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Misbehavior in Common Value Auctions: 
Bidding Rings and Shills†

By Dan Levin and James Peck*

We characterize the optimal misbehavior by bidding rings or an auc-
tioneer in the ascending English auction with common values. We also 
show, in an extended game, that in equilibrium potential members 
join and truthfully reveal their signals. Under a separability assump-
tion, behavior does not change if nonring bidders are informed about 
the ring’s existence. In general, misbehavior in dynamic settings is 
more profitable than in outcome-equivalent static settings. However, 
under a stronger separability assumption, the ring can do no better 
in the dynamic English format than in the outcome-equivalent, static 
Sophi format. (JEL D44, D82)

Misbehavior in auctions by a subset of bidders, or by the selling side (auction-
eer), have long been known to exist. Cassady (1967) documents misbehavior 

by a group of bidders, or a “ring,” who cooperate (collude) to acquire the item at a 
lower price. Examples of auctions with bidder rings, sometimes small rings of two 
or three bidders, include auctions for antiques, fish, timber, and wool.1 He also doc-
uments the auctioneer’s practice of spiking the price by the use of phantom bids, or 
“bids from the chandelier,” and by cooperating with a confederate or “shill,” some-
times called “shill bidding” or “trotting.”

Most of the theoretical literature on misbehavior in auctions was done within 
the independent private values model. In this paper, we study misbehavior in the 
common value environment, where bidders have affiliated private signals or esti-
mates of the value at the time bidding takes place but where the ex post value of 
the object is the same for all. There is a common value component of many auc-
tions, such as mineral rights or oil and gas leases (see Wilson 1977; Milgrom 1981; 
or Hendricks, Porter, and Tan 2008). The common value environment alters the 
optimal (mis) behavior of a bidding ring, since the ring can manipulate the beliefs of 

1 According to Cassady (1967, 177), “The term ‘ring’ apparently derives from the fact that in a settlement sale 
following the auction, members of the collusive arrangement form a circle or ring to facilitate observation of their 
trading behavior by the ring leader.”
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the bidders as well as the auction price. In our analysis, the ring consists of a subset 
of bidders (assumed for simplicity to be just two) who share the payoff when they 
win the item. The characterization of optimal misbehavior by an existing ring is of 
central importance, because, as we demonstrate, it is valid when potential members 
can choose whether to form a ring and whether to reveal their signals to each other 
after observing their private signals. We are thinking about an environment in which 
bidders do not suspect a ring and act as the standard theory specifies. However, 
misbehavior does occur, and we are interested in understanding the form it takes. 
Furthermore, under a separability assumption, equilibrium outcomes do not change 
when bidders are aware of the ring.

Our findings reveal the optimal misbehavior by the bidding ring in the English 
auction. One of the ring members will exit at the first possible opportunity. Under a 
separability assumption, Assumption TS, we characterize the exit point of the other 
ring member, based on an indifference condition. For signal realizations below a 
threshold, there is an interior solution for how long to remain in the auction. For sig-
nal realizations above the threshold, the ring remains in the auction and guarantees 
securing the object. Surprisingly, the nonring bidders choose the same strategies that 
they would employ with full knowledge of the existence of the ring and its equilib-
rium strategy!

The equilibrium to our model of auctioneer misbehavior, in which the bidders 
are not aware of the presence of the shill, would not be consistent with equilibrium 
if the presence of the shill were common knowledge. For this reason, our results 
for auctioneer misbehavior are less applicable than our results for the bidding ring. 
We should be thinking of a situation in which the auctioneer has been maintaining 
a reputation for honest dealing without shills and does not appear willing to risk the 
reputational or legal punishments of being caught.

We find that the auctioneer delays exiting the auction (i.e., having its shill exit the 
auction) until only one other bidder remains. If the auctioneer’s signal exceeds, or is 
close enough to, the inferred second-order statistic of the bidders, then the auction-
eer remains in the auction to further push up the price, taking the risk of retaining 
the item at an expected loss.

Another contribution of this paper is that we compare the profitability 
of misbehavior in dynamic mechanisms and in static mechanisms that are 
outcome-equivalent without misbehavior. We provide a general result that mis-
behavior in the indirect mechanism is more profitable (often strictly so) than in 
the direct mechanism. To illustrate, we also present Sophi, a static mechanism, 
the equilibrium of which in the absence of misbehavior is outcome-equivalent 
to that of the English auction.2 Since the dynamic mechanism allows the misbe-
having party to tailor their misbehavior to what they observe, it provides weakly 
higher profits than the static mechanism, strictly higher profits in almost all cases. 
However, under a much stronger separability assumption than what we use for our 

2 See Levin and Reiss (2020). Ausubel (1999) introduced the generalized Vickrey auction in a model with 
interdependent values. For the special case of common values, the generalized Vickrey auction simplifies to the 
Sophi auction.
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main results, it turns out that the English auction and the Sophi auction yield the 
same outcomes.

Our analysis assumes that the ring forms and its members agree to an equal share 
of the profit before they observe their signals. We augment the game to include a 
stage that allows the potential ring members to decide, only after observing their 
private signals, whether to join the ring or not. We then show that the potential 
members prefer to join the ring and truthfully report their signals, no matter what 
their signals are.

Literature Review.—There is substantial literature on bidding rings in models 
with independent private values, mostly considering all-inclusive rings; see Graham 
and Marshall (1987); Mailath and Zemsky (1991); and McAfee and McMillan 
(1992). Marshall and Marx (2007) study both first- and second-price auctions with 
heterogeneous bidders and a ring that is not all-inclusive.

Hendricks, Porter, and Tan (2008) model an all-inclusive ring in a first-price auc-
tion model with common values. It is assumed that the bidders can commit to abide 
by the mechanism, including any required side payments. In general, a mechanism 
that achieves ex post efficiency and budget balance may not be possible, because a 
bidder with a very high signal may be better off going alone rather than making the 
required payments to the other bidders. With independent signals, however, effi-
ciency and budget balance can be achieved. Of course, the issue is whether bidders 
can be incentivized to join the ring, since the object is always acquired at the reserve 
price in the actual auction.

It may be costly for a mechanism designer employed by the ring to approach all 
of the other bidders with a proposal to form a ring when there are potential criminal 
penalties. Due to the complication of properly modeling the costs of being discovered 
and the likelihood of being discovered (which might depend on the mechanism), we 
take a different approach that focuses on the auction itself. We assume that the set of 
potential ring members is exogenous and not all-inclusive (for simplicity, containing 
two bidders). However, this assumption is just for convenience, since we show that 
the ring is stable and that the analysis does not change significantly with larger rings.

There is minimal literature on shill bidding in common value auctions. Vincent 
(1995) provides an explanation of why an auctioneer in a second-price auction with 
interdependent values might want to keep the reserve price secret, where the bidders 
know that there is a secret reserve price. Although keeping the reserve price secret 
seems to violate the linkage principle of Milgrom and Weber (1982), it does not, 
because keeping the reserve price secret induces more participation in the auction. 
Lamy (2009) studies first- and second-price auctions, with interdependent values, in 
which the auctioneer does not receive a signal and cannot commit not to use a shill. 
Equilibrium in the first-price auction is immune to shill bidding, but equilibrium in 
the second-price auction is very complicated (even with no auctioneer signal) due to 
the auctioneer employing a mixed strategy. The auctioneer would be strictly better off 
with the ability to commit not to use a shill bid. Chakraborty and Kosmopoulou (2004) 
consider a model in which it is common knowledge that the auctioneer can employ 
a shill with a certain probability. The reason that they are able to solve an otherwise 
intractable model is that bidders receive one of only two possible signals.
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Akbarpour and Li (2020) develop the notion of a credible mechanism, in which 
the mechanism designer or auctioneer has no beneficial “safe” deviations from fol-
lowing the mechanism’s rules. We consider a different sort of auctioneer misbehav-
ior. In our setting, the auctioneer commits to follow the auction rules, in the sense 
that the mapping from bidder actions to outcomes is carried out honestly. The mis-
behavior consists of conspiring with one of the bidders.

We briefly set up the model in Section I. Section II considers misbehavior in an 
English auction by a bidding ring with two members, characterizing the equilib-
rium and showing that the equilibrium does not change if the existence of the ring 
is common knowledge. Section III shows that the ring is stable and argues that the 
result extends to the case of larger rings. Section IV studies the use of a shill bidder 
in an English auction. Section V compares misbehavior in dynamic versus static 
settings, using the comparison between the English auction and the Sophi auction as 
an example. Section VI contains some concluding remarks. Many of the proofs are 
given in the Appendix.

I.  The Common Value Model

We consider a common value auction framework with ​n​ bidders. The common 
value, ​V​, and the signals, ​X  =  ​(​X​1​​, …, ​X​n​​)​​, are random variables drawn from 
a joint distribution function, ​F​(V, X)​​, with support ​​[​ v 

¯
 ​, ​v –​]​ × ​​[​ x 

¯
 ​, ​x –​]​​​ n​​. We assume 

that bidders are risk neutral, ​F​ is symmetric across bidders, and the components 
of ​F​ are positively affiliated.3 The interpretation is that each bidder ​i​ privately 
observes a signal or type (estimate), ​​X​i​​  = ​ x​i​​​. Denote the random variable for the 
​j​-th order statistic of the signals by ​​Y​​  j​​ and the realization as ​​y​​  j​​. From ​F​(V, X)​​, 
we can derive various marginal and conditional distributions, which we indicate 
by a subscript. For example, we denote the probability that the order statistics, 
​​(​Y​​   1​, ​Y​​  2​, …, ​Y​​  n​ )​​, are less than or equal to ​y  =  ​(​y​​ 1​, ​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​ by ​​F​​Y​​  1​,​Y​​  2​,…,​Y​​  n​​​​(​y​​ 1​, 
​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​ . All joint signal vectors are assumed to occur with positive den-
sity. We assume that there exists a finite expected value of ​V​, conditional on ​x  = 
​(​x​1​​, …, ​x​n​​)​​, denoted by the continuously differentiable function, ​μ​(x)​  ≡  E​[V | x]​​. 
The expected value of ​V​, conditional on ​y​, is the continuously differentiable func-
tion denoted by ​h​(y)​  ≡  E​[V | y]​​, which is assumed to satisfy ​∂  h​(y)​/∂ ​y​​ 1​  >  0​.4

The following assumption, ​x​-separability (separability in the ​​x​i​​​ signals), yields 
sharp and surprising results when it holds.

ASSUMPTION ​X​-SEPARABILITY: ​μ​(x)​​ is ​x​-separable if for all ​i  ≠  j​, for all 
​​x​ −​(i, j)​​ 

 a ​​  and ​​x​ −​(i, j)​​ 
 b ​​  , and for all ​​(​x​i​​, ​x​j​​)​​ and ​​​(​x​i​​, ​x​j​​)​ ′ ​​, we have

	​ μ​(​(​x​i​​, ​x​j​​)​, ​x​ −​(i, j)​​ 
 a  ​)​  ⋛  μ​(​​(​x​i​​, ​x​j​​)​ ′ ​, ​x​ −​(i, j)​​ 

 a  ​)​​

3 Affiliation roughly means that large values for one variable make larger values for the other variables more 
likely. See Milgrom and Weber (1982) for a formal definition.

4 The difference between ​h​ and ​μ​ is that ​h​ is strictly increasing in the first component and weakly increasing in 
the other components. Also, ​h​ is only well defined when the components of ​y​ are in descending order, but ​μ​ requires 
no such restriction.
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implies

	​ μ​(​(​x​i​​, ​x​j​​)​, ​x​ −​(i, j)​​ 
 b  ​)​  ⋛  μ​(​​(​x​i​​, ​x​j​​)​ ′ ​, ​x​ −​(i, j)​​ 

 b  ​)​​.

In words, ​x​-separability means that if two vectors of signals differ only in the ​i​ 
and ​j​ components and the vector with ​​(​x​i​​, ​x​j​​)​​ yields a higher (respectively, lower) 
expectation of ​V​ than the vector with ​​​(​x​i​​, ​x​j​​)​ ′ ​​ does, then this relationship will 
continue to hold if we change components of the vectors other than ​​(i, j)​​. Although 
​x​-separability is restrictive, it holds for a wide class of environments, including

	​ V  = ​  ∑ 
j=1

​ 
n

  ​​ ϕ​(​x​j​​)​ + ϵ​,

where ​ϕ​ is an arbitrary increasing function and ​ϵ​ is white noise. We also use a spe-
cial case of ​x​-separability, which we call Assumption AVG (for average signal), 
mainly for illustrative purposes.

ASSUMPTION AVG: ​μ​(x)​  = ​  1 _ n ​​(​∑  j=1​ 
n ​​ ​ x​j​​)​​.

Our main results require a significantly weaker separability assumption that only 
requires separability at “the top.”

