Department of Economics The Ohio State University Final Exam Questions and Answers-Econ 8712

Prof. Peck

Fall 2019

1. (30 points)

Consider a pure exchange economy with $n \geq 3$ consumers and $K \geq 2$ commodities. For $i=1, \ldots, n$, denote the non-negative consumption vector of consumer i as x_{i} and the utility function (defined over all non-negative consumption vectors) as $u_{i}\left(x_{i}\right)$. Prove the following statement:

For any strongly Pareto optimal allocation, x^{*}, there exists a consumer, h, who prefers her consumption to any other consumer's consumption. That is, we have

$$
u_{h}\left(x_{h}^{*}\right) \geq u_{h}\left(x_{i}^{*}\right) \quad \text { for all } i=1, \ldots, n .
$$

(Full credit for proving this without any additional assumptions on utility functions or the number of consumers. Partial credit if you need to make additional assumptions.)

Answer:

Suppose that the conclusion is false, so that for any consumer, h, there exists another consumer whose bundle consumer h strictly prefers. Start with an arbitrary consumer, who we label as $h 1$. Consumer $h 1$ strictly prefers the bundle of another consumer, who we will label as $h 2$. Consumer $h 2$ strictly prefers the bundle of another consumer. If this consumer is $h 1$, we have a contradiction to strong Pareto optimality, since the allocation where $h 1$ and $h 2$ exchange bundles dominates x^{*}. Otherwise, consumer $h 2$ strictly prefers the bundle of another consumer, who we label as $h 3$.

We proceed in this fashion, looking at the consumer whose bundle consumer $h 3$ strictly prefers, and so on, until eventually we have a consumer, $h k$, who strictly prefers the bundle of one of the consumers we considered earlier, $h j$, for $j<k$. This "cycle" must eventually occur. Then consider the allocation in which consumer $h j$ receives the bundle of $h j+1$, and so on until consumer $h k$ receives the bundle of $h j$. Those consumers i not in the cycle receive x_{i}^{*}. This allocation Pareto dominates x^{*}, a contradiction.

2. (35 points)

The following economy has two consumers, two firms, and two goods. Good 2 is leisure/labor. For $i=1,2$, consumer i has the utility function,

$$
u\left(x_{i}^{1}, x_{i}^{2}\right)=\log \left(x_{i}^{1}\right)+\log \left(x_{i}^{2}\right) .
$$

Consumer 1 has no endowments of goods, $\omega_{1}=(0,0)$, but owns both firms. Consumer 2 has the initial endowment vector, $\omega_{2}=(0,1)$.

Firm 1 produces good 1 using good 2 as an input. For convenience, denote the (nonnegative) labor input used by firm 1 as L_{1}. Firm 1's production function (the boundary of the production set) is given by:

$$
\begin{aligned}
y_{1}^{1} & =\left(\frac{1}{3} L_{1}\right)^{1 / 2} \\
\text { where } L_{1} & \geq 0
\end{aligned}
$$

Firm 2 also produces good 1 using good 2 as an input. For convenience, denote the (non-negative) labor input used by firm 2 as L_{2}. Firm 2's production function (the boundary of the production set) is given by:

$$
\begin{aligned}
y_{2}^{1} & =\frac{1}{4} L_{2} \\
\text { where } L_{2} & \geq 0
\end{aligned}
$$

(a) (10 points) Define a competitive equilibrium for this economy.
(b) (25 points) Calculate the competitive equilibrium for this economy.

Answer:

(a) A CE is a price vector $\left(p^{1}, p^{2}\right)$ and an allocation $\left(x_{1}^{1}, x_{1}^{2}, x_{2}^{1}, x_{2}^{2}, y_{1}^{1}, L_{1}, y_{2}^{1}, L_{2}\right)$ satisfying
(i) $\left(x_{1}^{1}, x_{1}^{2}\right)$ solves

$$
\begin{aligned}
& \max \log \left(x_{1}^{1}\right)+\log \left(x_{1}^{2}\right) \\
& \text { subject to } \\
& p^{1} x_{1}^{1}+p^{2} x_{1}^{2} \leq \pi_{1}+\pi_{2} \\
& x_{1} \geq 0
\end{aligned}
$$

(ii) $\left(x_{2}^{1}, x_{2}^{2}\right)$ solves

$$
\begin{aligned}
& \max \log \left(x_{2}^{1}\right)+\log \left(x_{2}^{2}\right) \\
& \text { subject to } \\
& p^{1} x_{2}^{1}+p^{2} x_{2}^{2} \leq p^{2} \\
& x_{2} \geq 0
\end{aligned}
$$

(iii) $\left(y_{1}^{1}, L_{1}\right)$ solves

$$
\begin{aligned}
& \max \pi_{1}= p^{1} y_{1}^{1}-p^{2} L_{1} \\
& \text { subject to } \\
& y_{1}^{1} \leq \sqrt{\frac{1}{3} L_{1}} \\
& L_{1} \geq 0
\end{aligned}
$$

