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A population of potential investors face a decision about
whether or not to invest, in sequence.

The asset return is common to all investors, and takes on
one of two values:

a w.p. p

b w.p. 1− p.

The cost of investing is individual-specific, independent,
and takes on one of two values:

0 w.p. q

c w.p. 1− q.

We assume: a > c > b > 0.



Investor 1 observes the realized investment return (a or
b), and other investors receive no signals at all.

Banerjee distinguishes between herding and a rumour
process. How well will investor 1’s information be trans-
mitted when other investors only observe the previous
investor’s behavior?

In Model 1, investor t only observes that there is an in-
vestment opportunity if investor t− 1 invested.

In Model 2, investor t knows when the rumour started
(knows her number) and observes whether or not investor
t− 1 invested.

In Model 3, the process runs in continuous time and in-
vestors know when the rumour started. Transmission is
endogenous: the probability of receiving the rumour is
proportional to the number of people who have invested
in the past.



Model 1

"Unknown" investment opportunity: investor t only ob-
serves that there is an investment opportunity if investor
t− 1 invested.

If investor 1 has cost c and observes that the state is b,
he does not invest and the game is over.

Otherwise, he invests and investor 2 has a choice. She
can use Bayes’ rule to compute

pr(a|investor 1 invests) = p

p+ (1− p)q
.

Assumption (*) is the condition that investor 2 can prof-
itably invest with cost c if she observes investor 1 invest:

p

p+ (1− p)q
≥ c− b

a− b
.

Without this assumption, the game is trivial, with invest-
ment only by zero cost investors.



Proposition 2.1: Under assumption (*), the informa-
tiveness of the rumour does not change over time, in the
sense that the ex post probability that the return is "a"
remains the same. Everyone invests if and only if the first
person invests.

Investor t, whether she knows her number or not, knows
that having the opportunity is equivalent to observing
that the first person invested. All subsequent investors
invest whatever their cost, and the conditional probability
of state a remains forever at

p

p+ (1− p)q
.



Model 2

Investor t knows when the rumour started (knows her
number) and observes whether or not investor t − 1 in-
vested.

We make assumption (*) throughout, so investor 1 in-
vests in state a and also when his cost is zero. The
equilibrium will depend on whether or not the following
additional assumption holds:

Assumption (**) is the condition that an investor with
an opportunity, but knowing only the ex ante distribution
of returns, would not invest:

c− b

a− b
> p.



Investor t + 1 will invest if cost is zero or if state a is
sufficiently likely.

From Bayes’ rule, we have pr(a|t invested) =

p · pr(t invested|a)
p · pr(t invested|a) + (1− p) · pr(t invested|b)

=
p

p+ (1− p)z(t)
, (1)

where

z(t) ≡ pr(t invested|b)
pr(t invested|a)

.



It can be shown that all equilibria are of the following
form:

For t ≤ t∗, invest iff cost is zero or if investor t − 1
invested.

For t > t∗, invest iff cost is zero.

Given the form of the equilibrium, just one zero-cost in-
vestor will start a chain of investment through period t∗.
We can compute:

For t ≤ t∗,

pr(t invested|a) = 1

pr(t invested|b) = 1− (1− q)t

z(t) = 1− (1− q)t.



For t ≤ t∗, z(t) is increasing in t, so pr(a|t invested) is
decreasing in t.

We have limt→∞ z(t) = 1, so (1) implies limt→∞ pr(a|t
invested) = p.

For finite t, we have pr(a|t invested) > p.

Therefore, the informational content of the rumour dies
out completely, and beliefs converge to the unconditional
probability. Intuitively, for large t it is guaranteed that
some investor has zero cost and always invests, which
cuts off any connection to investor 1.

What is t∗?

If assumption (**) is not satisfied, then pr(a|t invested) >
p implies investment is always profitable when the previ-
ous investor invested, so we have t∗ = ∞. As soon as
someone invests, all subsequent investors will invest.



If assumption (**) is satisfied, then limt→∞ pr(a|t invested) =
p implies t∗ is finite, after which only zero cost investors
will invest.