ASSUMPTION TS (Top Separability): ​h​(y)​​ is top separable if, for all ​
j  =  1, …, n − 1​, ​​y​​ 1​  =  …  = ​ y​​  j​  = ​ y ̃ ​​ and

	​ h​(​y ̃ ​, …, ​y ̃ ​, ​y​ a​ 
 j+1​, …, ​y​ a​ 

 n​)​  =  h​(​y ̃ ​, …, ​y ̃ ​, ​y​ b​ 
 j+1​, …, ​y​ b​ 

 n​)​​

imply, for all ​​y ˆ ​  > ​ y ̃ ​​,

	​ h​(​y ˆ ​, …, ​y ˆ ​, ​y​ a​ 
 j+1​, …, ​y​ a​ 

 n​)​  =  h​(​y ˆ ​, …, ​y ˆ ​, ​y​ b​ 
 j+1​, …, ​y​ b​ 

 n​)​​.

Assumption TS holds, for example, if the value is the sum of functions of the 
order statistics,

	​ h​(​y​​ 1​, …, ​y​​  n​)​  = ​  ∑ 
i=1

​ 
n

  ​​ ​ϕ​​ i​​(​y​​  i​)​​,

where ​​ϕ​​ i​​  is an increasing function that varies across ​i​. Assumption TS is much 
weaker than ​x​-separability, because ​x​-separability is likely to fail when the value 
weighs signals based on their order. For example, when there are three bidders and 
the value is of the form ​V  = ​ a​1​​ ​y​​ 1​ + ​a​ 2​​ ​y​​  2​ + ​a​3​​ ​y​​  3​​, Assumption TS is satisfied for all ​​

(​a​1​​, ​a​ 2​​, ​a​3​​)​  ∈ ​ ℝ​ +​ 3 ​​, but ​x​-separability is only satisfied if ​​a​1​​  = ​ a​ 2​​  = ​ a​3​​​ holds, as we 
show in the Appendix. We also show in the Appendix that ​x​-separability implies TS.

The English Auction: Following Milgrom and Weber (1982), the English auction 
is modeled as an indirect mechanism, in which there is a clock that rises continu-
ously, starting at the expected value associated with the worst possible realization of 
signals, ​h​(​ x 

¯
 ​, …, ​ x 

¯
 ​)​​. Bidders decide whether to remain in the auction or exit. As soon 
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as only one bidder remains, the clock stops and that bidder wins the auction, and the 
payment is the clock price at that point. All bidders observe the history of exits and 
associated clock prices.

II.  Misbehavior by a Ring of Bidders

Here we consider a model with ​n − 1​ bidders as well as a “ring” of two members, 
each of whom observes a signal but is secretly in league with the other. We will refer 
to the ring members as ​​r​1​​​ and ​​r​ 2​​​ (where ​r​ stands for ring) and reserve the term “bid-
ders” for those auction participants other than the ring members. We do not model 
the legal or reputational risks of forming a ring, so this section assumes that the ring 
members have committed to share the surplus equally. Extension to a larger ring is 
simple and does not add anything to the analysis. We assume that the bidders treat 
the auctions as having ​n + 1​ bidders. However, we show in Proposition 2 that under 
Assumption TS, the bidders are choosing the same strategies that they would choose 
in the game in which they know that there is a ring. Let us use the previous notations 
for the bidders’ signals, and let the signals of the ring be given by the random vari-
ables ​​S​1​​  ≡ ​ X​1​​​ and ​​S​ 2​​  ≡ ​ X​2​​​ with realizations ​​s​1​​​ and ​​s​ 2​​​. For ​j  =  1, …, n − 1​, we 
denote the ​j​-th order statistic of the bidders as ​​Y​​  j​​, with realization ​​y​​  j​​. Similar to the 
notation for the model without the ring, define

 ​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​

	     =  E​[V | ​(​S​1​​  = ​ s​1​​, ​S​ 2​​  = ​ s​ 2​​, ​Y​​   1​  = ​ y​​ 1​, ​Y​​  2​  = ​ y​​  2​, …, ​Y​​  n−1​  = ​ y​​  n−1​)​]​​.

A.  Optimal Misbehavior by the Ring

The analysis begins with the following observations.
Observation 1: In order to keep the payment to the auctioneer for winning as low 

as possible, the ring will have one of its members, say ​​r​ 2​​​, exit immediately, so the 
bidders incorrectly infer ​​S​ 2​​  = ​  x 

¯
 ​​ .

Observation 2: Any bidder who holds signal ​​y​​  j​​ and remains active infers the vec-
tor ​​(​y​​  j+1​, …, ​y​​  n−1​)​​ from the exit prices.

Observation 3: If the remaining member of the ring, ​​r​1​​​, is still active when the 
holder of the second-highest signal, ​​y​​  2​​, exits, then both ​​r​1​​​ and the holder of ​​y​​ 1​​ learn 
the vector ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n−1​)​​. ​​r​1​​​ knows ​​s​ 2​​​, but the holder of ​​y​​ 1​​  incorrectly infers ​​
S​ 2​​  = ​  x 

¯
 ​​ . In this case, the holder of ​​y​​  2​​ exits at the price ​​h​​ R​​(​y​​  2​, ​ x 

¯
 ​, ​y​​  2​, ​y​​  2​, …, ​y​​  n−1​)​​. 

See Milgrom and Weber (1982).
Suppressing the dependence on ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n−1​)​​, it is convenient to define 

​​V​​  R​​(​y​​ 1​)​​ by

	​​ V​​  R​​(​y​​ 1​)​  = ​ h​​ R​​(​y​​ 1​, ​ x 
¯
 ​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​.

The superscript, ​R​, is used to distinguish the notation for the model with a ring 
from the similar notation for the model without the ring. ​​V​​  R​​(​y​​ 1​)​​ is the maximum 
willingness to pay by the holder of ​​y​​ 1​​ at the time when the holder of ​​y​​  2​​ exits. This 
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is simply the expectation of ​V​, conditional on his own signal being ​​y​​ 1​​, the signals 
of the bidders who have exited being ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n−1​)​​, the signal of ​​r​ 2​​​ being ​​ x 

¯
 ​​ , and 

the signal of ​​r​1​​​ being ​​y​​ 1​​.
Let ​​​V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​​ be defined by the shorthand notation

(1)	​​​ V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​  = ​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​.

We can interpret ​​​V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​​ as the expectation of ​V​ for the ring, conditional 
on ​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​.

The ring’s problem, after ​​r​ 2​​​ exits at ​​ x 
¯
 ​​ , is for ​​r​1​​​ to “pretend” to be a bidder with 

signal ​t​. That is, the remaining ring bidder exits when the holder of ​​y​​ 1​​ is revealed 
to have signal ​​y​​ 1​  ≥  t​. Notice that once ​​r​1​​​ has determined that winning the object 
cannot be profitable,5 the exit point does not matter, as long as it occurs before 
the holder of ​​y​​  2​​ exits. The equilibrium we select makes the standard assumption 
that ​​r​1​​​ exits at the first instant that continuing cannot be profitable. To be precise, 
suppose that the history of exits reveals ​​(​y​​  j​, …, ​y​​  n−1​)​​ and the current clock price 
reveals that remaining bidders have signals of at least ​t​, ​​y​​  j−1​  ≥  t​. Also suppose that 
for all ​​(​y​​ 1​, …, ​y​​  j−1​)​​, we have ​​​V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​  ≤ ​ V​​  R​​(​y​​ 1​)​​. Then an active ​​r​1​​​ will exit 
at that point.

If ​​r​1​​​ has not exited by the time the holder of ​​y​​  2​​ exits, the ring’s payoff, given 
​​(​y​​  2​, …, ​y​​  n−1​, ​s​1​​, ​s​ 2​​)​​, is equal to the following expression.

(2) ​​ ∫ ​y​​  2​​ 
t
 ​​ ​[​​V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​ − ​V​​  R​​(​y​​ 1​)​]​d​F​​Y​​  1​|​Y​​  2​,…,​Y​​  n−1​, ​S​1​​, ​S​ 2​​​​​(​y​​ 1​ | ​y​​  2​, …, ​y​​  n−1​, ​s​1​​, ​s​ 2​​)​​.

Thus, the optimal misbehavior, given ​​(​y​​  2​, …, ​y​​  n−1​, ​s​1​​, ​s​ 2​​)​​, is found by choosing ​​t​​ ∗​​ 
to maximize (2).6

Under Assumption  TS, we can give a complete dynamic characteriza-
tion of the ring’s strategy. For ​j  =  1, …, n − 1​, after the history with ​j​ bidders 
remaining, ​​(​y​​  j+1​, …, ​y​​  n−1​)​​, ​​r​1​​​ is the next to exit at exactly the price at which the 
profits would be zero if all the remaining bidders exit at that instant. That is, ​​r​1​​​ is 
the next to exit when type ​​t​​ ∗j​​ would exit, which depends on the history, satisfying

(3) ​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗j​, …, ​t​​ ∗j​, ​y​​  j+1​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗j​, ​ x 

¯
 ​, ​t​​ ∗j​, …, ​t​​ ∗j​, ​y​​  j+1​, …, ​y​​  n−1​)​​

if a solution below ​​x –​​ exists, and otherwise ​​r​1​​​ is the next to exit at the price

(4)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​, ​y​​  j+1​, …, ​y​​  n−1​)​​.

5 By “profit” for a bidder or for the ring receiving the object, we mean the payoff or net benefit, i.e., the value 
minus the price paid.

6 For some signal realizations, it is optimal for ​​r​1​​​ to remain in the auction beyond the point at which a bidder with 
signal ​​x –​​ would drop. In this case, off the equilibrium path, ​​r​1​​​ would remain in the auction until price ​​​V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​x –​)​​, 
believing that the deviating bidder(s) is type ​​x –​​.
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Notice that ​​r​1​​​ is sometimes willing to bid more than the price at which type ​​x –​​ would 
exit, ​​h​​ R​​(​x –​, ​ x 

¯
 ​, ​x –​, ​y​​  2​, …, ​y​​  n−1​)​​. ​​r​1​​​ believes that a bidder who remains beyond the exit 

price of type ​​x –​​ is type ​​x –​​7 and exits at the zero profit price, ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, ​y​​  2​, …, ​y​​  n−1​)​​.

PROPOSITION 1: Suppose that Assumption TS holds. Then the optimal misbehav-
ior of the ring, with signals ​​(​s​1​​, ​s​ 2​​)​​, is characterized by ​​r​ 2​​​ pretending to be type ​​ x 

¯
 ​​ and ​​

r​1​​​ exiting according to (3) or (4).

Additionally, if ​x​-separability is satisfied, we have the following corollary.

COROLLARY TO PROPOSITION 1: Suppose that ​x​-separability holds. Then 
either ​​r​1​​​ imitates the same type, ​​t​​ ∗​​, independent of the history, or ​​r​1​​​ remains in the 
auction until after a bidder of type ​​x –​​ would exit, independent of the history.

B.  Common Knowledge of the Ring

Proposition 2 below establishes that under Assumption TS, the strategies of the 
ring and the bidders are equilibrium strategies of the model in which the existence of 
the ring is common knowledge. It would seem that strategies of the bidders should 
change, because with a secret ring, the immediate exit by one of the ring members 
causes bidders to infer a signal of ​​ x 

¯
 ​​ , but when the existence of the ring is common 

knowledge, it provides no inference to bidders about that ring member’s signal. The 
correct intuition is based on the fact that the ring is prepared to compete up until the 
point of zero expected profits. If the bidder with signal ​​y​​ 1​​ wins the object, the price 
is ​​h​​ R​​(​t​​ ∗​, ​ x 

¯
 ​, ​t​​ ∗​, ​y​​  2​, …, ​y​​  n−1​)​​, and the value to this bidder is ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​. 

However, since ​​t​​ ∗​​ is such that the value to the ring equals the clock price at 
the point of exiting, ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 

∗​, ​y​​  2​, …, ​y​​  n−1​)​​ equals ​​h​​ R​​(​t​​ ∗​, ​ x 
¯
 ​, ​t​​ ∗​, ​y​​  2​, …, ​y​​  n−1​)​​. 

Therefore, we can write the profits of the bidder with signal ​​y​​ 1​​ as

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​ − ​h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗​, ​y​​  2​, …, ​y​​  n−1​)​​.

From this expression, we see that this bidder is best responding by treating the ring’s 
behavior as if they were “ordinary” bidders.

Proposition 2 demonstrates that when Assumption TS is satisfied, the optimal 
ring strategy and the “sincere” strategies of the bidders constitutes a Bayesian Nash 
equilibrium (BNE) of the game in which the ring is common knowledge. We also 
show that the equilibrium is without regret.8

PROPOSITION 2: Suppose that Assumption TS holds. The optimal strategy of 
the ring and the “sincere” strategies of the bidders as characterized earlier is an 

7 The equilibrium with these out-of-equilibrium beliefs satisfies the intuitive criterion of Cho and Kreps (1987), 
because the type of bidder with the greatest incentive to deviate and remain in the auction is type ​​x –​​.

