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In Diamond-Dybvig, we see run equilibria in the optimal
simple contract.

When the fraction of impatient traders is constant, sus-
pension of convertibility can achieve the first-best without
a run equilibrium.

Peck and Shell (JPE 2003) construct examples in which
the fraction of impatient is random, and the optimal con-
tract (which allows for withdrawal amounts to depend on
the history) also has a run equilibrium.

In Peck and Shell, patient and impatient traders have
different marginal utilities of consumption.



Green and Lin (Journal of Economic Theory 2003) as-
sume that:

1) patient and impatient traders have the same marginal
utilities of consumption.

2) the distribution of types across traders is i.i.d.

3) traders observe their place in line (clock assumption).

Green and Lin show that the first-best allocation, sub-
ject to resource and sequential service but not incentive
constraints, can be uniquely implemented. IC constraint
does not bind.



Ennis and Keister clarify which of Green and Lin’s as-
sumptions are needed to rule out equilibrium bank runs.

They provide a correlated types example, in which the
optimal contract also has a partial run equilibrium, satis-
fying all of the assumptions except independence.

They provide an example in which the optimal contract
also has run equilibrium, satisfying all of the assumptions
except the assumption that traders observe their place in
line.



The Model

Two consumption periods, 0 and 1.

Finite number of traders, I.

Consumption vector (across periods 0 and 1) of trader i
is denoted as ai = (a0i , a

1
i ).

Aggregate consumption is given by a = (a1, ..., aI).

We assume a CES utility function with parameter γ > 1:

v(a0i , a
1
i ;ωi) =

1

1− γ
(a0i + ωia

1
i )
1−γ (1)

In (1), ωi refers to the trader’s type, where a trader is
impatient if ωi = 0 and patient if ωi = 1. The set of
types is Ω ≡ {0, 1}.



A trader’s type is private information.

A state of nature is a specification of all agents’ types:
ω = (ω1, ..., ωI) ∈ ΩI .

Denote the number of patient traders as θ(ω) =
PI
i=1ωi.

Let p(θ) denote the probability that θ(ω) = θ.

Think of the following process for determining types:

1. Nature chooses θ based on the probabilities p(θ).

2. Nature chooses ω in such a well that the number of
patient traders is θ and all permutations are equally likely.
That is, we have

pr(ωi = 1|θ) =
θ

I
.



A special case is independent types, where traders are
impatient w.p. π:

p(θ) =
I!

θ!(I − θ)!
(1− π)θπ(1−θ).

Technology

Each trader deposits 1 unit of the consumption good, so
aggregate deposits are I.

Each unit liquidated in period 0 yields 1 unit of consump-
tion.

Each unit not liquidated yields R > 1 units of consump-
tion in period 1.



Feasible Allocations

The set of ex post allocations is

A = {a :
IX

i=1

(a0i +
a1i
R
) ≤ I}.

A state-contingent allocation maps states to ex post al-
locations. The set of state-contingent allocations is:

F = {a : ΩI → A}.



Sequential Service Constraint

Traders contact the bank in period 0 in a fixed order,
1, 2, ..., I. Ennis and Keister usually assume that traders
know their place in line.

To capture the idea that impatient traders require imme-
diate consumption, the period 0 consumption of trader i
can only depend on ωi = (ω1, ..., ωi).

Thus, the sequential service constraint is:

a0i (ω) = a
0
i (bω) for all ω, bω s.t. ωi = bωi. (2)

Define

F 0 = {a ∈ F : (2) holds}.



The Efficient Allocation

Expected utility, given the state-contingent allocation a,
and given the true state ω∗, is denoted by

Ui(a, ω
∗) = E[v(ai(ω), ωi)|ωi = ω∗i ].

The efficient allocation, if the planner could observe types
as they show up in line, solves

max
a∈F 0

IX
i=1

E[Ui(a, ω)]. (3)

The efficient allocation will have:

—impatient consume only in period 0 and patient consume
only in period 1,

—remaining resources in period 1 evenly divided among
the patient

a1i (ω) =
R[I −PI

i=1 a
0
i (ω)]

θ(ω)



What remains to be characterized is a0i (ω) for histories
with ωi = 0.

Proposition 1 characterizes the efficient allocation and
shows how to compute it recursively.

To see whether the efficient allocation can be imple-
mented, it is without loss of generality to look at direct
mechanisms (revelation principle). Traders report their
type, so the message space is

mi ∈ {0, 1} ≡M.

Trader i’s communication strategy must be measurable
with respect to his/her informaton, and is a function from
states to messages

μi : Ω
I →M.

We denote the profile of messages in state ω as μ(ω) =
(μ1(ω), ..., μI(ω)).



