} & =1+\pi_{1}+\pi_{2} \\
\frac{x^{2}}{x^{1}} & =\frac{p^{1}}{p^{2}}
\end{aligned}
$$

yielding

$$
\begin{aligned}
& x^{1}=\frac{1+\pi_{1}+\pi_{2}}{2 p^{1}}=\frac{1+\frac{\left(p^{1}\right)^{2}}{4}+\frac{\left(p^{2}\right)^{2}}{2}}{2 p^{1}} \\
& x^{2}=\frac{1+\pi_{1}+\pi_{2}}{2 p^{2}}=\frac{1+\frac{\left(p^{1}\right)^{2}}{4}+\frac{\left(p^{2}\right)^{2}}{2}}{2 p^{2}}
\end{aligned}
$$

Now we solve for the prices using market clearing for goods 1 and 2. Good 1 market clearing gives us

$$
\begin{align*}
\frac{1+\frac{\left(p^{1}\right)^{2}}{4}+\frac{\left(p^{2}\right)^{2}}{2}}{2 p^{1}} & =\frac{p^{1}}{2}, \text { or } \\
1+\frac{\left(p^{1}\right)^{2}}{4}+\frac{\left(p^{2}\right)^{2}}{2} & =\left(p^{1}\right)^{2} \tag{1}
\end{align*}
$$

Good 2 market clearing gives us

$$
\begin{gather*}
\frac{1+\frac{\left(p^{1}\right)^{2}}{4}+\frac{\left(p^{2}\right)^{2}}{2}}{2 p^{2}}=p^{2}, \text { or } \\
1+\frac{\left(p^{1}\right)^{2}}{4}+\frac{\left(p^{2}\right)^{2}}{2}=2\left(p^{2}\right)^{2} \tag{2}
\end{gather*}
$$

Since the left side of (1) and (2) are the same, we can equate the right sides, yielding $\left(p^{1}\right)^{2}=2\left(p^{2}\right)^{2}$. Substituting this relationship into (1), we have

$$
\begin{aligned}
1+\frac{2\left(p^{2}\right)^{2}}{4}+\frac{\left(p^{2}\right)^{2}}{2} & =2\left(p^{2}\right)^{2}, \text { or } \\
p^{2} & =1, \text { and therefore } \\
p^{1} & =\sqrt{2}
\end{aligned}
$$

Thus, the equilibrium price vector is $(\sqrt{2}, 1,1)$, and the allocation is given by

$$
\begin{aligned}
x^{1} & =\frac{\sqrt{2}}{2}, x^{2}=1, x^{3}=0 \\
y_{1}^{1} & =\frac{\sqrt{2}}{2}, L_{1}=\frac{1}{2}, y_{2}^{2}=1, L_{2}=\frac{1}{2} .
\end{aligned}
$$

2. (30 points)

The following pure-exchange economy has 2 consumers, S states of nature, and one physical commodity per state of nature. For $s=1, \ldots, S$, denote the consumption of consumer i in state s by x_{i}^{s}. For $i=1,2$, consumer i is a von Neumann-Morgenstern expected utility maximizer with the Bernoulli utility function $u_{i}\left(x_{i}^{s}\right)$, which is strictly monotonic, continuously differentiable, and strictly concave. For $s=1, \ldots, S$, the endowment of consumer i in state s is denoted by ω_{i}^{s}. Before the state of nature is observed, consumers trade statecontingent commodities.

We allow the two consumers to have different probability beliefs over states. Denote the probability that consumer i assigns to state s by π_{i}^{s}, and assume that $\pi_{i}^{s}>0$ for all i and s. (Note: Any differences in probability assessments do not reflect informational differences-the two consumers may understand that their beliefs are different and "agree to disagree.")

Let $\left(p^{*}, x^{*}\right)$ be a competitive equilibrium for this economy with contingent commodity markets. For the following statements, either prove the statement (if the statement is true) or find a counterexample (if the statement is false).
(a) (15 points) If $\omega_{1}^{s}+\omega_{2}^{s}>\omega_{1}^{s^{\prime}}+\omega_{2}^{s^{\prime}}$ holds for states s and s^{\prime}, then at the competitive equilibrium we have $\left(x_{1}^{s}\right)^{*}>\left(x_{1}^{s^{\prime}}\right)^{*}$.
(b) (15 points) If there is no aggregate uncertainty, so $\omega_{1}^{s}+\omega_{2}^{s}=\omega_{1}^{s^{\prime}}+\omega_{2}^{s^{\prime}}$ holds for all states s and s^{\prime}, and if we have

$$
\frac{\pi_{1}^{1}}{\pi_{1}^{S}}>\frac{\pi_{2}^{1}}{\pi_{2}^{S}}
$$

then at the competitive equilibrium we have $\left(x_{1}^{1}\right)^{*}>\left(x_{1}^{S}\right)^{*}$.