8 An equilibrium is without regret (i.e., an ex post equilibrium) when the players do not want to revise their 
actions even after learning the types of the other players.
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equilibrium profile of the game in which the existence of the ring is common knowl-
edge. Furthermore, the equilibrium is without regret.

III.  Stability of the Ring

In this section, we suppose that the ring members cannot commit to sharing the 
payoff, in the event that they win the auction, until after they receive their signals. 
We show that the ring is stable, in the sense that potential ring members would 
want to join the ring and truthfully report their signals, by considering the following 
game. First, each of the bidders, including the potential ring members (bidders 1 
and  2), observe their signal. Second, the potential ring members simultaneously 
decide whether to be part of the ring or not. If both members say “yes,” then the ring 
forms, the ring members commit to share equally the profit from the auction, the 
ring members report their signals to each other (in an incentive compatible way, as 
incentives are aligned at this point), and the continuation of the game and the anal-
ysis of the previous section applies.9 If any potential ring member says “no,” then 
these decisions are communicated to each other (become common knowledge to the 
potential ring members), the ring does not form, and we proceed to the auction. We 
assume that when the ring does not form, each potential ring member can identify 
whether a bidder who exits is a bidder or the other potential ring member. However, 
the stability result also holds when the identity of those exiting is not observed (see 
Remark 1).10

A.  Stability of the Ring in the English Auction

Consider the following strategy profile for the English auction:11

The two potential ring members say “yes,” and along the equilibrium path, the 
game continues as analyzed in the previous section.

If one potential ring member (without loss of generality, ​​r​1​​​) says “yes” and the 
other potential ring member (​​r​ 2​​​) says “no,” then ​​r​1​​​ believes, and continues to believe 
throughout the auction, that ​​r​ 2​​​’s signal is ​​x –​​. In the auction, ​​r​ 2​​​ exits immediately, after 
every history in which exiting is not weakly dominated; if exiting is weakly dominated, ​​
r​ 2​​​ remains. As a continuation strategy, ​​r​1​​​ exits when there are several remaining bid-
ders if there are no signal realizations for the remaining bidders for which winning is 
profitable, given beliefs about ​​r​ 2​​​. If ​​r​ 2​​​ is the only remaining bidder with ​​r​1​​​ (so that ​​y​​ 1​, ​
y​​  2​, …, ​y​​  n−1​​ have been revealed), then ​​r​1​​​ remains in the auction until the price reaches ​​
r​1​​​’s willingness to pay, ​​​V ˆ ​​​  NR​​(​s​1​​, ​y​​ 1​)​  ≡ ​ h​​ R​​(​s​1​​, ​x –​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​. If ​​r​ 2​​​ has already 
exited at a price at which the remaining bidder infers ​​S​ 2​​  = ​ x ′ ​​, then the remaining bid-
der’s maximum willingness to pay is given by ​​V​​  NR​​(​y​​ 1​)​  ≡ ​ h​​ R​​(​s​1​​, ​x ′ ​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​. 

9 We do not model how the potential ring members arrive at an equal division of the profit or loss. Loertscher and 
Marx (2021) study collusive behavior in a private values setting in which a bidder is selected to be active, without 
exchange of private information, by a randomization device.

10 Marshall and Marx (2009) show that whether or not the auctioneer releases the identities of registered bidders 
can affect the viability of collusion in private value auctions.

11 We continue to assume that the bidders are oblivious to the presence of the (potential) ring. So, for all intents 
and purposes, this is a game being played by the two ring members.
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Thus, ​​r​1​​​’s problem is to “pretend” to be a bidder with signal ​​t​​ ∗​  > ​ s​1​​​, where ​​t​​ ∗​​ is a 
maximizer of

(5) ​​ ∫ max​{​x ′ ​,​y​​  2​}​​ 
t
  ​​​[​​V ˆ ​​​  NR​​(​s​1​​, ​y​​ 1​)​ − ​V​​  NR​​(​y​​ 1​)​]​d​F​​Y​​  1​|​Y​​  2​,…,​Y​​  n−1​, ​S​1​​, ​S​ 2​​​​​(​y​​ 1​ | ​y​​  2​, …, ​y​​ n−1​, ​s​1​​, ​x –​)​​.

Finally, if both potential ring members say “no,”  then ​​r​1​​​ and ​​r​ 2​​​ each believe 
that the other bidder’s signal is ​​x –​​. ​​r​1​​​ exits when there are several remaining bidders 
if there are no signal realizations for the remaining bidders for which winning is 
profitable, given beliefs about ​​r​ 2​​​. Otherwise, if ​​r​ 2​​​ is the only remaining bidder, then ​​
r​1​​​ will exit at the price ​​​V ˆ ​​​  NR​​(​s​1​​, ​y​​ 1​)​​. If, instead, ​​r​ 2​​​ has already exited, at a price such 
that the remaining bidder infers ​​S​ 2​​  = ​ x ′ ​​, then ​​r​1​​​’s problem is to “pretend” to be 
a bidder with signal ​​t​​ ∗​  > ​ s​1​​​, where ​​t​​ ∗​​ is a maximizer of (5). ​​r​ 2​​​ chooses the same 
continuation strategy.12

PROPOSITION 3. The strategy profile described above constitutes a PBE for the 
English auction. Furthermore, this equilibrium satisfies the intuitive criterion of 
Cho and Kreps (1987).

PROOF:
If ​​r​1​​​ and ​​r​ 2​​​ both say “yes,” then truthfully revealing their signals to each other and 

bidding as specified in the previous section is sequentially rational.
Suppose ​​r​1​​​ says “yes” and ​​r​ 2​​​ says “no.” Certainly it is sequentially rational for ​​r​1​​​ 

to exit whenever remaining cannot be profitable and otherwise to remain until there 
is only one other remaining bidder. Consider the case in which the only remain-
ing bidder besides ​​r​1​​​ is ​​r​ 2​​​. Given ​​r​1​​​’s belief that ​​r​ 2​​​ is type ​​x –​​, when the price is 
greater than ​​​V ˆ ​​​  NR​​(​s​1​​, ​y​​ 1​)​​, it is sequentially rational for ​​r​1​​​ to exit immediately. If 

the price is less than ​​​V ˆ ​​​  NR​​(​s​1​​, ​y​​ 1​)​​, it is sequentially rational for ​​r​1​​​ to remain until 
​​​V ˆ ​​​  NR​​(​s​1​​, ​y​​ 1​)​​. Now consider the case in which the only remaining bidder besides ​​r​1​​​ is 
a bidder (i.e., not ​​r​ 2​​​). Then ​​r​1​​​’s expected profit, from pretending to be type ​t​, is (5), 
so his continuation strategy is sequentially rational.

Whenever ​​r​ 2​​​ has a continuation strategy that weakly dominates exiting, remain-
ing in the auction is sequentially rational. Otherwise, it is sequentially rational for ​​r​ 2​​​ 
to exit immediately. To see this, suppose that ​​r​ 2​​​ wins the auction when ​​r​1​​​ is the last 
to exit. Then the profit received by ​​r​ 2​​​ is

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​ − ​h​​ R​​(​s​1​​, ​x –​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​,

which is nonpositive (strictly negative unless we have ​​s​ 2​​  = ​ x –​​). Suppose that ​​r​ 2​​​ 
wins the auction when a bidder is the last to exit. Then the fact that ​​r​1​​​ exited implies  
that ​​h​​ R​​(​s​1​​, ​x –​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​ is less than the price at which ​​r​1​​​ exited. Therefore, the 
price paid by ​​r​ 2​​​ is more than ​​h​​ R​​(​s​1​​, ​x –​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​ and the value to ​​r​ 2​​​ is less than 
​​h​​ R​​(​s​1​​, ​x –​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​, so winning cannot be profitable.

12 That is, ​​r​ 2​​​’s continuation strategy is the continuation strategy of ​​r​1​​​ described above, after we relabel ​​r​ 2​​​ as ​​r​1​​​ 
and relabel ​​r​1​​​ as ​​r​ 2​​​.
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Suppose ​​r​1​​​ and ​​r​ 2​​​ both say “no.” Given ​​r​1​​​’s belief that ​​r​ 2​​​ is type ​​x –​​, by the argu-
ments given above, ​​r​1​​​’s continuation strategy is sequentially rational. Since ​​r​ 2​​​ is 
adopting the same continuation strategy as ​​r​1​​​, ​​r​ 2​​​’s continuation strategy is sequen-
tially rational as well.

It is sequentially rational for ​​r​1​​​ and ​​r​ 2​​​ to say “yes.” After saying “no,” the best con-
tinuation play is to exit immediately, while saying “yes” leads to positive expected 
profit.

To demonstrate that the intuitive criterion is satisfied, consider a deviation to 
“no” by ​​r​ 2​​​ , after which ​​r​1​​​ believes that ​​r​ 2​​​ is type ​​x –​​ with probability one. An ​​r​ 2​​​ of 
type ​​x –​​ could benefit from this deviation, as would be the case if type ​​r​1​​​ exited imme-
diately in the subsequent auction (and this continuation by ​​r​1​​​ would be undomi-
nated). Thus, we cannot rule out these beliefs.13 ∎

Remark 1: Consider the continuation of the game when ​​r​1​​​ says “yes” and ​​r​ 2​​​ says 
“no.” If we were to extend the earlier equilibrium selection (for an established ring) 
of exiting when remaining in the auction cannot be profitable, then ​​r​ 2​​​ would exit 
immediately after every history. The construction in Proposition 3 guarantees that 
the equilibrium does not involve a potential ring member choosing a weakly domi-
nated strategy. For Proposition 3, we consider the model in which the potential ring 
members observe the identities of the bidders exiting from the auction, so ​​r​1​​​ knows 
the point at which ​​r​ 2​​​ exits, and vice versa. A similar proposition could be proved for 
the model in which the identities of those exiting from the auction is not observed. 
In that case, ​​r​1​​​ believes that ​​r​ 2​​​ has signal ​​x –​​ and that the first one to exit is ​​r​ 2​​​. With 
identities unobservable, ​​r​ 2​​​ is even less willing to compete with ​​r​1​​​ than when iden-
tities are observable. The reason is that if ​​r​ 2​​​ deviates to remain in the auction, then​​
r​1​​​ believes that the bidders are remaining in the auction longer, and revealing higher 
signals, than they actually are.

B.  Robustness to Larger Rings

If the number of ring members is ​m  >  2​, the optimal bidding behavior would 
have all but one ring member exit immediately in the English auction. The opti-
mal bid by the remaining ring member requires slightly modifying the analysis 
of Section II to take into account that there are multiple ring members mimicking 
type ​​ x 

¯
 ​​ . For the question of stability, we consider the following game. First, each of 

the bidders and the potential ring members observe their signal. Second, the poten-
tial ring members simultaneously decide whether to be part of the ring or not. If a 
subset of at least two members say “yes,” then a ring consisting of that subset forms 
and the ring members commit to share equally the profit from the auction. It is 
assumed that the makeup of the ring is common knowledge among the ​m​ potential 
ring members.

We now sketch the argument that the ring of size ​m​ is stable for the English 
auction. If one potential ring member deviates and says “no,” then the ​m − 1​ ring 

13 Indeed, the type of player ​​r​ 2​​​ with the greatest incentive to deviate to “no” is type ​​x –​​.
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members believe that the deviator is type ​​x –​​. All but one of the ring members exit 
immediately, but the remaining ring member waits until the expected profit for the 
ring is zero. The deviator exits immediately. After the deviation, it is sequentially 
rational for the deviator to exit immediately, because outbidding the ring member 
guarantees nonpositive profits. Given that a lone deviator receives zero profits, 
everyone saying “yes” is sequentially rational. (If several potential ring members 
say “no,” then they are all believed to be type ​​x –​​. Choose any continuation strategies 
that are sequentially rational given the beliefs.)

It would be tempting to say that larger rings are more profitable for the members, 
but this is not necessarily the case. A larger ring provides a larger informational 
advantage and larger overall ring profits, but these profits must be divided by more 
ring members, so the effect per ring member is ambiguous.