(iv) $\left(y_{2}^{1}, L_{2}\right)$ solves

$$
\begin{aligned}
& \max \pi_{2}= p^{1} y_{2}^{1}-p^{2} L_{2} \\
& \text { subject to } \\
& y_{2}^{1} \leq \frac{L_{2}}{4} \\
& L_{2} \geq 0
\end{aligned}
$$

(v) markets clear:

$$
\begin{aligned}
x_{1}^{1}+x_{2}^{1} & \leq y_{1}^{1}+y_{2}^{1} \\
x_{1}^{2}+x_{2}^{2}+L_{1}+L_{2} & \leq 1
\end{aligned}
$$

(b) Normalize the price of good 2 to be 1 and denote the price of good 1 as p. Let us start with the profit maximization problems.

For firm 1, we can substitute the constraint into the objective, and derive the first order condition,

$$
p \cdot \frac{1}{2}\left(\frac{1}{3} L_{1}\right)^{-1 / 2} \cdot \frac{1}{3}-1=0
$$

from which we derive the supply function and profit (skipping some work you should show),

$$
\begin{aligned}
L_{1} & =\frac{p^{2}}{12} \\
y_{1}^{1} & =\frac{p}{6} \\
\pi_{1} & =\frac{p^{2}}{12}
\end{aligned}
$$

For firm 2, whose production function exhibits constant returns to scale, substituting the constraint into the objective we have profit as a function of L_{2} given by $p \frac{L_{2}}{4}-L_{2}$, so this firm produces (finite) positive output if and only if $p=4$. However, at that price, firm 1 would demand more than all of the economy's endowment of good 2 , which is inconsistent with equilibrium. Therefore, firm 2 does does not produce in equilibrium.

The utility maximizing demands for consumer 1 satisfy the first order conditions,

$$
\begin{aligned}
\frac{x_{1}^{2}}{x_{1}^{1}} & =p \\
p x_{1}^{1}+x_{1}^{2} & =\frac{p^{2}}{12},
\end{aligned}
$$

which (skipping some work you should show) yield the demand functions,

$$
\begin{aligned}
x_{1}^{1} & =\frac{p}{24} \\
x_{1}^{2} & =\frac{p^{2}}{24} .
\end{aligned}
$$

Similarly solving consumer 2's utility maximization problem yields the demand functions

$$
\begin{aligned}
x_{2}^{1} & =\frac{1}{2 p} \\
x_{2}^{2} & =\frac{1}{2} .
\end{aligned}
$$

Market clearing for good 2 requires

$$
\begin{aligned}
\frac{p^{2}}{24}+\frac{1}{2}+\frac{p^{2}}{12} & =1 \\
p & =2
\end{aligned}
$$

Therefore, the allocation is

$$
\begin{aligned}
& x_{1}^{1}=\frac{1}{12}, x_{1}^{2}=\frac{1}{6}, x_{2}^{1}=\frac{1}{4}, x_{2}^{2}=\frac{1}{2} \\
& y_{1}^{1}=\frac{1}{3}, L_{1}=\frac{1}{3}, y_{2}^{1}=0, L_{2}=0
\end{aligned}
$$

3. (35 points)

The following economy has 2 consumers, 2 states of nature, and one physical commodity per state. The probability of state 1 is one-third, $\pi_{1}=\frac{1}{3}$ and the probability of state 2 is two-thirds, $\pi_{2}=\frac{2}{3}$. For $i=1,2$, consumer i is an expected utility maximizer, with a Bernoulli utility function given by $u_{i}\left(x_{i}\right)=$ $\log \left(x_{i}\right)$. Consumer 1's initial endowment vector is $\left(\omega_{1}(1), \omega_{1}(2)\right)=(1,0)$ and consumer 2's initial endowment vector is $\left(\omega_{2}(1), \omega_{2}(2)\right)=(0,1)$.

The market structure consists of a securities market on which three securities are traded before the state is realized, and then a spot market on which physical commodities are traded after the state is realized and securities are redeemed. Security 1 is a standard Arrow security that pays 1 unit of account on the state- 1 spot market, security 2 is a standard Arrow security that pays 1 unit of account on the state- 2 spot market, and security 3 pays 1 unit of account on the state- 1 spot market and one unit of account on the state- 2 spot market. Normalize prices so that $p(1)=p(2)=q^{3}=1$ holds.
(a) (10 points) Define a competitive equilibrium for this economy.
(b) (15 points) Calculate a competitive equilibrium in which consumer 1's equilibrium holding of security 3 is zero, $b_{1}^{3}=0$.
(c) (10 points) Calculate a competitive equilibrium in which consumer 1's equilibrium holding of security 3 is one, $b_{1}^{3}=1$.