Cutoff occurs when

p

p+ (1− p)z(t)
=

c− b

a− b
. (2)

Substituting z(t) = 1− (1−q)t into (2) and solving, we
have

t∗ =
log

µ
1− (a−c)p

(c−b)(1−p)

¶
log(1− q)

.



Model 3

The process runs in continuous time and investors know
when the rumour started. Transmission is endogenous:
the probability of receiving the rumour is proportional to
the number of people who have invested in the past.

The set of investors is the unit interval, [0, 1].

At time 0, a fraction of the population of measure x

observes the investment return and receive an investment
opportunity.

If the state is a, then the measure of investment at time
zero is x. If the state is b, then the measure of investment
at time zero is qx. (only those with zero cost)



Notation:

N(a, s) andN(b, s) denote the measure of investors that
have invested by time s, given the state.

P (a, s) and P (b, s) denote the measure of investors that
have not yet received an investment opportunity by time
s, given the state.

pr(r|a, s) and pr(r|b, s) denote the probability that an
investor hears the rumour for the first time during the
time interval between s and s+ ds.

z(s) ≡ pr(r|b, s)
pr(r|a, s)

.



Our initial conditions are

P (a, 0) = P (b, 0) = 1− x,

N(a, 0) = x and N(b, 0) = xq.

From Bayes’ rule, the probability of state a, given that an
investor first observes the rumour between times s and
s+ ds, is given by

p · pr(r|a, s)
p · pr(r|a, s) + (1− p)pr(r|b, s)

=
p

p+ (1− p)z(s)
.

Therefore, a high cost investor invests iff

p

p+ (1− p)z(s)
≥ c− b

a− b
or

z(s) ≤ (a− c)p

(c− b)(1− p)
≡ z∗.



Equilibrium behavior falls into one of two regimes:

Regime 1: z(s) ≤ z∗. Both high and zero cost types
invest.

Regime 2: z(s) > z∗. Only zero cost types invest.

Since we assume that the probability of receiving the ru-
mour is proportional to N(i, s) for i = a, b, we have

pr(r|i, s) = yN(i, s)P (i, s)ds. (3)

In (3), y is the parameter representing speed of transmis-
sion. Think of yN(i, s) rumours being spread to random
investors per unit of time, some of whom have already
heard the rumour. The proportion of those rumors being
heard for the first time is proportional to P (i, s).

From (3) and the definition of z(s), we have

z(s) =
N(b, s)P (b, s)

N(a, s)P (a, s)
. (4)



From (4) and our initial conditions, we have z(0) = q.

By assumption (*), we start in Regime 1.

Regime 1 Dynamics:

The fraction of the population who invest (and fall out of
the group who have not heard) is the fraction who first
observe the rumour. Therefore,

dP (i, s)

ds
= −yN(i, s)P (i, s)

dN(i, s)

ds
= yN(i, s)P (i, s)

P (a, s) = 1−N(a, s)

P (b, s) = 1− x(1− q)−N(b, s).



Regime 2 Dynamics:

The fraction of the population fall out of the group who
have not heard is the fraction who first observe the ru-
mour. The fraction who invest is q·(fraction who first
hear the rumour). Therefore,

dP (i, s)

ds
= −yN(i, s)P (i, s)

dN(i, s)

ds
= yqN(i, s)P (i, s).

Proposition 3.2: z(s) increases monotonically over time
and is unbounded. Therefore, for any value of z∗ there
will be an instant, t∗, at which there will be a transition
from Regime 1 to Regime 2. After t∗, the system will
remain in Regime 2.

Intuition: If we stay in Regime 1, the ratio N(b,s)
N(a,s)

re-

mains bounded, but the ratio P (b,s)
P (a,s)

goes off to infinity.

Therefore, z(s) = N(b,s)P (b,s)
N(a,s)P (a,s)

also approaches infinity.



If you hear the rumour after a very long time, you should
wonder why it took so long to reach you. Eventually, you
know that the return is low.

In Model 1, the informativeness of the rumour remained
constant over time. In Model 2, the informativeness of
the rumour declined over time. In Model 3, the informa-
tiveness of the rumour actually increases over time.

The process in Model 3 seems more like a financial con-
tagion than a rumour. Similar equations are used in the
literature on infectious diseases, except here we do not
allow people to stop transmitting (as they would by re-
covering from the disease or dying).