IV.  Misbehavior by the Auctioneer

Here we consider a model with ​n​ bidders and additionally one shill, who observes 
a signal but is secretly in league with the auctioneer. We assume that the bidders 
treat the auctions as having ​n + 1​ bidders. Let us use the previous notations for the 
bidders’ signals, and let the signal of the auctioneer/shill be given by the random 
variable ​S  ≡ ​ X​  n+1​​​, with realization ​s​. For ​j  =  1, …, n​, we denote the ​j​-th order 
statistic of the bidders as ​​Y​​  j​​, with realization ​​y​​  j​​.14

The analysis begins with the following observations.
Observation 1: Any bidder who holds signal ​​y​​  j​​ and remains active infers the vec-

tor of signals of the bidders who have exited, ​​(​y​​  j+1​, …, ​y​​  n​)​​, from the exit prices.
Observation 2: Since the auctioneer can stay active in the auction and exit at the 

same clock price as the holder of the second-highest signal, ​​y​​  2​,​ she would never exit 
earlier. Exiting at a lower price is dominated by exiting at the same price as the holder 
of ​​y​​  2​​, since it raises the payment without any risk of not selling. Thus, from the exit 
prices, both the auctioneer and the holder of ​​y​​ 1​​ learn the vector ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​.

Observation 3: Since the auctioneer never exits before the holder of ​​y​​  2​​, that 
bidder does not observe the signals, ​s​ or ​​y​​ 1​​.

Observation 4: The holder of ​​y​​  2​​ exits at ​​d​ 2​​  =  E​[V | ​(​Y​​   1​  = ​ y​​  2​, S  = ​ y​​  2​, ​Y​​  2​  = ​ y​​  2​, 
​Y​​  3​  = ​ y​​  3​, …, ​Y​​  n​  = ​ y​​  n​)​]​​; see Milgrom and Weber (1982). A bidder with signal ​​
x​j​​​ would exit at a price equal to the expected value of the object, assuming that 
all remaining active bidders hold the tied signal of ​​x​j​​​ .

Suppressing the dependence on ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, define ​V​(​y​​ 1​)​​ by

(6) ​ V​(​y​​ 1​)​  =  E​[V | ​Y​​   1​  = ​ y​​ 1​, S  = ​ y​​ 1​, ​Y​​  2​  = ​ y​​  2​, ​Y​​  3​  = ​ y​​  3​, …, ​Y​​  n​  = ​ y​​  n​]​​.

Since both the auctioneer and the holder of ​​y​​ 1​​ can infer the vector ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, 
and since the holder of ​​y​​ 1​​ does not know that the holder of ​s​ is a shill bidder, 
​V​(​y​​ 1​)​​ is the maximum willingness to pay by the holder of ​​y​​ 1​​ at the time when 
the holder of ​​y​​  2​​ exits.15 Note that the holder of ​​y​​ 1​​ treats the shill as a bidder, so 

14 Here the joint distribution of the value and signals is given by ​F​(V, X)​  =  F​(V, ​X​1​​, …, ​X​  n+1​​)​​.
15 This is well known from the literature. See Matthews (1977) and Milgrom and Weber (1982).
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(6) is simply the expectation of ​V​, conditional on his own signal being ​​y​​ 1​​, the sig-
nals of the bidders who have exited being ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, and the signal of the 
remaining bidder (who happens to be the shill) being ​​y​​ 1​​.

Let ​​V ˆ ​​(​s​​ m​, s)​​ be defined by

	​​ V ˆ ​​(​s​​ m​, s)​  =  E​[V | ​Y​​   1​  = ​ s​​ m​, S  =  s, ​Y​​  2​  = ​ y​​  2​, ​Y​​  3​  = ​ y​​  3​, …, ​Y​​  n​  = ​ y​​  n​]​​,

where ​​s​​ m​  ≡  max​{s, ​y​​  2​}​​.16  We can interpret ​​V ˆ ​​(​s​​ m​, s)​​ as the maximum willingness 
to pay of a bidder who holds signal ​s​ and “happens” to still be active at the price 
​​d​ 2​​​, where the holder of ​​y​​  2​​ exits. Note that ​s  ⋚ ​ y​​  2​​ holds as ​​V ˆ ​​(​s​​ m​, s)​  ⋚ ​ d​ 2​​​ holds.

We stated in Observation 2 that the auctioneer never exits before ​​d​ 2​​​. As we show 
below, it is very possible that she would exit strictly after ​​y​​  2​​ (at a strictly higher price 
than ​​d​ 2​​​), even when ​s  ≤ ​ y​​  2​​ holds. Consider an auctioneer who contemplates mim-
icking the exit price of a bidder who is type ​t  > ​ y​​  2​.​  Then, given the behavior of 
the bidder holding ​​y​​ 1​,​ the auctioneer wins the auction and retains the good if ​​y​​ 1​  <  t​ 
holds, and the auctioneer succeeds in selling the good at a higher price if ​​y​​ 1​  >  t​ 
holds. In the latter case, her revenue is equal to the exit price of a bidder who is type ​t​, 
given by

	​​ d​t​​  =  E​[V | ​Y​​   1​  =  t, S  =  t, ​Y​​  2​  = ​ y​​  2​, ​Y​​  3​  = ​ y​​  3​, …, ​Y​​  n​  = ​ y​​  n​]​​.

Suppressing the dependence on ​​(s, ​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, define ​G​(t)​​, and associated 
density ​g​(t)​​, by

​G​(t)​  = ​ F​​Y​​  1​|S,​Y​​  2​…​Y​​  n​​​​(t)​  =  Pr​[​Y​​   1​  ≤  t ∣ S  =  s, ​Y​​  2​  = ​ y​​  2​, ​Y​​  3​  = ​ y​​  3​, …, ​Y​​  n​  = ​ y​​  n​]​​,

which is the probability that the first-order statistic is not higher than ​t,​ given the 
realizations of ​​(S  =  s, ​Y​​  2​  = ​ y​​  2​, ​Y​​  3​  = ​ y​​  3​, …, ​Y​​  n​  = ​ y​​  n​)​​.

We can now write the maximization problem of the auctioneer as

(7)	​​ max​ 
t≥​s​​ m​

​ 
 
 ​ ​ ∫ ​y​​  2​​ 

t
 ​​ ​V ˆ ​​(τ, s)​dG​(τ)​ + ​[1 − G​(t)​]​V​(t)​​.

In (7), the first term represents the event in which the auctioneer wins the item 
(by mimicking type ​t​) and retains its value, which is ​​V ˆ ​​(​Y​​   1​, s)​​. In the second term, 
​​[1 − G​(t)​]​​ is the probability that ​​Y​​   1​  ≥  t​ holds, resulting in the auctioneer los-
ing the item and receiving the price, ​V​(t)​​. Recall, ​V​(t)​​ is the price that the auc-
tioneer receives by mimicking a bidder of type ​t​, which is not her own value at 
that point.  Also note that the auctioneer is mimicking a type, ​t  ≥ ​ s​​ m​​, although the 
integral runs from ​​y​​  2​​ to ​t​. The reason is that if ​s  > ​ y​​  2​​ holds, the auctioneer will 
never mimic a type less than ​s​, while ​​y​​ 1​​ can be anything above ​​y​​  2​​.

16 This notation is used to cover the possibility that ​s  <  ​y​​  2​​ holds, although the auctioneer never drops before ​​d​ 2​​​.
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Let ​​t​​ ∗​​ denote the optimal type to mimic, solving (7). The first-order condition for 
an interior solution is

(8)	​ 0  = ​ V ˆ ​​(t, s)​ − V​(t)​ + ​[​ 
1 − G​(t)​

 _ 
g​(t)​

 ​ ]​​ 
∂ V​(t)​

 _ ∂  t
  ​.​ 

The following proposition shows that an interior solution occurs if ​s​ is greater than, 
or even smaller than but close enough to, ​​y​​  2​​. In that case, the auctioneer chooses   ​​
t​​ ∗​  > ​ s​​ m​​ and risks retaining the item at an expected loss. On the other hand, if ​s​ is 
very low relative to ​​y​​  2​​, the auctioneer might exit immediately after the bidder with ​​
y​​  2​​ exits.

PROPOSITION 4: For all values of ​s​  satisfying ​s  ≥ ​ y​​  2​​, and for some values of ​
s​ strictly less than ​​y​​  2​​, the optimal auctioneer misbehavior in the English auction 
solves (8), and ​​t​​ ∗​  > ​ s​​ m​​  holds, so the auctioneer risks retaining the item at an 
expected loss.

PROOF:
The right side of (8) is the derivative of the auctioneer’s payoff with respect 

to ​t​. Since ​​[​ 
1 − G​(​y​​  2​)​

 _ 
g​(​y​​  2​)​

 ​ ]​​ 
∂ V​(​y​​  2​)​

 _ ∂  t
  ​​ is strictly positive and ​​V ˆ ​​(t, s)​  ≥  V​(t)​​ holds for ​t  ≤  s​, 

it follows that the right side of (8) is strictly positive for ​t  ≤  s​, so we must have ​​
t​​ ∗​  >  s​. Therefore, ​s  ≥ ​ y​​  2​​ implies ​​t​​ ∗​  >  max​{s, ​y​​  2​}​​. By continuity, there is an ​
ϵ  >  0​ such that for ​s  ≥ ​ y​​  2​ − ϵ​, the right side of (8) is strictly positive for all ​t  ≤ ​
y​​  2​​. ∎

The intuition for why the auctioneer risks retaining the item at an expected loss 
is the same as the intuition for setting a reserve price strictly above her private value 
in independent private values (IPV) and other settings. Condition (8) bears a close 
resemblance to Myerson’s (1981) optimal auction. In the IPV setting, the optimal 
reserve price equates the seller’s use value to the virtual valuation of the remaining 
bidder. In (8), ​​V ˆ ​​(t, s)​​ is the seller’s expectation of the value if the remaining bidder’s 
type equals the type the seller is mimicking, ​t​, a sort of use value at the margin; 

​V​(t)​ − ​[​ 
1 − G​(t)​

 _ 
g​(t)​

 ​ ]​​ 
∂ V​(t)​

 _ ∂  t  ​​ is the virtual value of the remaining bidder, but where ​V​(t)​​ 
reflects the remaining bidder’s mistaken belief that the shill is a bidder.

Typically, the right side of (8) is strictly decreasing in ​t​. This would be the case, 
for example, when ​​V ˆ ​​(t, s)​ − V​(t)​​ is decreasing in ​t​; ​V​(t)​​ is concave; and we have the 

standard condition, implied by affiliation, that ​​[​ 
1 − G​(​y​​  2​)​

 _ 
g​(​y​​  2​)​

 ​ ]​​ is strictly decreasing in ​t​. 

If so, then the optimal auctioneer misbehavior involves a cutoff ​s​, which depends on ​​
y​​  2​​, below which the auctioneer exits immediately after the bidder with ​​y​​  2​​ exits, and 
above which the auctioneer exits strictly after the bidder with ​​y​​  2​​ exits.17

17 A previous version of this paper presented an explicit solution under Assumption AVG.
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V.  Misbehavior in Dynamic versus Static Settings

A.  A Misbehavior Principle

There is a precise sense in which misbehavior is (weakly) more profitable in 
dynamic settings than static settings. Suppose that we have a dynamic indirect 
mechanism that yields the same equilibrium mapping from type realizations to out-
comes as a direct mechanism. Now suppose that the utility functions change, either 
for one agent (e.g., because the agent is colluding with the auctioneer) or for a ring 
of agents (who are colluding with each other), but that the remaining agents are not 
aware of this change in incentives. Then the agent(s) with new incentives weakly 
prefer the dynamic mechanism to the direct mechanism. In the dynamic mechanism, 
they can mimic the behavior of the type they would have reported in the direct 
mechanism. However, the dynamic mechanism also allows tailoring behavior to 
information revealed during the play.18

Formalizing this principle requires some notation. Suppose that we have ​n​ agents 
and each agent’s type, ​​t​i​​  ∈ ​ T​i​​​ for ​i  =  1, …, n​, is private information. Let ​T​ denote 
the set of type profiles and ​Y​ the set of outcomes. Each agent is an expected utility 
maximizer with Bernoulli utility function, ​​u​i​​ : T × Y  →  ℝ​. Denote the joint dis-
tribution of types by ​F​(​t​1​​, …, ​t​n​​)​​. An incentive compatible direct mechnism is a 
function, ​m : T  →  Y​, satisfying the usual incentive compatibility constraint. An 
indirect mechanism is an extensive form Bayesian game, in which each player ​i​, 
after observing his/her type, chooses a strategy ​​σ​i​​  ∈ ​ Σ​i​​​. Thus, ​​σ​i​​​ specifies an action 
by agent ​i​ at every decision node at which agent ​i​ is called upon to act. This allows 
for the possibility that agent ​i​’s action can depend on the actions chosen by other 
agents. Denote the set of strategy profiles of the underlying game by ​Σ​. A strategy 
of the indirect mechanism is a mapping from ​​T​i​​​ to ​​Σ​i​​​, which allows ​​σ​i​​​ to depend on ​​
t​i​​​ . The outcome is given by ​Γ : Σ  →  Y​. Denote the profile of equilibrium strategies 
of the indirect mechanism by ​​(​σ​ 1​ 

∗​, …, ​σ​ n​ 
∗​)​​.19

We define an incentive compatible direct mechanism and an indirect mechanism 
to be outcome equivalent if, for all type realizations, we have

	​ m​(​t​1​​, …, ​t​n​​)​  =  Γ​(​σ​ 1​ 
∗​​(​t​1​​)​, …, ​σ​ n​ 

∗​​(​t​n​​)​)​​.

