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In the classic herding models of Banerjee (1992) and
Bikhchandani, Hirshleifer, and Welch (1992), we see both:

1. Herds—starting at some point, all agents take the same
action,

2. Information Cascades—starting at some point, behavior
is not informative and beliefs do not change.

Smith and Sorensen offer a more general framework with
heterogeneous preferences and continuous signal distrib-
utions, where herds and cascades are de-coupled.



Suppose that a herd has started, and someone chooses
an action contrary to the herd action.

—Maybe the last agent had a strong enough signal. Model
should allow for a continuous signal distribution.

—Maybe the last agent was irrational or the choice was
an accident. Allow for noise.

—Maybe the last agent has different preferences. Allow
for multiple preference types.

What are the possible "pathological" outcomes where
learning ceases?

—type-specific herds.

—confounded learning, or a cascade in which history is un-
informative and agents act based on their private signals.



Motivating Example: Texas highway drivers, with two
states H and L. Some drivers are going to Houston and
some to Dallas. Payoffs depend on the type (destination)
and the state.

In state H, Houston types should take the high road and
Dallas types should take the low road.

In state L, Houston types should take the low road and
Dallas types should take the high road.

Suppose that 70% of drivers are Houston types and 30%
are Dallas types.

What sorts of cascades are possible?

1. A type-specific herd. Eventually, all Houston types
take the high road and all Dallas types take the low road.
(Absent a strong signal to the contrary, a Dallas driver
should take the less crowded road and a Houston driver
should take the more crowded road.)

2. A type-specific herd in which all Houston types take
the low road and all Dallas types take the high road.



3. Confounded learning. Beliefs about the probability
of state H, denoted by q, are such that the fraction of
drivers taking the high road is the same in both states.

ψH(q) = ψL(q).

Since the public history of choices is completely unin-
formative, drivers of both types base their decisions on
private signals.

We know that we have

ψH(0) = ψL(0) = 0.3

ψH(1) = ψL(1) = 0.7

Since ψH and ψL are continuous in q, we have con-
founded learning if there is an interior intersection.

Smith and Sorensen show that confounded learning ex-
ists robustly, and that the dynamics converging to con-
founded learning are locally stable.



The Model

Two states equally likely ex ante, S = {H,L}

An infinite sequence of agents, 1, 2, ..., n, ...

Private belief of nth agent that state is H (belief based
only on one’s signal) is denoted by pn

Assume that private beliefs conditional on the state are
i.i.d., with distribution function Fs and density function
fs. Also, no signal perfectly reveals the state.

Action set has two elements, {1, 2}.

Game Timing: For each n, agent n observes her private
signal and choices of previous agents, and chooses an
action.



There are t ≥ 1 rational types and 2 "crazy" types. A
fraction of the population, κ1 always choose action 1, and
a fraction of the population, κ2 always choose action 2.
The fraction of rational types is κ = 1− κ1 − κ2.

In equilibrium, agents know the strategies of the other
agents, and can therefore compute the probability that
the state is H after any history of choices of previous
agents. We call this probability the public belief, denoted
by q.

Given public belief q and private belief p, posterior belief
is

r(p, q) =
pq

pq + (1− p)(1− q)
. (1)

Define the public likelihood ratio (of state L vs. state
H) before agent n observes her signal as

n =
1− qn

qn
. (2)



Fact: The stochastic process < qn > is a martingale,
so we have E(qn+1|qn) = qn. Because qn is bounded,
it almost surely converges to a random variable. That is,
the sequence converges to some limit point, but the limit
point is random.

Also, given state H, < n > is a convergent martingale.
To see this,

n+1 =
pr(L|mn, n)

pr(H|mn, n)
=

pr( n)pr(L| n)pr(mn| n, L)
pr( n)pr(H| n)pr(mn| n,H)

= n
pr(mn| n, L)
pr(mn| n,H)

.

Therefore, we have

E( n+1| n,H) =
X
mn

pr(mn| n,H)
"
n
pr(mn| n, L)
pr(mn| n,H)

#
= n.



To finish the description of the game, we need payoffs.
For m = 1, 2, the payoff of an agent of type t with
posterior beliefs r from action m is

ruHt (m) + (1− r)uLt (m). (3)

Here ust(m) is a parameter of the game representing the
payoff from action m when the state is known to be s.



Denote a type-t agent’s preferred action in state H as at2
and her unpreferred action in state H as at1.

Note: one interpretation of "crazy" types is that they
have the same preferred action in both states.

Then in equilibrium agents use a threshold strategy that
depends on the type and the public likelihood ratio. There
is a threshold belief pt( ) such that at2 is chosen if and
only if pt ≥ pt( ).

For some likelihood ratios, it is possible that all type-
t agents choose the same action, independent of their
signal. This defines two cascade sets, with boundaries
and .

For ≤ , all type-t agents choose action at2, and for
≥ , all type-t agents choose action at1.

If 0 < < <∞ holds, then private beliefs are said to
be bounded, and if = 0 and =∞ holds, then private
beliefs are said to be unbounded.



Some more notation:

ρt(m|s, ) denotes the probability that a type-t agent
chooses actionm given state s and public likelihood ratio
.

