
Choice Under Uncertainty

Lotteries

Without uncertainty, there is no need to distinguish be-

tween a consumer’s choice between alternatives and the

resulting outcome. A consumption bundle is the choice

and it is also the outcome providing utility.

With uncertainty, the set of alternatives and the set of

outcomes could be different. For example, a consumer

could purchase an insurance policy and the outcome de-

pends on whether she has an accident.

Denote the set of possible outcomes (or consequences)

by . For simplicity, we assume that the set of outcomes

is finite, so  = {1 2  }.

We use the term lottery to refer to a risky alternative

received by or chosen by the decision maker.

Def. A simple lottery  is a list  = (1  ), where

 is interpreted as the probability of outcome  occur-

ring.



Geometrically, a lottery is a point in the ( − 1) dimen-
sional simplex in < , ∆−1 = { ∈ <+ :

P
=1  =

1}.

Note: We usually reserve the letter  to denote prices.

Only in the section on choice under uncertainty does 

refer to a probability.

A compound lottery is a lottery in which the outcomes

are themselves lotteries. For example, a decision to go to

grad school might yield a professor job at a top-tier de-

partment with probability 01, a professor job at a second-

tier department with probability 04, a professor job at a

third-tier department with probability 02, a job at a con-

sulting firm or government agency with probability 02,

and a job driving a taxi with probability 01. Each of

these jobs themselves are lotteries that offer various earn-

ings profiles with various probabilities (and require future

choices!).



Def. Given simple lotteries  = (

1  


) for  =

1 , and given probabilities  ≥ 0 with
P
=1 =

1, the compound lottery (1  ;1  ) is the

risky alternative yielding the lottery  with probability

, for  = 1 .

Any compound lottery can be reduced to a corresponding

simple lottery that generates the same probability distri-

bution over outcomes in . The probability of outcome

 is given by  = 1
1
 + 2

2
 +  + 


 . The

term 

 is the probability that lottery  is selected in

the compound lottery and that outcome  is selected in

lottery .

More complicated compound lotteries are possible, but

they can all be reduced to a unique simple lottery.



Example:  = 3 and  = 4.

1 is the degenerate simple lottery yielding outcome 1

for sure, 1 = (1 0 0). 2 = (1
3
 1
3
 1
3
), 3 = (1

2
 0 1

2
),

4 = (
1
2
 1
2
 0).

 = (1 2 3 4) = (
1
6
 1
6
 1
3
 1
3
)

Then

1 =
1

6
· 1 + 1

6
· 1
3
+
1

3
· 1
2
+
1

3
· 1
2
=
5

9

2 =
1

6
· 0 + 1

6
· 1
3
+
1

3
· 0 + 1

3
· 1
2
=
2

9

3 =
1

6
· 0 + 1

6
· 1
3
+
1

3
· 1
2
+
1

3
· 0 = 2

9



Preferences Over Lotteries

We will impose assumptions or axioms that preferences

over lotteries must satisfy, ultimately leading to utility

functions.

Axiom (Consequentialism)—For any risky alternative that

might be a compound lottery, only the reduced simple

lottery specifying probabilities of final outcomes (conse-

quences) is relevant for the decision maker’s (DM’s) pref-

erences.

Note: One can imagine situations in which the process

matters and not just the final outcome. Machina’s ice

cream cone example.

Note: One can also imagine that DM’s can have a diffi-

cult time computing the reduced lottery, so that system-

atic departures from consequentialism are possible.

If preferences satisfy consequentialism, then we can take

the set of risky alternatives to be the set of simple lotteries

over , which we denote by L. The DM’s preferences
are captured by a (weak) preference relation º on L.



Axiom (Continuity)—For any 0 00 ∈ L, the follow-
ing sets are closed subsets of [0 1]:

{ ∈ [0 1] : + (1− )0 º 00}
{ ∈ [0 1] : 00 º + (1− )0}

Continuity says that if one lottery is strictly preferred

to another, then it remains strictly preferred if we make

sufficiently small changes to the probabilities.

Suppose the outcomes are {go out and have fun, go out

and have an accident, stay at home}.  = (1 0 0) 0 =
(0 1 0) 00 = (0 0 1) Then someone not willing to

take any risk might have preferences satisfying { ∈
[0 1] : 00 º + (1− )0} = [0 1), which is not a

closed set. Not continuous.

Under continuity, then the preference relation º can be

represented by a utility function  : L → <, such that
 º 0 if and only if () ≥ (0).



Axiom (Independence)—For any 0 00 ∈ L and

 ∈ (0 1), we have

 º 0 iff + (1− )00 º 0 + (1− )00

In other words, if  is preferred to 0, then introducing a
fixed probability of a third option should not change the

preference.

Independence is a reasonable axiom, but there may be cir-

cumstances in which it fails. We will discuss this later but

for now consider this example of disappointment due to

Machina.  = {trip to Venice, see a beautiful movie
about Venice, stay home}. If you prefer (0 1 0) to

(0 0 1), then independence requires (99 01 0) º (99 0 01).
But if you do not win the trip to Venice, will you really

want to sit through the movie?



Def. The utility function  : L → < has an expected

utility form if there is an assignment of numbers to each

outcome, (1  ), such that for every simple lottery

 = (1  ), we have

() =
X
=1



A utility function with the expected utility form is called

a von Neumann-Morgenstern (or v.N-M) expected utility

function.

