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1. (40 points)

The following economy has two consumers, two firms, and three goods. Good

3 is leisure/labor. For  = 1 2, consumer  has the initial endowment vector,

 = (1 1 1), and the utility function,

(1  
2
  

3
 ) = log(

1
 ) + log(

2
 )

Notice that the third good provides no utility, so the consumers will demand 0

units whatever the prices. Consumer 1 owns firm 1 and consumer 2 owns firm

2.

Firm 1 produces good 1 using labor and good 2 as inputs. Using the standard

notation in which 

 is firm  ’s net output of good , firm 1’s production function

(the boundary of the production set) is given by:

11 = (21
3
1)
12

where 21 ≤ 0 and 31 ≤ 0.

Firm 2 produces good 2 using labor and good 1 as inputs. Firm 2’s produc-

tion function (the boundary of the production set) is given by:

22 = (12
3
2)
12

where 12 ≤ 0 and 32 ≤ 0.

(a) (10 points) Define a competitive equilibrium for this economy.

(b) (30 points) Compute the competitive equilibrium price vector and alloca-

tion.

Answer:

(a) A CE is a price vector, (1∗ 2∗ 3∗), and an allocation, (1∗1  2∗1  3∗1  1∗2  2∗2  3∗2 )
and (1∗1  2∗1  3∗1  1∗2  2∗2  3∗2 ), such that:
(i) (1∗1  2∗1  3∗1 ) solves:

max log(11) + log(
2
1)

subject to

1∗11 + 2∗21 + 3∗31 ≤ 1∗ + 2∗ + 3∗ + 1

1 ≥ 0
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(ii) (1∗2  2∗2  3∗2 ) solves:

max log(12) + log(
2
2)

subject to

1∗12 + 2∗22 + 3∗32 ≤ 1∗ + 2∗ + 3∗ + 2

2 ≥ 0

(iii) (1∗1  2∗1  3∗1 ) solves

max1 = 1∗11 + 2∗21 + 3∗31
subject to

11 ≤ (21
3
1)
12

21 ≤ 0 and 31 ≤ 0
(iv) (1∗2  2∗2  3∗2 ) solves

max2 = 1∗12 + 2∗22 + 3∗32
subject to

22 ≤ (12
3
2)
12

12 ≤ 0 and 32 ≤ 0
(v) market clearing:

1∗1 + 1∗2 ≤ 2 + 1∗1 + 1∗2
2∗1 + 2∗2 ≤ 2 + 2∗1 + 2∗2
3∗1 + 3∗2 ≤ 2 + 3∗1 + 3∗2 

(b) First, normalize 3 = 1 and notice that, due to strict monotonicity,

budget and market clearing inequalities will hold as equalities, and firms will

be on their production frontiers. Substituting the technological constraint into

firm 1’s profit expression, firm 1 chooses 21 and 31 to maximize

1∗(21
3
1)
12 + 2∗21 + 31

Differentiating the above expression with respect to 21 yields

−1
2
1∗(21

3
1)
−1231 = 2∗ (1)

and differentiating with respect to 31 yields

−1
2
1∗(21

3
1)
−1221 = 1

Dividing left sides and right sides of the above two equations yields the condition

that marginal rates of technical substitution equal input price ratios:

31
21
= 2∗ (2)
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Due to constant returns to scale, if we substitute (2) into one of the first order

conditions, say (1), we do not find a supply function, but rather a restriction on

prices such that firm 1 is willing to produce a positive finite quantity:

−1
2
1∗(21(

2∗21))
−122∗21 = 2∗

1

2
1∗(2∗)−12 = 1

1∗ =
p
42∗ (3)

Alternatively, one could derive (3) by substituting (2) into the profit expression,

noticing that profits are linear in 21 , and concluding that profits must be zero

for a solution to the profit maximization problem with positive output.

Going through the same steps for firm 2 yields the mrts condition,

32
12
= 1∗ (4)

and the restriction on prices

2∗ =
p
41∗ (5)

Solving (3) and (5), we find the equilibrium price vector,

1∗ = 2∗ = 4 3∗ = 1

Note—because labor is inelastically supplied, it is clear that at least one firm

must be producing, and because of the symmetry of the problem in terms of

goods 1 and 2, it is clear that both firms will be producing. Thus, both (3) and

(5) must hold.

Because the two consumers have the same utility function and endowment

vectors, and because profit incomes are zero, they will have the same demand

functions. Simultaneously solving the budget equation and the marginal rate of

substitution condition, we have

1∗1 + 2∗2 = 1∗ + 2∗ + 1
2
1

=
1∗

2∗

and the demand functions

1 =
1∗ + 2∗ + 1

21∗

2 =
1∗ + 2∗ + 1

22∗

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Subsituting the equilibrium price vector yields

1 =
9

8

2 =
9

8


Now we use market clearing for goods 1 and 2:

1∗1 + 1∗2 =
9

4
= 2 + 1∗1 + 1∗2 (6)

2∗1 + 2∗2 =
9

4
= 2 + 2∗1 + 2∗2 (7)

From firm 1’s production function and (2), we have

1∗1 = (2∗1 3∗1 )
12 = (2∗1 4

2∗
1 )

12 = −22∗1 

From firm 2’s production function and (4), we have

2∗2 = (1∗2 3∗2 )
12 = (1∗2 4

1∗
2 )

12 = −21∗2 

Substituting these conditions into the market clearing equations yields

9

4
= 2− 22∗1 + 1∗2 (8)

9

4
= 2 + 2∗1 − 21∗2  (9)

Simultaneously solving (8) and (9) yields

2∗1 = 1∗2 = −1
4


which implies

1∗1 = 2∗2 =
1

2


Therefore, the equilibrium price vector is (4 4 1), and the equilibrium allocation

is 1 = 2 = (
9
8
 9
8
 0), 1 = (

1
2
−1

4
−1), 2 = (−14  12 −1).