PROPOSITION 5 (Misbehavior Principle): Suppose that agents 1 and 2 are able to col-
lude, without the knowledge of the other agents or the mechanism designer, and that the 
colluding agents choose reports (in the direct mechanism) and strategies (in the indi-
rect mechanism) in order to maximize a “social welfare” function, ​​u​1,2​​ : T × Y  →  ℝ​.20 
If the direct mechanism and the indirect mechanism are outcome equivalent, then the 

18 As an application of this principle, in the private values setting, a misbehaving auctioneer (or bidding ring) 
weakly prefers the English auction to the second-price auction. For the IPV case, it turns out that the misbehaving 
auctioneer is indifferent between the two formats, but with affiliated private values, English is strictly preferred. A 
bidding ring is indifferent between the two formats.

19 The solution concept can be PBE, subgame perfect Nash equilibrium, or anything else. In case there are 
multiple equilibria, an equilibrium selection is implicit in ​​(​σ​ 1​ 

∗​​(​t​1​​)​, …, ​σ​ n​ 
∗​​(​t​n​​)​)​​.

20 For example, the agents may agree on how to split the profits from colluding and seek to maximize those 
profits.
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welfare of the colluding agents is weakly higher in the indirect mechanism than in 
the direct mechanism.

PROOF:
Consider a reporting strategy in the direct mechanism, mapping types into 

reports, denoted by ​​(​​t ̃ ​​1​​​(​t​1​​, ​t​  2​​)​, ​​t ̃ ​​2​​​(​t​1​​, ​t​  2​​)​)​​. Because the direct mechanism and the indi-
rect mechanism are outcome equivalent, the mapping from types into strategies in ​
Γ​, given by

	​​ (​​σ ̃ ​​1​​​(​t​1​​, ​t​  2​​)​, ​​σ ̃ ​​2​​​(​t​1​​, ​t​  2​​)​)​  = ​ (​σ​ 1​ 
∗​​(​​t ̃ ​​1​​​(​t​1​​, ​t​  2​​)​)​, ​σ​ 2​ 

∗​​(​​t ̃ ​​2​​​(​t​1​​, ​t​  2​​)​)​)​,​

yields the same outcome for the colluding agents as in the direct mechanism, for 
every realization of types ​​(​t​1​​, …, ​t​n​​)​​. ∎

Note that the same argument applies if a single agent (say, agent 1) has a new 
utility function without the knowledge of the other agents. For example, perhaps 
agent 1 has agreed to be a shill agent for the mechanism designer. To demonstrate 
this, if agent  1 chooses a reporting strategy ​​​t ̃ ​​1​​​(​t​1​​)​​ in the direct mechanism, the 
strategy ​​σ​ 1​ 

∗​​(​​t ̃ ​​1​​​(​t​1​​)​)​​ in the indirect mechanism yields the same outcome for every 
type realization.

B.  The Sophi Auction

We now consider a static mechanism, the Sophi auction, which in the absence of 
misbehavior is outcome equivalent to the dynamic English auction. Our contribu-
tion here is the characterization of the optimal way the ring or the shill exploit this 
tailoring opportunity and the result that under ​x​-separability, the dynamic English 
auction provides the ring no advantage over the static Sophi auction. That is, the 
misbehavior principle need not hold strictly.

The Sophi (Sophisticated) Auction: In the Sophi auction, each bidder ​i​ submits a 
bid, ​​​x ̃ ​​i​​​, and the bidder placing the highest bid wins. Any bid below ​​ x 

¯
 ​​ is converted to ​​ x 

¯
 ​​. 

Then, if all bids (except possibly the highest bid) are less than or equal to ​​x –​​, then the 
highest bidder (say bidder ​i​) pays

(9)	​​ P​​  S​​(​x ̃ ​)​  =  E​[V | ​Y​​   1​  = ​​ y ̃ ​​​  2​, ​Y​​  2​  = ​​ y ̃ ​​​  2​, ​Y​​  3​  = ​​ y ̃ ​​​  3​, …, ​Y​​  n​  = ​​ y ̃ ​​​  n​]​​.

That is, the payment is the expectation of ​V​, conditional on the signals of the other 
bidders equaling their bids, ​​​x ̃ ​​−i​​​, and the signal of bidder ​i​ equaling the highest bid 
of the other bidders. All other bidders pay nothing. Notice that bids are not in the 
same space as prices; bidders understand how the bids affect prices through the pay-
ment rule. Although it does not arise in equilibrium, we must specify the payment 
rule when two or more bids exceed ​​x –​​, in which case (9) is not well defined. If two 
or more bids exceed ​​x –​​, and if ​​​x ̃ ​​i​​​ is the highest bid, the payment made by bidder ​i​ 
is determined as follows: increase the lowest bid by ​​(​​x ̃ ​​i​​ − ​x –​)​​, then reduce all bids 
exceeding ​​x –​​ to ​​x –​​, then apply pricing rule (9). Ausubel (1999) considers a model with 
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multiple objects and interdependent values, but for the special case of one object and 
common values, the generalized Vickrey auction simplifies to a version of Sophi in 
which bids cannot exceed ​​x –​​.

In equilibrium, we have ​​P​​   S​​(​x ̃ ​)​  =  E​[V | ​y​​  2​, ​y​​  2​, ​y​​  3​, …, ​y​​  n​]​​. Levin and Reiss 
(2020) proved that the bidder who wins the object must pay according to the Sophi 
rule in any direct mechanism that satisfies the properties that (i) the bidder with the 
highest signal receives the object, (ii) a bidder who does not receive the object pays 
nothing, and (iii) truthful reporting is an ex post (no-regret) equilibrium.21 Thus, the 
Sophi auction is interesting in its own right. In equilibrium, Sophi “asks” bidders to 
simply bid their signals, because the price rule corrects for the adverse selection. In 
practice, Sophi may help bidders who typically ignore or undercorrect the adverse 
selection and overbid, thereby avoiding or mitigating the winner’s curse.

The Sophi auction is not currently practiced, but the average bid mechanism 
(ABM) similarly attempts to reduce the winner’s curse and defaults, and it is used 
in practice.22 However, ABM has no symmetric and strictly monotone equilibrium 
(see Chang, Chen, and Salmon 2014), so it is difficult to play or use for predictions. 
In these regards, Sophi is superior to ABM.23

Comparison between the English and Sophi Auctions without Misbehavior.—
The simple equilibrium bidding rule for the Sophi auction sharply contrasts with 
the complicated equilibrium strategies in common value auctions such as first-price 
and English auctions. In the symmetric equilibrium of a first-price auction, each 
bidder ought to bid as if holding the highest signal and then use a complicated 
Bayesian calculation to correct his estimation of the common value and also decide 
on the proper (optimal) shading. In English auctions, each bidder must continuously 
update his estimation of the common value after each exit. Levin and Reiss (2020) 
show that in both the Sophi and English auctions, the highest signal holder wins 
the object and pays ​E​[V | ​y​​  2​, ​y​​  2​, ​y​​  3​, …, ​y​​  n​]​.​ Thus, the Sophi auction and the English 
auction are allocation and price equivalent.

The equilibrium bidding rule under Sophi is as simple as can be to bid one’s 
signal, so no informational requirements are placed on the bidders.24 Under 
Assumption AVG, where the average of the ​n​ private signals is a sufficient statistic 
for ​E​[V]​​, the payment rule when bidder 1 makes the largest bid and bidder 2 makes 
the second-largest bid is

(10) ​​ P​​  S​​(​x ̃ ​)​  = ​  1 _ n ​​(​​x ̃ ​​ 2​​ + ​​x ̃ ​​ 2​​ + ​​x ̃ ​​ 3​​ + … + ​​x ̃ ​​n​​)​  = ​  1 _ n ​​[​(​ ∑ 
i=1

​ 
n

  ​​ ​​x ̃ ​​i​​)​ − ​(​​x ̃ ​​1​​ − ​​x ̃ ​​ 2​​)​]​​.

21 We post the proof from Levin and Reiss (2020) in the Appendix for the convenience of the readers.
22 The ABM has been used by the government of Taiwan and by the Florida Department of Transportation. A 

variation in which the high and low bids are dropped before taking the average has been used in Peru, in Switzerland, 
and by the State of New York. See Chang, Chen, and Salmon (2014).

23 There is a rich theoretical and experimental literature that inspired new auction designs. Examples include 
work on combinatorial (or package) auctions with complementaries, used in spectrum auctions (see Kagel, Lien, 
and Milgrom 2010, 2014; Kwasnica et al. 2005; Milgrom 2007; and references therein); dynamic auctions (see 
Ausubel 2004); and position auctions (see Varian 2007 and references therein).

24 Sophi has an additional normative appeal. Instructing bidders to “just bid your estimate” does not only sound 
simple, it is also optimal (in equilibrium). It is much harder to see what bidding advice one could instruct bidders 
in other commonly used auctions.
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This payment rule is simple and imposes no informational requirements on the auc-
tioneer. Under Assumption AVG, Sophi is immune to the Wilson critique (although 
not in general).

In contrast, the English auction places heavy informational requirements on 
the bidders, even under Assumption AVG: they must know the joint distribution, 
​F​(V, X)​​, and perform a complicated Bayesian updating to infer the other bidders’ 
types after each exit. In fact, experimental evidence (see Levin, Kagel, and Richard 
1996 and Kagel and Levin 2002) shows that although the English format mitigates 
the winner’s curse relative to the first-price auction, the winner’s curse still exists 
(even under ​Z​). Thus, in actual environments in which Assumption AVG only holds 
approximately, a mechanism using pricing rule (10) “à la Sophi” might yield out-
comes closer to the equilibrium predictions of the English auction than the English 
auction mechanism itself.

Comparison between the English and Sophi Auctions with a Ring.—To charac-
terize the optimal ring misbehavior in the Sophi auction, first notice that one of the 
ring members (say, ​​r​ 2​​​) will bid ​​ x 

¯
 ​​ in order to keep the price as low as possible. We 

can write the ring’s payoff, when ​​r​1​​​ bids ​t​, as

(11)	​​ ∫ ​y​​ 2​,​y​​ 3​,…,​y​​  n−1​​ 
 

 ​​ ​ [​∫ ​y​​ 2​​ 
t
 ​​ Δ​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​d​F​​Y​​  1​|​Y​​  2​,…,​Y​​  n−1​, ​S​1​​, ​S​ 2​​​​​(​y​​ 1​ | ​y​​  2​, …, ​y​​  n−1​, ​s​1​​, ​s​ 2​​)​]​​

	​ d​F​​Y​​  2​,…,​Y​​  n−1​|​S​1​​, ​S​ 2​​​​​(​y​​  2​, ​y​​  3​, …, ​y​​  n−1​ | ​s​1​​, ​s​ 2​​)​​,

where ​Δ​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​​ is defined by

	​ Δ​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​  = ​​ V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​ − ​V​​  R​​(​y​​ 1​)​​.

Notice that when ​t  > ​ y​​ 1​​ holds and the ring wins the auction, ​​​V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​​ is 
the expectation of ​V​ and ​​V​​  R​​(​y​​ 1​)​​ is the price the ring pays, according to the Sophi 
pricing rule and the bidders’ truthful bidding.

The optimal misbehavior for the ring in the Sophi auction is for ​​r​1​​​ to bid ​t​ to 
maximize (11). Sometimes a solution is to bid ​​x –​​, in which case bids greater than ​​
x –​​ are also optimal.

It follows from Proposition 5 that the ring is weakly better off under the English 
auction than under the Sophi auction. Proposition 6(i) shows that when the result 
holds strictly, and Proposition 6(ii) shows that when ​x​-separability holds, then the 
two auction formats yield the same outcomes for the ring.

PROPOSITION 6: (i)  The optimal misbehavior of the ring with signals ​​(​s​1​​, ​s​ 2​​)​​ 
yields strictly higher payoff in the English auction than in the Sophi auction, except 
when the optimal misbehavior can be achieved with a ​​t​​ ∗​​ that does not depend on 
​​(​y​​  2​, …, ​y​​  n−1​)​​. (ii) Under ​x​-separability, the optimal misbehavior of the ring yields 
the same outcome in the English auction and the Sophi auction, and the optimal 
misbehavior is without regret.
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In an online Appendix, we provide analogs of Propositions 2 and 3 for the Sophi 
auction. Proposition A1 provides conditions under which the optimal strategy of the 
ring and the sincere strategies of the bidders in the Sophi auction is an equilibrium of 
the game in which the existence of the ring is common knowledge. Proposition A2 
provides conditions under which the optimal misbehavior is robust to allowing 
potential ring members to decide whether or not to join the ring.