ψ(m|s, ) denotes the probability that an agent of un-
known type chooses action m.

λt denotes the proportion of rational agents who are type
t. Thus, λ1 + λ2 = 1.

ϕ(m, ) denotes next period’s public likelihood ratio when
the current period’s ratio is and the agent chooses ac-
tion m.



Equilibrium Transitions

0 = 1, q0 =
1

2

ρt(at2|s, ) = 1− Fs(pt( )) (4)

ρt(at1|s, ) = Fs(pt( ))

ψ(m|s, ) = κm + κ
2X

t=1

λtρt(m|s, ) (5)

ϕ(m, ) =
ψ(m|L, )
ψ(m|H, )

(6)



Example 1

One rational type, so λ1 = 1

uH(1) = uL(1) = 0

uH(2) = u

uL(2) = −1

(Think of action 2 as "investing," which pays off in state
H.)

From (3), an agent is indifferent between actions when
posteriors are given by

r =
1

1 + u
.

From (1) and (2), the belief threshold is therefore

p( ) =
u+

. (7)



Example 1A: Unbounded beliefs with no crazy types.

Suppose agents receive private signals, σ ∈ (0, 1), with
densities

gH(σ) = 2σ

gL(σ) = 2(1− σ).

Then we can calculate p = σ, so the density and distri-
bution functions for private beliefs are given by

fH(p) = 2p and FH(p) = p2

fL(p) = 2(1− p) and FL(p) = 2p− p2.

From (7) and the fact that p can be arbitrarily close to 0
and to 1, it is clear that we have unbounded beliefs.



Substitution into (4)-(6) yields

ρ(1|H, ) =
2

(u+ )2

ρ(1|L, ) =
( + 2u)

(u+ )2

ψ(m|s, ) = ρ(m|s, )

ϕ(1, ) =
ψ(1|L, )
ψ(1|H, )

= + 2u

ϕ(2, ) =
ψ(2|L, )
ψ(2|H, )

=
u

u+ 2
.



Given state H (w.l.o.g.), the likelihood ratio is a conver-
gent martingale. Convergence requires either ϕ(1, ) =
or ϕ(2, ) = , from which we conclude:

∞ = 0 with probability one. The probability of an in-
finite subsequence of action 1 is zero, so there is a herd
on action 2, the correct choice in state H.

The situation is very different from discrete examples, like
BHW, where there is a positive probability of a herd on
the wrong choice.

An interesting feature of the equilibrium is that, when
is close to zero and there has been a string of action

2 choices, there is always a positive probability that an
agent gets a signal below p( ) = u+ . In that case, the
agent will choose action 1 and beliefs change dramatically
to + 2u.



Example 1B: Bounded beliefs with no crazy types.

Replace the previous signal densities with

gH(σ) = 1

gL(σ) =
3

2
− σ.

Then we can calculate

p(σ) =
2

5− 2σ
which implies

FH(p) =
5p− 2
2p

FL(p) =
(5p− 2)(p+ 2)

8p2
.



The range of possible private beliefs, as σ ranges from 0
to 1, are: 2

5 < p < 2
3.

Since p( ) = u+ , the range of likelihood ratios is given

by = 2u
3 and = 2u.

Dynamics

If u ≥ 3
2, we have 0 ≤ 2u

3 , and we herd on action 2
from the beginning.

If u ≤ 1
2, we have 0 ≥ 2u, and we herd on action 1

from the beginning.



For the interesting case, 2u3 < 0 < 2u, equations (4)-
(6) imply

ρ(1|H, ) =
3 − 2u
2

ρ(1|L, ) =
(3 − 2u)(3 + 2u)

8 2

ψ(m|s, ) = ρ(m|s, )

ϕ(1, ) =
ψ(1|L, )
ψ(1|H, )

=
3

4
+
u

2

ϕ(2, ) =
ψ(2|L, )
ψ(2|H, )

=
4
+
u

2
.



Given state H, the likelihood ratio converges, which re-
quires either ϕ(1, ) = or ϕ(2, ) = .

Now there are two possibilities, ∞ = 2u, in which case
we herd on action 1, or ∞ = 2u

3 , in which case we herd
on action 2.

Since we have a martingale, E( ∞|H) = 0, so we can
compute the probability of an action 2 herd, π, solving

0 = π(
2u

3
) + (1− π)2u.

Note: for 2u3 < 0 < 2u, beliefs never enter the cascade
set, even though a herd starts with probability one. There
is always a (vanishing) probability that an agent will go
against the herd. If so, beliefs change drastically.



Example 1C: Bounded beliefs with "crazy" types.

Introducing crazy types to the previous example will affect
the dynamics, but not the cascade sets.

We have = 2u
3 and = 2u.

But here, unlike the previous example, when is near 2u3
or 2u, beliefs are continuous in actions. That is,

ϕ(1,
2u

3
) = and ϕ(2, 2u) = .

Extremely unlikely actions are attributed to noise.