Answer:

(a) This statement is false. Intuitively, the condition will not hold if consumer 1 assigns a high enough probability and consumer 2 assigns a low enough probability to state s^{\prime}. Here is a counterexample. Both consumers have "log" utility, and there are two states with s being state 1 and s^{\prime} being state 2 . The initial endowments are given by $\omega_{1}=(2,0)$ and $\omega_{2}=(0,1)$. Consumer 1 has the beliefs $\left(\pi_{1}^{1}, \pi_{1}^{2}\right)=(\pi, 1-\pi)$ and consumer 2 has the beliefs $\left(\pi_{1}^{1}, \pi_{1}^{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$. We will compute the CE and show that the condition fails for some values of the parameter π. Normalize the price of state- 2 consumption to be 1 and denote the price of state- 1 contingent consumption as p.

Consumer 1 demand is found by solving the MRS equation and the budget equation:

$$
\begin{aligned}
p x_{1}^{1}+x_{1}^{2} & =2 p \\
\frac{\pi x_{1}^{2}}{(1-\pi) x_{1}^{1}} & =p, \text { yielding (skipping some algebra you should show) } \\
x_{1}^{1} & =2 \pi, x_{1}^{2}=2 p(1-\pi)
\end{aligned}
$$

Consumer 2 demand is found by solving the MRS equation and the budget equation:

$$
\begin{aligned}
p x_{2}^{1}+x_{2}^{2} & =1 \\
\frac{x_{2}^{2}}{x_{2}^{1}} & =p, \text { yielding } \\
x_{2}^{1} & =\frac{1}{2 p}, x_{2}^{2}=\frac{1}{2}
\end{aligned}
$$

Market clearing for good 2 yields

$$
\begin{aligned}
2 p(1-\pi)+\frac{1}{2} & =1 \\
p & =\frac{1}{4-4 \pi}
\end{aligned}
$$

Thus, consumer 1's consumption at the CE is

$$
\begin{aligned}
x_{1}^{1} & =2 \pi \\
x_{1}^{2} & =2\left(\frac{1}{4-4 \pi}\right)(1-\pi)=\frac{1}{2}
\end{aligned}
$$

If π is less than one quarter, then $x_{1}^{2}>x_{1}^{1}$, which contradicts the condition $\left(x_{1}^{s}\right)^{*}>\left(x_{1}^{s^{\prime}}\right)^{*}$.
(b) This statement is true. A CE allocation must be Pareto optimal, so marginal rates of substitution are equated for any pair of states, implying (I am omitting the asterisks)

$$
\begin{equation*}
\frac{\pi_{1}^{1} u_{1}^{\prime}\left(x_{1}^{1}\right)}{\pi_{1}^{S} u_{1}^{\prime}\left(x_{1}^{S}\right)}=\frac{\pi_{2}^{1} u_{2}^{\prime}\left(x_{2}^{1}\right)}{\pi_{2}^{S} u_{2}^{\prime}\left(x_{2}^{S}\right)} \tag{3}
\end{equation*}
$$

From (3) and the fact that $\frac{\pi_{1}^{1}}{\pi_{1}^{S}}>\frac{\pi_{2}^{1}}{\pi_{2}^{S}}$ holds, we know

$$
\begin{equation*}
\frac{u_{1}^{\prime}\left(x_{1}^{1}\right)}{u_{1}^{\prime}\left(x_{1}^{S}\right)}<\frac{u_{2}^{\prime}\left(x_{2}^{1}\right)}{u_{2}^{\prime}\left(x_{2}^{S}\right)} \tag{4}
\end{equation*}
$$

Suppose, by way of contradiction, that the claim is false, so that $x_{1}^{1} \leq x_{1}^{S}$ holds. From $x_{1}^{1} \leq x_{1}^{S}$, concavity implies $u_{1}^{\prime}\left(x_{1}^{1}\right) \geq u_{1}^{\prime}\left(x_{1}^{S}\right)$, so the left side of (4) is greater than or equal to 1 . Since there is no aggregate uncertainty and the PO allocation is nonwasteful, we also have $x_{2}^{1} \geq x_{2}^{S}$. Concavity implies $u_{2}^{\prime}\left(x_{2}^{1}\right) \leq u_{2}^{\prime}\left(x_{2}^{S}\right)$, so the right side of (4) is less than or equal to 1 . This contradicts (4).