Comparison between the English and Sophi Auctions with a Misbehaving 
Auctioneer.—Without misbehavior, the English and Sophi auctions lead to the same 
equilibrium outcomes for any realization of signals. However, the auctioneer’s abil-
ity to manipulate the auction secretly, with a shill bidder, differs across the two 
formats. We show that the auctioneer always receives a higher expected payoff, 
conditional on her signal, in the English auction than in the Sophi auction, as long 
as her signal is less than ​​x –​​.25

To characterize the optimal auctioneer misbehavior in the Sophi auction, first 
notice that for given ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, the auctioneer’s payoff as a function of the bid ​
t​ is given by

	​​ ∫ ​y​​ 2​​ 
t
 ​​ ​V ˆ ​​(τ, s)​dG​(τ)​ + ​[1 − G​(t)​]​V​(t)​​,

which follows from the rules for the Sophi payments and the sincere bidding of the 
bidders. The overall payoff of an auctioneer with signal ​s​ but bidding ​t​ is given by

(12)​​∫ ​y​​ 2​,​y​​ 3​,…,​y​​  n​​ 
 

 ​​​ {​∫ ​y​​ 2​​ 
t
 ​​ ​V ˆ ​​(τ, s)​dG​(τ)​ + ​[1 − G​(t)​]​V​(t)​}​d​F​​Y​​  2​,…,​Y​​  n​|S​​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​ | s)​​.

The optimal auctioneer misbehavior, given signal ​s​, is to submit a bid ​t  >  s​ that 
maximizes (12).

Here we show that the misbehaving auctioneer strictly prefers the English auction 
format over the Sophi auction format.

PROPOSITION 7: For all ​s  < ​ x –​​, a misbehaving auctioneer strictly prefers the 
English auction over the Sophi auction.

The idea behind the proof of Proposition 7 is that there is always a chance that ​​
y​​  2​​ is very high. In the Sophi auction, the auctioneer does not observe ​​y​​  2​​ and ends 
up bidding ​​t​​ ∗Sophi​  < ​ y​​  2​​. In the English auction, this would correspond to the auc-
tioneer exiting before the bidder with ​​y​​  2​​, which cannot be optimal. More generally, 
we would expect that ​​t​​ ∗​​ should depend nontrivially on ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, in 
which case the English auction yields a higher payoff.

25 Rothkopf and Harstad (1995) compare the misbehavior of the auctioneer in the private values Vickrey auction 
to the first-price auction, but they assume that the auctioneer can observe all bids before submitting her bid, whereas 
we assume that in the Sophi auction, the auctioneer submits her bid before she observes the remaining bids.
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VI.  Concluding Remarks

We analyze, separately, the misbehavior of a ring of bidders and the misbehavior 
of an auctioneer who uses shill bidding within a common value ascending-price 
English auction. For the case of the bidding ring, one ring member exits at the first 
opportunity. We characterize when and how the other ring member mimics a type 
strictly lower than the highest possible type as well as when the other ring member 
guarantees a win on the equilibrium path by remaining in the auction beyond the 
price at which the highest possible type should exit. Under Assumption TS, bidders 
would not change their strategies even if the existence of the ring was common 
knowledge. We also augmented the game to include a stage that allows the potential 
ring members to decide, after observing their private signals, whether to join the ring 
or not. We then show that the potential members prefer to join the ring and truthfully 
report their signals no matter what their signals are.

For the case of the auctioneer using a shill bidder, we characterize when the auc-
tioneer exits immediately after the bidder with the second-highest signal exits and 
when the auctioneer remains longer, thereby risking keeping the object.

We also compare the scope for misbehavior in dynamic versus static mechanisms, 
by providing a general “misbehavior principle.” We compare the dynamic English 
auction to the Sophi auction, a static mechanism that is equivalent to the English 
auction in the absence of misbehavior. In general, misbehavior is more profitable 
under the dynamic mechanism. However, and somewhat surprisingly, we recognize 
an important special case (​x​-separability) where, in spite of the additional informa-
tion revealed to the ring from the exit prices in the English auction, the ring cannot 
do better under English than under Sophi.

The work of Li (2017) on obviously dominant strategies suggests that dynamic 
auctions may have features that bring behavior closer to the BNE norm than their 
static counterparts. In the private values setting, the dominant strategy of exiting 
at one’s value is obvious in the dynamic English auction, but not so in the static 
second-price auction (see Kagel, Harstad, and Levin 1987). With multiple-unit 
demands, Kagel and Levin (2001) show that the dynamic Vickrey auction performs 
better than the static uniform price auction. In the common values setting, Levin, 
Peck, and Isanov (2016) show that behavior in the dynamic Dutch auction is closer 
to BNE than in the strategically equivalent static first-price auction. The dynamic 
format of the ticking price clock gives subjects a hint about adverse selection, since 
no one else has stopped the clock. In the present paper, in contrast, we find that the 
static Sophi format is actually better for bidders than the English format when unex-
pected misbehavior by the auctioneer is present.

Appendix

PROOF THAT ​X​-SEPARABILITY IMPLIES ASSUMPTION TS:
Suppose not, so there exist realizations of signals for which we have

(A1)	​ h​(​y ̃ ​, …, ​y ̃ ​, ​y​ a​ 
 j+1​, …, ​y​ a​ 

  n​)​  =  h​(​y ̃ ​, …, ​y ̃ ​, ​y​ b​ 
 j+1​, …, ​y​ b​ 

  n​)​​
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and

(A2)	​ h​(​y ˆ ​, …, ​y ˆ ​, ​y​ a​ 
 j+1​, …, ​y​ a​ 

  n​)​  ≠  h​(​y ˆ ​, …, ​y ˆ ​, ​y​ b​ 
 j+1​, …, ​y​ b​ 

  n​)​​,

where ​​y ˆ ​  > ​ y ̃ ​​ holds. There are two cases.
If ​j  <  n − 1​ holds, then there are at least two signals in ​​(​y​ a​ 

 j+1​, …, ​y​ a​ 
  n​)​​ and 

​​(​y​ b​ 
 j+1​, …, ​y​ b​ 

  n​)​​. Select ​​(​x​i​​, ​x​j​​)​​ and ​​​(​x​i​​, ​x​j​​)​ ′ ​​ according to ​​(​x​i​​, ​x​j​​)​  = ​ (​y​ a​ 
  n−1​, ​y​ a​ 

  n​)​​ and 
​​​(​x​i​​, ​x​j​​)​ ′ ​=  ​(​y​ b​ 

  n−1​, ​y​ b​ 
  n​)​​. By ​x​-separability, (A1) implies

	​ h​(​y ˆ ​, …, ​y ˆ ​, ​y​ a​ 
 j+1​, …, ​y​ a​ 

  n​)​  =  h​(​y ˆ ​, …, ​y ˆ ​, ​y​ b​ 
 j+1​, …, ​y​ b​ 

  n​)​​,

contradicting (A2).
If ​j  =  n − 1​ holds, (A1) can be written as

(A3)	​ h​(​y ̃ ​, …, ​y ̃ ​, ​y​ a​ 
  n​)​  =  h​(​y ̃ ​, …, ​y ̃ ​, ​y​ b​ 

  n​)​,​

and (A2) can be written as

(A4)	​ h​(​y ˆ ​, …, ​y ˆ ​, ​y​ a​ 
  n​)​  ≠  h​(​y ˆ ​, …, ​y ˆ ​, ​y​ b​ 

  n​)​​.

Select ​​(​x​i​​, ​x​j​​)​​ and ​​​(​x​i​​, ​x​j​​)​ ′ ​​ according to ​​(​x​i​​, ​x​j​​)​  =  ​(​y ̃ ​, ​y​ a​ 
  n​)​​ and ​​​(​x​i​​, ​x​j​​)​ ′ ​  =  ​(​y ˆ ​, ​y​ b​ 

  n​)​​. By ​x​- 
separability, (A3) implies

(A5)	​ h​(​y ˆ ​, …, ​y ˆ ​, ​y ̃ ​, ​y​ a​ 
  n​)​  =  h​(​y ˆ ​, …, ​y ˆ ​, ​y ̃ ​, ​y​ b​ 

  n​)​​.

Now we use ​x​-separability again, where we select ​​(​x​i​​, ​x​j​​)​​ and ​​​(​x​i​​, ​x​j​​)​ ′ ​​ according to 
​​(​x​i​​, ​x​j​​)​  =  ​(​y ˆ ​, ​y​ a​ 

  n​)​​ and ​​​(​x​i​​, ​x​j​​)​ ′ ​  = ​ (​y ˆ ​, ​y​ b​ 
  n​)​​. By ​x​-separability, (A5) implies

	​ h​(​y ˆ ​, …, ​y ˆ ​, ​y ˆ ​, ​y​ a​ 
  n​)​  =  h​(​y ˆ ​, …, ​y ˆ ​, ​y ˆ ​, ​y​ b​ 

  n​)​​,

contradicting (A4). ∎

Example of ​V  = ​ a​1​​ ​y​​ 1​ + ​a​ 2​​ ​y​​  2​ + ​a​ 3​​ ​y​​  3​​.—The fact that Assumption TS holds for 
all parameters is trivial. We now verify that ​x​-separability holds only for the case 
where ​​a​1​​  = ​ a​ 2​​  = ​ a​ 3​​​ holds. Using the notation in the definition of ​x​-separability, 
suppose that we have ​​x​i​​  > ​ x​j​​  > ​ x​​  a​​, ​​x​ i​ ′ ​  > ​ x​ j​ ′ ​  > ​ x​​  a​​, ​​x​j​​  > ​ x​ j​ ′ ​​ and

(A6)	​​ a​1​​ ​x​i​​ + ​a​ 2​​ ​x​j​​ + ​a​ 3​​ ​x​​  a​  = ​ a​1​​ ​x​ i​ ′ ​ + ​a​ 2​​ ​x​ j​ ′ ​ + ​a​ 3​​ ​x​​  a​​.

Now consider ​​x​​  b​​ satisfying ​​x​ j​ ′ ​  < ​ x​​  b​  < ​ x​j​​​. Then ​x​-separability requires

	​​ a​1​​ ​x​i​​ + ​a​ 2​​ ​x​j​​ + ​a​ 3​​ ​x​​  b​  = ​ a​1​​ ​x​ i​ ′ ​ + ​a​ 2​​ ​x​​  b​ + ​a​ 3​​ ​x​ j​ ′ ​.​
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Combining these equations yields ​​a​ 2​​  = ​ a​ 3​​​. Now consider ​​x​​  b​​ satisfying ​​x​ j​ ′ ​  < ​ x​j​​ 
< ​ x​i​​  < ​ x​​  b​  < ​ x​ i​ ′ ​​. Then ​x​-separability and the previous finding, that ​​a​ 2​​  = ​ a​ 3​​​ holds, 
requires

	​​ a​1​​ ​x​​  b​ + ​a​ 2​​ ​x​i​​ + ​a​ 2​​ ​x​j​​  = ​ a​1​​ ​x​ i​ ′ ​ + ​a​ 2​​ ​x​​  b​ + ​a​ 2​​ ​x​ j​ ′ ​.​

From this equation and equation (18), simple algebra yields the conclusion that ​​
a​1​​  = ​ a​2​​​.

PROOF OF PROPOSITION 1:
We first show in steps 1 and 2 that the ring’s strategy given by the indifference 

condition (3) is well defined.

Step 1: Consider the history in which no one has exited, and suppose, without 
loss of generality, that ​​s​1​​  ≥ ​ s​ 2​​​ holds. With ​n − 1​ active bidders, ​​r​1​​​ will be the next 
to exit by imitating a bidder with type ​​t​​ ∗n−1​​, satisfying the indifference condition

(A7)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗n−1​, …, ​t​​ ∗n−1​)​  = ​ h​​ R​​(​t​​ ∗n−1​, ​ x 

¯
 ​, ​t​​ ∗n−1​, …, ​t​​ ∗n−1​)​​,

or if the left side exceeds the right side for all types, we have

(A8)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​)​ − ​h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, …, ​x –​)​  >  0​.

Now suppose a bidder with signal ​​y​​  n−1​​ exits first. We want to show that the ring’s 
profits from winning at that instant are nonnegative.

For the case of (A7), ​​y​​  n−1​  < ​ t​​ ∗n−1​​ must hold. ​​r​1​​​’s profits from winning at that 
instant are

(A9)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​  n−1​, …, ​y​​  n−1​)​ − ​h​​ R​​(​y​​  n−1​, ​ x 
¯
 ​, ​y​​  n−1​, …, ​y​​  n−1​)​​.