Note: When we say that a communication strategy must
be measurable w.r.t. trader i’s information, this must in-
clude ωi and not the types of the other traders. However,
some mechanisms give traders additional information or
cannot prevent traders from having additional informa-
tion. For example, the mechanism can

1. Not give any additional information, so that type is all
a trader knows. (Peck-Shell)

2. Let traders know their type and place in line (Green-
Lin).

3. Let traders know their type and the entire history of
reports.



An allocation rule, α, specifies an allocation for each mes-
sage profile:

α :MI → A.

Feasible allocation rules must satisfy the sequential ser-
vice constraint (2), so period 0 consumption for trader i
cannot depend on messages after i.

The state contingent allocation that traders receive is
determined from the communication strategies and the
allocation rule:

a(ω) = α(μ(ω)).



Def. An allocation is implementable if it is the outcome
of a set of Bayesian NE communication strategies for
some allocation rule α. That is, a is implementable if
there exists α and an equilibrium strategy profile μ∗, such
that

a(ω) = α(μ∗(ω)) for all ω.

Def. An allocation is truthfully implementable (or Bayesian
incentive compatible) if it is implementable and μ∗i (ω) =
ωi for all ω.

A key allocation rule treats all messages as truthful and
assigns consumption according to the planner’s problem,
(3). Call this allocation rule α∗.

If the efficient allocation is truthfully implementable using
α∗, are there other equilibria to α∗ in which some patient
traders report μi(ω) = 0 (that they are impatient)?



Example (where traders do not observe their place in
line):

I = 15, R = 1.1, γ = 6, independent and equally likely
types.

Given the allocation rule α∗, if all other patient traders
claim to be impatient, a patient trader is better off run-
ning (claiming to be impatient) if among the first 12, and
is better off telling the truth if among the last 3. Overall,
better off running.

Reducing the probability of being impatient below 1
2 or

increasing I makes a run equilibrium more likely.



Proposition (Green and Lin): If types are independent
and traders know their place in line, α∗ has a unique
Bayesian NE, in which the efficient allocation obtains.

The proof is by iterated elimination of strictly dominated
strategies. If you know that everyone after you will report
truthfully, you want to report truthfully.

What if traders know their place in line but types are not
independent?

Example: I = 4, R = 2, γ = 6

p(0) = p(1) = p(3) = p(4) = ε
4

p(2) = 1− ε



For this example, if ε is very small, the optimal contract
α∗ will be similar to the optimal contract in the standard
Diamond-Dybvig model where the fraction of impatient
is known to be one half. This reflects the near certainty
that θ = 2.

Give the first two traders claiming to be impatient ap-
proximately c0 = 1.25, planning to give the two patient
traders approximately c1 = 1.5.

Not surprisingly, α∗ is truthfully implementable when ε

is small.

The Example also has a partial run equilibrium:

The first two traders always report impatient, μi(ω) = 0
for all ω.

Traders 3 and 4 always tell the truth, μi(ω) = ωi for all
ω.



Reason for the partial run equilibrium:

Ennis and Keister prove a general result that the last two
traders always report truthfully under α∗.

Consider a patient trader 2, after trader 1 reports impa-
tient, μ1 = 0. She know that it is very likely that exactly
two of the other traders are impatient.

There is approximately a 23 chance that trader 1 is im-
patient, in which case trader 2 receives approximately
c0 = 1.25 by claiming to be impatient and approximately
c1 = 1.5 by claiming to be patient.

But there is approximately a 13 chance that trader 1 is
patient and misreports, in which case trader 2 receives
approximately c0 = 1.25 by claiming to be impatient
and approximately c1 = 1.1 by claiming to be patient.

Because of risk aversion, it is better for trader 2 to report
impatient. Similar logic for trader 1.



Intuition: After trader 1 reports impatient, trader 2 is
much more pessimistic about the types of traders 3 and
4 than the bank. The bank, by choosing a contract that
assumes the truth telling equilibrium, is being far too
generous to consumer 3 when he reports impatient.

With independent types, the bank and trader 3 will have
the same beliefs about the types of traders 3 and 4.

Concluding Remarks

1. If we think that bank runs are a possibility, then even
if α∗ is truthfully implementable, the planner might want
to choose a different contract. Either eliminate the run
equilibrium, or adjust the consumptions to better insure
those who would suffer.



Concluding Remarks

2. Suppose types are independent but utility depends on
the type. Andolfatto, Nosal, and Wallace (JET 2007)
show that a mechanism where traders observe the his-
tory of reports uniquely implements the planner’s prob-
lem, with no run equilibrium.

However, there are more incentive compatibility constraints
to satisfy when traders observe the history of reports,
or their place in line, than when traders do not observe
anything. Thus, giving more information to traders can
eliminate bank runs, but the overall welfare can be lower.

Nosal and Wallace (2009) show that this is in fact the
case for an example from Peck and Shell (2003). As long
as the probability of a bank run is low enough, it can be
better to take that risk.