3. (40 points)

Consider the following standard Arrow securities market, with 3 consumers, 2 states of nature, and 1 physical commodity per state. For $i=1,2,3$, consumer
i is a von Neumann-Morgenstern expected utility maximizer with Bernoulli utility function $u_{i}\left(x_{i}(s)\right)=\log \left(x_{i}(s)\right)$. Consumers 1 and 2 have the statecontingent endowment vector equal to $(2,1)$, and consumer 3 has the state contingent endowment vector equal to $(1,2)$. The two states are equally likely, so $\pi_{1}=\pi_{2}=\frac{1}{2}$.

Before the state of nature is revealed, consumers trade a complete set of Arrow securities, after which the state is revealed, securities are redeemed, and we have a spot market. Prices are written as $\left(q^{1}, q^{2}, p(1), p(2)\right)$, where $\left(q^{1}, q^{2}\right)$ are the securities prices and $p(1)$ is the price on the state- 1 spot market, and $p(2))$ is the price on the state- 2 spot market.
(a) (10 points) Define a competitive equilibrium for this economy with Arrow securities markets.
(b) (15 points) Normalize the price on each spot market to be one and the price of security 1 to be one: $p(1)=p(2)=q^{1}=1$. Compute the competitive equilibrium price of security 2 , the allocation of consumption, and the security holdings.
(c) (15 points) Is there a competitive equilibrium for this economy with $p(1)=q^{1}=q^{2}=1$? If yes, find the competitive equilibrium and justify your answer; if no, explain why not.

Answer:

A competitive equilibrium is a vector of prices, $\left(q^{1}, q^{2}, p(1), p(2)\right)$, and an allocation, $\left(x_{1}(1), x_{1}(2), b_{1}^{1}, b_{1}^{2}, x_{2}(1), x_{2}(2), b_{2}^{1}, b_{2}^{2}, x_{3}(1), x_{3}(2), b_{3}^{1}, b_{3}^{2},\right)$, such that (i) $x_{1}(1), x_{1}(2), b_{1}^{1}, b_{1}^{2}$ solves

$$
\begin{aligned}
& \max \frac{1}{2} \log \left(x_{1}(1)\right)+\frac{1}{2} \log \left(x_{1}(2)\right) \\
& \text { subject to } \\
& q^{1} b_{1}^{1}+q^{2} b_{1}^{2}= 0 \\
& p(1) x_{1}(1)= 2 p(1)+b_{1}^{1} \\
& p(2) x_{1}(2)= p(2)+b_{1}^{2} \\
& x_{1}(1) \geq 0, x_{1}(2) \geq 0 .
\end{aligned}
$$

(ii) $x_{2}(1), x_{2}(2), b_{2}^{1}, b_{2}^{2}$ solves

$$
\begin{aligned}
& \max \frac{1}{2} \log \left(x_{2}(1)\right)+\frac{1}{2} \log \left(x_{2}(2)\right) \\
& \text { subject to } \\
& q^{1} b_{2}^{1}+q^{2} b_{2}^{2}= 0 \\
& p(1) x_{2}(1)= 2 p(1)+b_{2}^{1} \\
& p(2) x_{2}(2)= p(2)+b_{2}^{2} \\
& x_{2}(1) \geq 0, x_{2}(2) \geq 0 .
\end{aligned}
$$

(iii) $x_{3}(1), x_{3}(2), b_{3}^{1}, b_{3}^{2}$ solves

$$
\begin{aligned}
& \max \frac{1}{2} \log \left(x_{3}(1)\right)+\frac{1}{2} \log \left(x_{3}(2)\right) \\
& \text { subject to } \\
q^{1} b_{3}^{1}+q^{2} b_{3}^{2}= & 0 \\
p(1) x_{3}(1)= & p(1)+b_{3}^{1} \\
p(2) x_{3}(2)= & 2 p(2)+b_{3}^{2} \\
x_{3}(1) \geq & 0, x_{3}(2) \geq 0
\end{aligned}
$$

(iv) markets clear:

$$
\begin{aligned}
b_{1}^{1}+b_{2}^{1}+b_{3}^{1} & =0 \\
b_{1}^{2}+b_{2}^{2}+b_{3}^{2} & =0 \\
x_{1}(1)+x_{2}(1)+x_{3}(1) & =5 \\
x_{1}(2)+x_{2}(2)+x_{3}(2) & =4
\end{aligned}
$$