Answer:

(a) A competitive equilibrium is a (normalized) price vector, $\left(q^{1}, q^{2}, 1,1,1\right)$, and an allocation, $\left(x_{1}(1), x_{1}(2), x_{2}(1), x_{2}(2), b_{1}^{1}, b_{1}^{2}, b_{1}^{3}, b_{2}^{1}, b_{2}^{2}, b_{2}^{3}\right)$, such that
(i) $x_{1}(1), x_{1}(2), b_{1}^{1}, b_{1}^{2}, b_{1}^{3}$ solves

$$
\begin{aligned}
& \max \frac{1}{3} \log \left(x_{1}(1)\right)+\frac{2}{3} \log \left(x_{1}(2)\right) \\
& \text { subject to } \\
q^{1} b_{1}^{1}+q^{2} b_{1}^{2}+b_{1}^{3}= & 0 \\
x_{1}(1)= & 1+b_{1}^{1}+b_{1}^{3} \\
x_{1}(2)= & b_{1}^{2}+b_{1}^{3} \\
x_{1} \geq & 0
\end{aligned}
$$

(ii) $x_{2}(1), x_{2}(2), b_{2}^{1}, b_{2}^{2}, b_{2}^{3}$ solves

$$
\begin{aligned}
& \max \frac{1}{3} \log \left(x_{2}(1)\right)+\frac{2}{3} \log \left(x_{2}(2)\right) \\
& \text { subject to } \\
q^{1} b_{2}^{1}+q^{2} b_{2}^{2}+b_{2}^{3}= & 0 \\
x_{2}(1)= & b_{2}^{1}+b_{2}^{3} \\
x_{2}(2)= & 1+b_{2}^{2}+b_{2}^{3} \\
x_{2} \geq & 0
\end{aligned}
$$

(iii) markets clear:

$$
\begin{aligned}
x_{1}(1)+x_{2}(1) & =1 \\
x_{1}(2)+x_{2}(2) & =1 \\
b_{1}^{1}+b_{2}^{1} & =0 \\
b_{1}^{2}+b_{2}^{2} & =0 \\
b_{1}^{3}+b_{2}^{3} & =0 .
\end{aligned}
$$

Note: equalities are due to the monotonicity of utility functions.
(b) For consumer 1 , impose $b_{1}^{3}=0$ and substitute the spot market budget constraints into the securities market budget constraint, yielding

$$
q^{1}\left(x_{1}(1)-1\right)+q^{2} x_{1}(2)=0
$$

Solving the Lagrangean gives this constraint and the marginal rate of substitution condition,

$$
x_{1}(2)=\frac{2 q^{1} x_{1}(1)}{q^{2}}
$$

This yields the demand functions,

$$
\begin{aligned}
x_{1}(1) & =\frac{1}{3} \\
x_{1}(2) & =\frac{2 q^{1}}{3 q^{2}}
\end{aligned}
$$

Going through the same steps for consumer 2, we substitute the spot market constraints into the securities market constraint, yielding

$$
q^{1} x_{2}(1)+q^{2}\left(x_{2}(2)-1\right)=0
$$

The marginal rate of substitution condition is

$$
x_{2}(2)=\frac{2 q^{1} x_{2}(1)}{q^{2}}
$$

Solving, we get the demand functions,

$$
\begin{aligned}
& x_{2}(1)=\frac{q^{2}}{3 q^{1}} \\
& x_{2}(2)=\frac{2}{3}
\end{aligned}
$$

Using market clearing, we get the relative securities price, $\frac{q^{2}}{q^{1}}=2$, and the allocation,

$$
\begin{aligned}
& x_{1}=\left(\frac{1}{3}, \frac{1}{3}\right), b_{1}=\left(-\frac{2}{3}, \frac{1}{3}, 0\right) \\
& x_{2}=\left(\frac{2}{3}, \frac{2}{3}\right), b_{1}=\left(\frac{2}{3},-\frac{1}{3}, 0\right)
\end{aligned}
$$

Note that we have already used all of our normalizations. To find q^{1} and q^{2}, we use the no-arbitrage condition, $q^{1}+q^{2}=1$. Otherwise, consumers could either buy securities 1 and 2 and sell security 3 , or sell securities 1 and 2 and buy security 3 . Therefore, $q^{1}=\frac{1}{3}$ and $q^{2}=\frac{2}{3}$.
(c) Because the securities return matix has rank 2, this market structure is equivalent to complete markets, and all consumption allocations are given by

$$
\begin{aligned}
& x_{1}=\left(\frac{1}{3}, \frac{1}{3}\right) \\
& x_{2}=\left(\frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

To get the securities holdings, substitute the consumptions and $b_{1}^{3}=1$ into consumer 1 's spot market budget constraints, yielding $b_{1}=\left(-\frac{5}{3},-\frac{2}{3}, 1\right)$. Market clearing then requires $b_{2}=\left(\frac{5}{3}, \frac{2}{3},-1\right)$. The equilibrium securities prices are the same as before, $q^{1}=\frac{1}{3}$ and $q^{2}=\frac{2}{3}$.