Note: Expected utility is an appropriate terminology, be-

cause the utility of each outcome is well-defined, and the

utility of a lottery is the expectation of the utility of the

outcome.



Proposition (Linearity):  : L → < has an expected

utility form if and only if it is linear. That is,



⎛⎝ X
=1



⎞⎠ = X
=1

()

holds for any compound lottery (1  ;1  ).

proof sketch =⇒ If  has the expected utility form, we

can write



⎛⎝ X
=1



⎞⎠ =
X
=1

⎛⎝ X
=1





⎞⎠

=
X
=1

X
=1





=
X
=1



X
=1

 =
X
=1

()



proof sketch ⇐= If



⎛⎝ X
=1



⎞⎠ = X
=1

()

holds for any compound lottery (1  ;1  ),

consider the simple lottery  as a degenerate compound

lottery over certain outcomes,  = (1   ; 1  ),

where  = (0  0 1 0  0). We have

() = (
X
=1


) =

X
=1

(
)

Just define  = (), and we are done.



Proposition: Suppose that  : L → < is a v.N-M

expected utility function for the preference %. Then e is

also a v.N-M expected utility function for the preference

% if and only if there are scalars   0 and  such thate() = () +  holds for every  ∈ L.

Note: When making choices under uncertainty, v.N-M

expected utility pins down the cardinal utility function

over outcomes. Statements like "the utility of outcome 1

exceeds the utility of outcome 2 by more than the differ-

ence in utility between outcome 3 and outcome 4" make

sense. To see this, 1 − 2  3 − 4 is equivalent

to 1
2
1 +

1
2
4 

1
2
2 +

1
2
3, which is equivalent to the

statement that the lottery (12 0 0
1
2) is preferred to the

lottery (0 1
2
 1
2
 0).

Expected utility is a cardinal notion, like temperature.

It can be rescaled, but for a given preference relation,

specifying the utility of two outcomes pins down the entire

function. Unlike temperature which can be objectively

measured, utility functions vary across individuals.



The Expected Utility Theorem

If preferences can be represented by a v.N-M expected

utility function, then they must be continuous because

linear functions are continuous.

Preferences must also satisfy the independence axiom,

again because of the linear structure. That is, it is clear

that

X
=1

 ≥
X
=1

0

holds if and only if we have


X
=1

+(1−)
X
=1

00 ≥ 
X
=1

0+(1−)
X
=1

00

The Expected Utility Theorem shows that the converse

is also true.



Theorem: Suppose that % on the space of lotteries L
satisfies the continuity and independence axioms. Then

% can be represented by a v.N-M expected utility func-

tion. That is, there is an assignment of numbers to each

outcome, (1  ), such that for any two simple lot-

teries  = (1  ) and 
0 = (01  0), we have

 % 0 if and only if
X
=1

 ≥
X
=1

0



Intuition for the Theorem with  = 3:

Continuity implies that preferences over lotteries can be

represented by a utility function, so we can draw indiffer-

ence curves in the lottery simplex (triangle).

Independence implies that the indifference curves must be

linear. If  ∼ 0 then +(1−) ∼ 0+(1−),
so any point on the segment connecting  and 0 must
be on the same indifference curve as .

Independence implies that the indifference curves must

all be parallel. Consider the triangle formed by  ∼ 0
and a third lottery 00. By independence, 13 +

2
3
00 ∼

1
3
0 + 2

3
00, so the lottery2

3
of the way from  to 00 is

indifferent to the lottery 2
3
of the way from 0 to 00. This

indifference curve must be parallel to the line connecting

 and 0.

Parallel straight line indifference curves admit a v.N-M

representation. (Normalize the best outcome to have util-

ity 1 and the worst to have utility 0. The slope pins down

the utility of the remaining outcome.)



Discussion of Expected Utility

1. Analytically easy. Normatively appealing—violations

are mistakes that should be corrected. What would you

replace it with?



2. The Allais Paradox. Outcomes are prizes:  =

{$2 500 000; $500 000; $0}. Most people strictly pre-
fer 1 = (0 1 0) to 

0
1 = (010 089 001). However,

most people also strictly prefer 02 = (010 0 090) to

2 = (0 011 089). These preferences are inconsistent

with expected utility.

1 Â 01 implies 5  01025 + 0895

which implies 0115  01025 + 0010

02 Â 2 implies 01025 + 0900  011

which implies 0115  01025 + 0010



Does this show that people are not expected utility max-

imizers? Maybe they overstate the importance of small

risks and would prefer 01 upon reflection. Maybe they
would feel enormous regret if they could have guaranteed

$500 000 but chose 01 and wound up with zero—the
utility of a lottery depends on the other choices avail-

able. Maybe we do not trust the referee who is running

the lottery.



3. Induced Preferences. Some apparent departures from

expected utility are due to the decision problem not being

fully modeled. For example, you are invited to a dinner

party that either serves fish (outcome F) or meat (out-

come M). Suppose that you are indifferent between fish

and meat,  =  .

Then a v.N-M utility function should assign the same

utility to all lotteries. However, you strictly prefer the

lotteries (1 0) and (0 1) to (1
2
 1
2
), because you can bring

a bottle of white wine if fish is being served and red wine

if meat is being served.

Outcomes should be modeled as including the kind of

wine brought to the party and the dish being served.