Note: budget and market clearing conditions are written as equalities due to strict monotonicity.
(b) Consumers 1 and 2 are identical and will have the same demand function. For consumer 1, substitute the normalized spot market constraints into the securities constraint, yielding the maximization problem

$$
\begin{aligned}
& \max \frac{1}{2} \log \left(x_{1}(1)\right)+\frac{1}{2} \log \left(x_{1}(2)\right) \\
& \text { subject to } \\
\left(x_{1}(1)-2\right)+q^{2}\left(x_{1}(2)-1\right)= & 0 \\
x_{1}(1) \geq & 0, x_{1}(2) \geq 0 .
\end{aligned}
$$

The solution to this problem is found by solving the budget equation and the marginal rate of substitution condition,

$$
\frac{x_{1}(2)}{x_{1}(1)}=\frac{1}{q^{2}}
$$

yielding the demand functions (skipping the algebra which you should show)

$$
\begin{aligned}
& x_{1}(1)=x_{2}(1)=\frac{q^{2}+2}{2} \\
& x_{1}(2)=x_{2}(2)=\frac{q^{2}+2}{2 q^{2}}
\end{aligned}
$$

For consumer 3, substitute the normalized spot market constraints into the
securities constraint, yielding the maximization problem

$$
\begin{aligned}
& \max \frac{1}{2} \log \left(x_{3}(1)\right)+\frac{1}{2} \log \left(x_{3}(2)\right) \\
& \text { subject to } \\
\left(x_{3}(1)-1\right)+q^{2}\left(x_{3}(2)-2\right)= & 0 \\
x_{3}(1) \geq & 0, x_{3}(2) \geq 0 .
\end{aligned}
$$

The solution to this problem is found by solving the budget equation and the marginal rate of substitution condition,

$$
\frac{x_{3}(2)}{x_{3}(1)}=\frac{1}{q^{2}}
$$

yielding the demands (skipping the algebra which you should show)

$$
\begin{aligned}
& x_{3}(1)=\frac{2 q^{2}+1}{2} \\
& x_{3}(2)=\frac{2 q^{2}+1}{2 q^{2}} .
\end{aligned}
$$

Now we will use market clearing for the state-1 spot market to determime the remaining price. We have

$$
\begin{aligned}
2\left(\frac{q^{2}+2}{2}\right)+\frac{2 q^{2}+1}{2} & =5, \text { or } \\
q^{2} & =\frac{5}{4} .
\end{aligned}
$$

Substituting the price into the demand functions and then the spot market budget constraints, we find the CE allocation:

$$
\begin{aligned}
x_{1}(1) & =x_{2}(1)=\frac{13}{8}, x_{3}(1)=\frac{14}{8} \\
x_{1}(2) & =x_{2}(2)=\frac{13}{10}, x_{3}(2)=\frac{14}{10} \\
b_{1}^{1} & =b_{2}^{1}=-\frac{3}{8}, b_{3}^{1}=\frac{6}{8} \\
b_{1}^{2} & =b_{2}^{2}=\frac{3}{10}, b_{3}^{2}=-\frac{6}{10} .
\end{aligned}
$$

The CE price vector is $\left(1, \frac{5}{4}, 1,1\right)$.
(c) One way to answer this question is to impose the normalization $(1,1,1, p(2))$, then solve for the demand functions and determine if there is a value of $p(2)$ that yields market clearing on all markets. An easier way is to use the CE from part (b) and the homogeneity properties we went over in class. Consider $\left(1, \frac{5}{4}, 1,1\right)$ to be the "un-normalized" price vector. Consumption opportunities
are unchanged (and therefore we have the same utility maximizing consumptions, which we know clear markets) if we multiply q^{2} by a constant and divide $p(2)$ and each b_{i}^{2} by the same constant. Letting the constant be $\frac{4}{5}$, we have another CE given by

$$
\begin{aligned}
\left(q^{1}, q^{2}, p(1), p(2)\right) & =\left(1,1,1, \frac{5}{4}\right) \\
x_{1}(1) & =x_{2}(1)=\frac{13}{8}, x_{3}(1)=\frac{14}{8} \\
x_{1}(2) & =x_{2}(2)=\frac{13}{10}, x_{3}(2)=\frac{14}{10} \\
b_{1}^{1} & =b_{2}^{1}=-\frac{3}{8}, b_{3}^{1}=\frac{6}{8} \\
b_{1}^{2} & =b_{2}^{2}=\frac{3}{8}, b_{3}^{2}=-\frac{6}{8}
\end{aligned}
$$