Suppose, by way of contradiction, that (A9) is negative. Then there exists ​​t ′ ​​ satisfy-
ing ​​s​1​​  ≤ ​ t ′ ​  < ​ y​​  n−1​​ and

(A10)	​​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​y​​  n−1​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​y​​  n−1​, ​ x 
¯
 ​, ​y​​  n−1​, …, ​y​​  n−1​)​​.

By Assumption  TS, the fact that ​​y​​  n−1​​ is the largest signal in (A10), and ​​y​​  n−1​ 
≤ ​ t​​ ∗n−1​​, we have

(A11)	​​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​t​​ 
∗n−1​, …, ​t​​ ∗n−1​)​  = ​ h​​ R​​(​y​​  n−1​, ​ x 

¯
 ​, ​t​​ ∗n−1​, …, ​t​​ ∗n−1​)​​.

Since ​​s​1​​  ≤ ​ t ′ ​​ holds, we have

(A12)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗n−1​, …, ​t​​ ∗n−1​)​  ≤ ​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​t​​ 

∗n−1​, …, ​t​​ ∗n−1​)​​.
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Using (A7) to substitute for the left side of (A12) and (A11) to substitute for the 
right side of (A12), we have

(A13)	​​ h​​ R​​(​t​​ ∗n−1​, ​ x 
¯
 ​, ​t​​ ∗n−1​, …, ​t​​ ∗n−1​)​  ≤ ​ h​​ R​​(​y​​ n−1​, ​ x _ ​, ​t​​ ∗n−1​, …, ​t​​ ∗n−1​)​​.

Our maintained assumption that ​​h​​ R​​ is strictly increasing in its largest signal and ​​
y​​  n−1​  < ​ t​​ ∗n−1​​ contradicts (A13).

For the case of (A8), we suppose, by way of contradiction, that (A9) is negative. 
Then there exists ​​t ′ ​​ satisfying ​​s​1​​  ≤ ​ t ′ ​  < ​ y​​  n−1​​ and (A10). By Assumption TS, the 
fact that ​​y​​  n−1​​ is the largest signal in (A10), we have

(A14)	​​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​x –​, …, ​x –​)​  = ​ h​​ R​​(​y​​  n−1​, ​ x 
¯
 ​, ​x –​, …, ​x –​)​​.

Since ​​s​1​​  ≤ ​ t ′ ​​ holds, we have

(A15)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​)​  ≤ ​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​x –​, …, ​x –​)​​.

From (A8), we have

(A16)	​​ h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, …, ​x –​)​  < ​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​)​​.

Substituting the right side of (A14) into (A15) and combining with (A16), we have

	​​ h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, …, ​x –​)​  < ​ h​​ R​​(​y​​  n−1​, ​ x 

¯
 ​, ​x –​, …, ​x –​)​​,

a contradiction.

Step 2: Proceeding inductively, consider the history, ​​(​y​​  ​j ′ ​+1​, …, ​y​​  n−1​)​​, and sup-
pose that (3) or (4) has characterized the ring’s behavior for ​j  = ​ j ′ ​ + 1​ (i.e., before 
bidder ​​y​​  ​j ′ ​+1​​ exited). There are two cases for what the ring was planning before ​​y​​  ​j ′ ​+1​​ 
exited. Either there is ​​t​​ ∗​j ′ ​+1​​ solving the indifference condition,

(A17)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗​j ′ ​+1​, …, ​t​​ ∗​j ′ ​+1​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​

	     = ​ h​​ R​​(​t​​ ∗​j ′ ​+1​, ​ x 
¯
 ​, ​t​​ ∗​j ′ ​+1​, …, ​t​​ ∗​j ′ ​+1​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​​,

or if the left side exceeds the right side for all types, we have

(A18) ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​ − ​h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​  >  0​.

We want to show that the ring’s profits from winning are nonnegative at 
the instant that the bidder with signal ​​y​​  ​j ′ ​+1​​ exits.
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For the case of (A17), ​​y​​  ​j ′ ​+1​  < ​ t​​ ∗​j ′ ​+1​​ must hold. ​​r​1​​​’s profits from winning at that 
instant are

(A19) ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​  ​j ′ ​+1​, …, ​y​​  ​j ′ ​+1​, …, ​y​​  n−1​)​ − ​h​​ R​​(​y​​  ​j ′ ​+1​, ​ x 
¯
 ​, ​y​​  ​j ′ ​+1​, …, ​y​​  ​j ′ ​+1​, …, ​y​​  n−1​)​​.

Suppose, by way of contradiction, that (A19) is negative. Then there exists ​​t ′ ​​ satis-
fying ​​s​1​​  ≤ ​ t ′ ​  < ​ y​​  ​j ′ ​+1​​ and

(A20)​ ​h​​ R​​(​t ′ ​, ​s​ 2​​, ​y​​  ​j ′ ​+1​, …, ​y​​  ​j ′ ​+1​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​y​​  ​j ′ ​+1​, ​ x 
¯
 ​, ​y​​  ​j ′ ​+1​, …, ​y​​  ​j ′ ​+1​, …, ​y​​  n−1​)​​.

By Assumption TS, the fact that ​​y​​  ​j ′ ​+1​​ is the largest signal in (A20), and ​​y​​  ​j ′ ​+1​ 
< ​ t​​ ∗​j ′ ​+1​​, we have

(A21)	​​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​t​​ 
∗​j ′ ​+1​, …, ​t​​ ∗​j ′ ​+1​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​

	     = ​ h​​ R​​(​y​​  ​j ′ ​+1​, ​ x 
¯
 ​, ​t​​ ∗​j ′ ​+1​, …, ​t​​ ∗​j ′ ​+1​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​​.

Since ​​s​1​​  ≤ ​ t ′ ​​ holds, we have

(A22)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗​j ′ ​+1​, …, ​t​​ ∗​j ′ ​+1​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​

	     ≤ ​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​t​​ 
∗​j ′ ​+1​, …, ​t​​ ∗​j ′ ​+1​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​​.

Using (A17) to substitute for the left side of (A22) and (A21) to substitute for the 
right side of (A22), we have

(A23)	​​ h​​ R​​(​t​​ ∗​j ′ ​+1​, ​ x 
¯
 ​, ​t​​ ∗​j ′ ​+1​, …, ​t​​ ∗​j ′ ​+1​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​

	     ≤ ​ h​​ R​​(​y​​  ​j ′ ​+1​, ​ x 
¯
 ​, ​t​​ ∗​j ′ ​+1​, …, ​t​​ ∗​j ′ ​+1​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​​.

Our maintained assumption that ​​h​​ R​​ is strictly increasing in its largest signal and ​​
y​​  ​j ′ ​+1​  < ​ t​​ ∗​j ′ ​+1​​ contradicts (A13).

For the case of (A18), we suppose, by way of contradiction, that (A19) is nega-
tive. Then there exists ​​t ′ ​​ satisfying ​​s​1​​  ≤ ​ t ′ ​  < ​ y​​  ​j ′ ​+1​​ and (A20). By Assumption TS, 
the fact that ​​y​​  ​j ′ ​+1​​ is the largest signal in (A20), we have

(A24) ​​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​y​​  ​j ′ ​+1​, ​ x 
¯
 ​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​​.

Since ​​s​1​​  ≤ ​ t ′ ​​ holds, we have

(A25) ​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​  ≤ ​ h​​ R​​(​t ′ ​, ​s​ 2​​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​​.

From (A18), we have

(A26) ​​ h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​  < ​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​​.
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Substituting the right side of (A24) into (A25) and combining with (A26), we have

	​​ h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​  < ​ h​​ R​​(​y​​  ​j ′ ​+1​, ​ x 

¯
 ​, ​x –​, …, ​x –​, ​y​​  ​j ′ ​+2​, …, ​y​​  n−1​)​​,

a contradiction.

Step 3: The ring’s strategy is a best response to the bidders, ex post, for all signal 
realizations. When the ring does not win the auction, a deviation to win would lead 
to profits of

(A27)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, …, ​y​​  n−1​)​ − ​h​​ R​​(​y​​ 1​, ​ x 
¯
 ​, ​y​​ 1​, …, ​y​​  n−1​)​​.

​​r​1​​​ exited with ​j​ remaining bidders at some ​​t​​ ∗j​​ satisfying

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗j​, …, ​t​​ ∗j​, ​y​​  j+1​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗j​, ​ x 

¯
 ​, ​t​​ ∗j​, …, ​t​​ ∗j​, ​y​​  j+1​, …, ​y​​  n−1​)​​.

Since ​​t​​ ∗j​  < ​ y​​  j​​ holds, we can apply Assumption TS, yielding

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​  j​, …, ​y​​  j​, ​y​​  j+1​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗j​, ​ x 
¯
 ​, ​y​​  j​, …, ​y​​  j​, ​y​​  j+1​, …, ​y​​  n−1​)​​.

Since ​​y​​  j​  ≤ ​ y​​  j−1​  ≤  …  ≤ ​ y​​ 1​​ holds, we can apply Assumption TS repeatedly, 
yielding

(A28)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗j​, ​ x 
¯
 ​, ​y​​ 1​, …, ​y​​  n−1​)​​.

Since ​​t​​ ∗j​  < ​ y​​ 1​​ holds, the right side of (A28) is strictly less than ​​h​​ R​​(​y​​ 1​, ​ x 
¯
 ​, ​y​​ 1​, …, 

​y​​ n−1​)​​,which implies that (A27) is negative and the deviation cannot be profitable for 
any signal realizations.

When the ring wins the auction, there are two cases. In the first case, we have ​​
t​​ ∗1​  ≥ ​ y​​ 1​​ satisfying the indifference condition,

(A29)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗1​, ​y​​  2​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗1​, ​ x 

¯
 ​, ​t​​ ∗1​, ​y​​  2​, …, ​y​​  n−1​)​​.

We claim that ​​t​​ ∗1​​ is the unique solution to (A29). If there were another solution, ​​t ′ ​​, 
Assumption TS and (A29) implies

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t ′ ​, ​y​​  2​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗1​, ​ x 
¯
 ​, ​t ′ ​, ​y​​  2​, …, ​y​​  n−1​)​​.

However, monotonicity in the highest signal would then imply

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t ′ ​, ​y​​  2​, …, ​y​​  n−1​)​  < ​ h​​ R​​(​t ′ ​, ​ x 
¯
 ​, ​t ′ ​, ​y​​  2​, …, ​y​​  n−1​)​​,

a contradiction. Since ​​t​​ ∗1​​ is the unique solution to (A29), then for ​t  < ​ t​​ ∗1​​ we have

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, t, ​y​​  2​, …, ​y​​  n−1​)​  > ​ h​​ R​​(t, ​ x 
¯
 ​, t, ​y​​  2​, …, ​y​​  n−1​)​​.
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Therefore,

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​  ≥ ​ h​​ R​​(​y​​ 1​, ​ x 
¯
 ​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​

holds (strictly for ​​t​​ ∗1​  > ​ y​​ 1​​), which implies that the profits from winning are 
nonnegative (positive for ​​t​​ ∗1​  > ​ y​​ 1​​), so there is no profitable deviation.

In the second case, we have

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, ​y​​  2​, …, ​y​​  n−1​)​  > ​ h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, ​y​​  2​, …, ​y​​  n−1​)​​.

Because there was no solution for ​​t​​ ∗1​​ solving (A29), it follows that

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​  > ​ h​​ R​​(​y​​ 1​, ​ x 
¯
 ​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​

holds. Therefore, the profits from winning are positive, and there is no profitable 
deviation. ∎

PROOF OF COROLLARY TO PROPOSITION 1:
We can apply Proposition 1. Suppose that after some history, ​​(​​y ̃ ​​​  ​j ′ ​+1​, …, ​​y ̃ ​​​  n−1​)​​, the 

optimal strategy is for ​​r​1​​​ to be the next to exit according to the indifference condition,

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗​j ′ ​​, …, ​t​​ ∗​j ′ ​​, ​​y ̃ ​​​  ​j ′ ​+1​, …, ​​y ̃ ​​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗​j ′ ​​, ​ x 

¯
 ​, ​t​​ ∗​j ′ ​​, …, ​t​​ ∗​j ′ ​​, ​​y ̃ ​​​  ​j ′ ​+1​, …, ​​y ̃ ​​​  n−1​)​​.

Then, for any history, ​​(​y​​  j​, …, ​y​​  n−1​)​​, ​x​-separability implies

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗​j ′ ​​, …, ​t​​ ∗​j ′ ​​, ​y​​  j​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗​j ′ ​​, ​ x 

¯
 ​, ​t​​ ∗​j ′ ​​, …, ​t​​ ∗​j ′ ​​, ​y​​  j​, …, ​y​​  n−1​)​​.