2. (30 points)

The following pure-exchange economy has 2 consumers, 2 states of nature,

and one physical commodity per state of nature. For  = 1 2, the probability

of state  is denoted by . For  = 1 2 and  = 1 2, denote the consumption

of consumer  in state  by  . The initial endowment vectors are given by

(11 
2
1) = (1 3) and (

1
2 

2
2) = (3 1). For  = 1 2, consumer  is an expected
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utility maximizer, but with a "Bernoulli" utility function, given in brackets be-

low, that depends on the state. Specifically, overall utility functions, 1(
1
1 

2
1)

and 2(
1
2 

2
2), are given by

1(
1
1 

2
1) = 1[21(

1
1)] + 2[1(

2
1)]

2(
1
2 

2
2) = 1[2(

1
2)] + 2[22(

2
2)]

Assumption 1: The functions, 1(·) and 2(·), are differentiable, strictly con-
cave, and strictly monotonic.

Let (∗ ∗) be a competitive equilibrium with complete contingent commod-
ity markets. Then exactly one of the following statements is true:

1. We have 1∗1  2∗1 , for all functions, 1(·) and 2(·), satisfying Assump-
tion 1.

2. We have 1∗1 = 2∗1 , for all functions, 1(·) and 2(·), satisfying Assump-
tion 1.

3. We have 1∗1  2∗1 , for all functions, 1(·) and 2(·), satisfying Assump-
tion 1.

(30 points) Indicate whether statement 1, statement 2, or statement 3 is true,

and give a proof of the correct statement. (Half credit for a correctly worked out

example illustrating which statement is true, since this is not a proof.)

Answer:

Statement 1 is true, and here is the proof.

Because Assumption 1 holds, the C.E. allocation is characterized by equal

marginal rates of substitution. Therefore, denoting derivatives by "primes", we

have

1[2
0
1(

1∗
1 )]

2[
0
1(

2∗
1 )]

=
1[

0
2(

1∗
2 )]

2[2
0
2(

2∗
2 )]

 or

201(
1∗
1 )

01(
2∗
1 )

=
02(

1∗
2 )

202(
2∗
2 )

 (10)

Suppose by way of contradiction that statement 1 is not true. Then for some

functions satisfying Assumption 1, we have 1∗1 ≤ 2∗1 . By concavity, 
1∗
1 ≤ 2∗1

implies 01(
1∗
1 ) ≥ 01(

2∗
1 ), so the left side of (10) is greater than or equal to

2. Because there is no aggregate uncertainty (endowments add up to 4 in each

state), 1∗1 ≤ 2∗1 implies 1∗2 ≥ 2∗2 . Therefore, it follows from concavity that

we have 02(
1∗
2 ) ≤ 02(

2∗
2 ), so the right side of (10) is less than or equal to one

half. Since the two sides are equal, the left side cannot be greater than 2 and
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the right side less than one half, contradicting the supposition that statement 1

is not true.

3. (30 points)

Suppose that we add to the Rothschild-Stiglitz insurance model a govern-

ment that only cares about the welfare of the low-risk drivers. A fraction, 9
10
,

of the drivers are of the low-risk type, with an accident probability,  = 02. A

fraction, 1
10
, of the drivers are of the high-risk type, with an accident probability,

 = 07. Drivers differ only in their accident probabilities, with the Bernoulli

utility function () = log(), an initial wealth of 1, and damages of 1 when

they have an accident. (That is, the endowment in (12) space is (1 0).)

Suppose that the government can exclude all private firms from offering

insurance contracts, and that the goverment chooses a single contract to offer

to all drivers. (The goverment cannot observe a driver’s type, and therefore

must offer the same contract to everyone.) Also assume that the government is

required to balance it’s budget, so the contract it offers must yield itself zero

expected profits.

Compute the goverment’s optimal contract, to maximize the utility of the

low-risk drivers subject to the break-even constraint.

Answer:

Because both high-risk types and low-risk types will choose the contract

offered by the government, the break-even constraint requires the government

to offer a contract that is on or below the pooled fair odds line. The accident

probability for a driver randomly selected from the population is given by

 = (9)(2) + (1)(7) =
1

4


Then the equation of the pooled fair odds line equates expected consumption

with expected endowment wealth, using the accident probability  = 1
4
:

3

4
1 +

1

4
2 =

3

4


The government’s problem, then, is to choose (12) to solve

max
4

5
log(1) +

1

5
log(2)

subject to

3

4
1 +

1

4
2 ≤ 3

4


The solution is characterized by the constraint holding with equality and the

marginal rate of substitution condition,

4
5
2

1
5
1

= 3
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Substituting 1 =
4
3
2 (from the mrs condition) into the constraint, and solv-

ing, we have 1 =
4
5
and 2 =

3
5

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