Example 2: Two rational types with opposing prefer-
ences. No noise, bounded beliefs.

type "U" has preferences

uH(1) = 0, uH(2) = u, uL(1) = 1, uL(2) = 0,

type "V" has preferences

uH(1) = 1, uH(2) = 0, uL(1) = 0, uL(2) = v.

w.l.o.g., assume v ≥ u.



Thresholds for the two types are:

pU( ) =
u+

and pV ( ) =
v +

.

For p > pU( ), type U chooses action 2.

For p > pV ( ), type V chooses action 1.



Assume the same bounded belief structure as in Example
1B:

gL(σ) =
3

2
− σ

gL(σ) = 1

p(σ) =
2

5− 2σ
FH(p) =

5p− 2
2p

FL(p) =
(5p− 2)(p+ 2)

8p2
,

and suppose that 2u > 2v
3 and 0 ∈ (2v3 , 2u).



Transitions for type U are the same as in Example 1B:

ρU(1|H, ) =
3 − 2u
2

ρU(1|L, ) =
(3 − 2u)(3 + 2u)

8 2
.

Transitions for type V can be computed as

ρV (1|H, ) =
2v −
2

ρV (1|L, ) =
(2v + )(2v − )

8 2
.



The cascade sets are:

∈ [0, 2u3 ] (all type U choose action 2)

∈ [2v,∞] (all type V choose action 2)

∈ [2u,∞] (all type U choose action 1)

∈ [0, 2v3 ] (all type V choose action 1)



From (5), we have

ψ(1|H, ) = λU
∙
3 − 2u
2

¸
+ λV

∙
2v −
2

¸
(8)

ψ(1|L, ) = λU
"
(3 − 2u)(3 + 2u)

8 2

#
(9)

+λV
"
(2v + )(2v − )

8 2

#
.

If there is an ∗ such that ψ(1|H, ∗) = ψ(1|L, ∗) holds,
then actions are uninformative when = ∗.

It would follow that ψ(2|H, ∗) = ψ(2|L, ∗) holds as
well, so we have

ϕ(1, ∗) = ∗ψ(1|L, ∗)
ψ(1|H, ∗)

= ∗ and

ϕ(2, ∗) = ∗ψ(2|L, ∗)
ψ(2|H, ∗)

= ∗.

When = ∗, beliefs stay at ∗ no matter what action is
chosen. Confounded learning.



Equating the right sides of (8) and (9), we have con-
founded learning at ∗ iff

λU

λV
=
(2v − )(3 − 2v)
(2u− )(3 − 2u)

≡ h( )

for = ∗.

Since we have < 2u and > 2v
3 > 2u

3 , h( ) continu-
ously maps (2v3 , 2u) onto (0,∞).

Therefore, for any λU

λV
, there exists a likelihood ratio with

confounded learning.

One can show that ϕ(1, ) and ϕ(2, ) are both increas-
ing in .



Dynamics away from ∗:

For ∈ (2u3 ,
∗) we have:

ϕ(2, ) <

[after action 2, goes down but not below 2u
3 ]

ϕ(1, ) >

[after action 1, goes up but not above ∗]

For ∈ ( ∗, 2v) we have:

ϕ(2, ) >

[after action 2, goes up but not above 2v]

ϕ(1, ) <

[after action 1, goes down but not below ∗]



In either interval, is a bounded martingale that must
converge to one of the endpoints.

If 0 ∈ (2u3 ,
∗), it follows that ∞ must put positive

probability on ∗ (confounded learning) and positive prob-
ability on the type-specific herd where type U chooses
action 2 and type V chooses action 1.

If 0 ∈ ( ∗, 2v), it follows that ∞ must put positive
probability on ∗ (confounded learning) and positive prob-
ability on the type-specific herd where type U chooses
action 1 and type V chooses action 2.

For this example, ∗ (confounded learning) must be lo-
cally stable.



General Results

Theorem 1: Suppose w.l.o.g. that the state is H.

(a) With a single rational type, a not-fully-wrong limit
cascade occurs.

(b) With a single rational type and unbounded private
beliefs, n→ 0 almost surely.

(c) With T ≥ 2 rational types with different preferences,
only a limit cascade that is not fully wrong or a con-
founded learning outcome may arise.



Theorem 2: Assume there are T ≥ 2 rational types.

(d) If belief distributions are discrete, confounded learning
is nongeneric.

(e) With M > 2 actions and unbounded beliefs, con-
founded learning is nongeneric.

(f) At any confounding outcome, some pair of types has
opposed preferences.

(g) Assume M = 2 and some types with opposing pref-
erences. With atomless bounded beliefs and T = 2,
a confounded learning point exists generically, provided
both types are active over some public belief range. With
atomless unbounded beliefs and fH(1), fL(0) > 0, a
confounding point exists if the opposed types have suffi-
ciently different preferences.



Theorem 3: Assume a single rational type and no noise.

(a) A herd on some action will almost surely arise in finite
time.

(b) With unbounded private beliefs, individuals almost
surely settle on the optimal action.

(c) With bounded private beliefs, absent a cascade on
the most profitable action from the outset, a herd arises
on another action with positive probability.

Theorem 5: (c) For nondegenerate parameters, a con-
founded learning point ∗ is locally stable.