In other words, the same ​​t​​ ∗​j ′ ​​​ satisfies the indifference condition following the his-
tory, ​​(​y​​  j​, …, ​y​​  n−1​)​​.

Suppose instead that after the history, ​​(​​y ̃ ​​​  ​j ′ ​+1​, …, ​​y ̃ ​​​  n−1​)​​, the optimal strategy is 
for ​​r​1​​​ to remain in the auction until after a bidder of type ​​x –​​ would exit. Thus, we have

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​, ​​y ̃ ​​​  ​j ′ ​+1​, …, ​​y ̃ ​​​  n−1​)​  > ​ h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, …, ​x –​, ​​y ̃ ​​​  ​j ′ ​+1​, …, ​​y ̃ ​​​  n−1​)​​.

Then, for any history, ​​(​y​​  j​, …, ​y​​  n−1​)​​, ​x​-separability implies

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, …, ​x –​, ​y​​  j​, …, ​y​​  n−1​)​  > ​ h​​ R​​(​x –​, ​ x 
¯
 ​, ​x –​, …, ​x –​, ​y​​  j​, …, ​y​​  n−1​)​​. ∎

PROOF OF PROPOSITION 2.
Suppose that the existence of the ring is common knowledge.
We have already shown in Proposition 1 that if the bidders are choosing the same 

strategy that they choose with the secret ring, the ring’s strategy is a best response 
ex post for every signal realization. To show that we have an equilibrium that is 
without regret, we will now show that the bidders do not have a profitable deviation 
for any realization of the signals. All signal realizations fall into one of the following 
cases.
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Case 1: The ring wins and ​​r​1​​​ is pretending to be a bidder of type ​​t​​ ∗1​​ solving the 
indifference condition,

(A30)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗1​, ​y​​  2​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​t​​ ∗1​, ​ x 

¯
 ​, ​t​​ ∗1​, ​y​​  2​, …, ​y​​  n−1​)​​.

If a bidder were to deviate to win the auction, depending on who is the deviator, the 
price paid would be at least as large as the right side of (A30), and therefore at least

	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​t​​ 
∗1​, ​y​​  2​, …, ​y​​  n−1​)​​.

Since ​​t​​ ∗1​  ≥ ​ y​​ 1​​ holds, this expression is weakly less than ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​, 
which is the value of the object. Therefore, the deviation cannot be profitable.

Case 2: The ring wins and ​​r​1​​​ is willing to bid up to ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, ​y​​  2​, …, ​y​​  n−1​)​​. If 
a bidder were to deviate to win the auction, depending on who is the deviator, the 
price paid would be at least ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​x –​, ​y​​  2​, …, ​y​​  n−1​)​​, which is weakly greater than 
the value of the object, ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​.

Case 3: The ring exits with one bidder remaining. Then the price paid by the 
holder of signal ​​y​​ 1​​ is ​​h​​ R​​(​t​​ ∗1​, ​ x 

¯
 ​, ​t​​ ∗1​, ​y​​  2​, …, ​y​​  n−1​)​​, where ​​t​​ ∗1​​ solves (A30). Since ​​y​​ 1​ 

≥ ​ t​​ ∗1​​ must hold, the left side of (A30) is weakly less than the value of the object, ​​
h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​y​​  n−1​)​​, so the the holder of signal ​​y​​ 1​​ does not want to deviate. If 
another bidder were to deviate to win the auction, depending on who is the deviator, 
the price would be at least ​​h​​ R​​(​t​​ ∗1​, ​ x 

¯
 ​, ​y​​ 1​, ​y​​ 1​, ​y​​  3​, …, ​y​​  n−1​)​​, which, by Assumption TS, 

equals

(A31)	​​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​ 1​, ​y​​  3​, …, ​y​​  n−1​)​​.

Expression (A31) is weakly greater than the value of the object, ​​h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​  2​, …, ​
y​​  n−1​)​​, so the deviation is not profitable.

Case 4: The ring exits after some history, ​​(​y​​  j+1​, …, ​y​​  n−1​)​​, where we have ​j  >  2​ . 
Then ​​r​1​​​ exits at the price, ​​h​​ R​​(​t​​ ∗j​, ​ x 

¯
 ​, ​t​​ ∗j​, …, ​t​​ ∗j​, ​y​​  j+1​, …, ​y​​  n−1​)​​, where ​​t​​ ∗j​​ solves (3). 

The holder of signal ​​y​​ 1​​ pays the price, ​​h​​ R​​(​t​​ ∗1​, ​ x 
¯
 ​, ​y​​  2​, ​y​​  2​, …, ​y​​  n−1​)​​. Since we have ​​

y​​  2​  ≥ ​ t​​ ∗j​​, Assumption TS and (3) imply

(A32)	​​ h​​ R​​(​t​​ ∗j​, ​ x 
¯
 ​, ​y​​  2​, ​y​​  2​, …, ​y​​  n−1​)​  = ​ h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​  2​, ​y​​  2​, …, ​y​​  n−1​)​​.

Therefore, the price is weakly less than the value of the object, so the winner does 
not want to deviate. If another bidder were to deviate to win, the price would be at 
least ​​h​​ R​​(​t​​ ∗j​, ​ x 

¯
 ​, ​y​​ 1​, ​y​​ 1​, ​y​​  3​, …, ​y​​  n−1​)​​, which by Assumption TS and (A32) is equal to 

​​h​​ R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​, ​y​​ 1​, ​y​​  3​, …, ​y​​  n−1​)​​. Therefore, the price is weakly greater than the value, 
so the deviation is not profitable. ∎
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PROPOSITION� (Levin and Reiss 2020, with permission): Consider a direct mech-
anism that satisfies the following properties:

	 (1)	 If there is a unique highest signal, then its holder wins the object.26

	 (2)	 A bidder who doesn’t get the object pays nothing.

	 (3)	 Truthful reporting is an ex post equilibrium.

Then, the bidder who wins the object pays according to the “Sophi” rule.

PROOF:
Fix an agent ​i​ and a vector of signals of all other agents ​​x​−i​​​, and until the end of 

the proof, simplify by having ​T  = ​ T​−i​​  =  max​{​x​−i​​}​​, the highest signal of all agents 
other than ​i​. Consider two different realizations of ​i​’s signal, ​​x​i​​  > ​ x​ i​ ′ ​,​ where ​​x​ i​ ′ ​  >  T​. 
Property number (1) implies that agent ​i​ wins the object in both realizations. It follows 
from property number (3) that ​i​ pays the same price in both cases, since otherwise 
she would have an incentive to misreport her signal to pay the lower price of the two. 
Thus, as long as ​​x​i​​  >  T​, the price that ​i​ pays is constant in ​​x​i​​​, and we denote it by ​c​. 
(Obviously, ​c​ may depend on the vector ​​x​−i​​​, but since we fixed it for the entire proof, 
we omit it from the notation.) Now, if ​​x​i​​  >  T​ and ​i​ reports truthfully, then she wins 
the object and her utility is ​E​[V | ​x​i​​, ​x​−i​​]​ − c​. If instead ​i​ lies and reports some ​​​x ̃ ​​i​​  <  T,​ 
then she doesn’t win the object (by property (1)), and by property (2), her utility is ​0​. 
Thus, by property (3) we must have ​E​[V | ​x​i​​, ​x​−i​​]​ − c  ≥  0​ for every ​​x​i​​  >  T​. Suppose 
now that ​​x​i​​  <  T​ and reporting truthfully results in losing and earning ​0​. If instead ​i​ 
misreports with ​​​x ̃ ​​i​​  >  T,​ then her utility is ​E​[V | ​x​i​​, ​x​−i​​]​ − c​. Again from property (3) 
it must be the case that ​0  ≥  E​[V | ​x​i​​, ​x​−i​​]​ − c​. We established that ​∀ϵ  >  0,​  ​E​[V | ​x​i​​ 
=  T + ϵ, ​x​−i​​]​  ≥  c  ≥  E​[V | ​x​i​​  =  T − ϵ, ​x​−i​​]​.​ Thus, in the limit as ​ϵ  →  0​ yields, ​
c  =  E​[V | ​x​i​​  =  T, ​x​−i​​]​​, the proof is complete. ∎

PROOF OF PROPOSITION 6:
(i) For given ​​(​y​​  2​, …, ​y​​  n−1​)​​, the payoff in the Sophi auction for the ring with 

signals ​​(​s​1​​, ​s​2​​)​​ is given by

	​​ ∫ ​y​​ 2​​ 
t
 ​​​[​​V ˆ ​​​  R​​(​s​1​​, ​s​ 2​​, ​y​​ 1​)​ − ​V​​  R​​(​y​​ 1​)​]​d​F​​Y​​  1​|​Y​​  2​,…,​Y​​  n−1​, ​S​1​​, ​S​ 2​​​​​(​y​​ 1​ | ​y​​  2​, …, ​y​​  n−1​, ​s​1​​, ​s​ 2​​)​​.

This is exactly the payoff received in the English auction, given ​​(​y​​  2​, …, ​y​​  n−1​, ​s​1​​, ​s​ 2​​)​​, 
if the ring exits when the holder of ​​y​​ 1​​ is revealed to have signal ​​y​​ 1​  ≥  t​. Thus, if 
the optimal misbehavior for the ring in the Sophi auction, with signals ​​(​s​1​​, ​s​2​​)​​, is to 
bid ​​t​​ ∗SophiR​​, the same payoff can be achieved in the English auction by exiting out 
when the holder of ​​y​​ 1​​ is revealed to have signal ​​y​​ 1​  ≥ ​ t​​ ∗SophiR​​ for each realization of 
​​(​y​​  2​, …, ​y​​  n−1​)​​. It follows that the ring receives a weakly higher payoff in the English 
auction than in the Sophi auction.

26 Extending to allow for random tiebreaking is simple but does not add much.
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If, for the ring with signals ​​(​s​1​​, ​s​2​​)​​, the optimal misbehavior can be achieved with 
a constant ​​t​​ ∗​​ that does not depend on ​​(​y​​  2​, …, ​y​​  n−1​)​​, then bidding ​​t​​ ∗​​ in the Sophi 
auction allows the ring to receive the same payoff as in the English auction for 
each realization of ​​(​y​​  2​, …, ​y​​  n−1​)​​. On the other hand, if ​​t​​ ∗​​ depends nontrivially on 
​​(​y​​  2​, …, ​y​​  n−1​)​​, then requiring the ring in the English auction to choose a constant 
​t​, independent of ​​(​y​​  2​, …, ​y​​  n−1​)​​, leads to some suboptimal choices and a strict reduc-
tion in payoff.

(ii) From the Corollary to Proposition  1, the optimal misbehavior of the ring 
in the English auction is for ​​r​1​​​ to pretend to be type ​​t​​ ∗​​, where ​​t​​ ∗​​ depends on 
​​(​s​1​​, ​s​2​​)​​ but not on the history. From the proof of part (i), it follows that ​​t​​ ∗​  = ​ t​​ ∗SophiR​​ 
holds, so the outcomes are the same in the English auction and the Sophi auction. 
Since misbehavior is without regret in the English auction, it is without regret in the 
Sophi auction. ∎

PROOF OF PROPOSITION 7:
Comparing (7)  and (12), it is clear that the auctioneer in the English auction 

can achieve the Sophi payoff by setting ​​t​​ ∗​​, for each realization of ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, 
equal to the auctioneer’s Sophi bid, which we denote as ​​t​​ ∗Sophi​​. To show that the 
English is strictly preferred, it suffices to show that there are some realizations of 
​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, occurring with positive probability, such that ​​t​​ ∗Sophi​​ is not a solution 
to (7).

First, we show that ​​t​​ ∗Sophi​  < ​ x –​​ holds. Differentiating (12) with respect to ​t​, and 
evaluating at ​t  = ​ x –​​, yields

(A33)	​​ ∫ ​y​​  2​,​y​​  3​,…,​y​​  n​​ 
 

 ​​​ [​V ˆ ​​(​x –​, s)​ − V​(​x –​)​]​d​F​​Y​​  2​,…,​Y​​  n​|S​​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​ | s)​​.

Since for ​s  < ​ x –​​ the term in brackets in (A33) is negative for each ​​(​y​​  2​, ​y​​  3​, …, ​y​​  n​)​​, 
the auctioneer strictly increases profits by reducing ​t​ below ​​x –​​, so ​​t​​ ∗Sophi​  < ​ x –​​ holds.

Thus, there must be a positive probability that ​​y​​  2​  > ​ t​​ ∗Sophi​​ holds. In all such 
cases, however, ​​t​​ ∗Sophi​​ is not a solution to (7), because ​​t​​ ∗​  ≥ ​ y​​  2​​ must hold. Intuitively, 
the auctioneer should not exit before the bidder with ​​y​​  2​​ exits. ∎
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