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Abstract

We consider a two-period durable goods monopoly model with demand

uncertainty. When uncertainty is non-multiplicative, there can be equilibria

in which, whenever the period 0 price exceeds a threshold, then with positive

probability all consumers boycott in period 0. A consumer who in period 0

would purchase in the non-boycott equilibrium is willing to join a boycott

because a boycott prevents the firm from learning demand. This dampens

period 1 prices on average and makes the boycott self-fulfilling. Connections

to the bank runs literature are discussed.

∗This paper was inspired by an indirectly related project I am working on with Ray Deneckere.
I would like to thank Huberto Ennis, Andrew John, Dan Levin, and Karl Shell for helpful

suggestions.



1. Introduction

When each individual consumer has a negligible effect on the market, and derives

utility only from his consumption bundle (of the good and money), it is usually

assumed that collective action such as a consumer boycott cannot arise in equi-

librium. If a consumer would purchase in the absence of a boycott, why would he

forego the purchase to join a boycott? We show here that the expectation that all

consumers will join a boycott can be self-fulfilling, without requiring a preference

for punishing the firm, a preference for participating in a boycott or a fear of

social pressure, bounded rationality, or other departures from the standard model

of consumer behavior.

The setting is a two-period durable goods monopoly model with demand un-

certainty. In the “non-boycott” equilibrium, the price in period 0, 0, is such that

consumers with sufficiently high valuations purchase, while consumers with lower

valuations prefer to wait and hope for a lower price in period 1. The firm updates

its beliefs about the state of demand based on period 0 sales, which affects the

optimal price in period 1. A consumer with the cutoff valuation is indifferent

between purchasing in period 0 and purchasing in period 1 at a price that will

depend on period 0 sales. However, in the subgame following the firm’s choice

of 0, if consumers boycott the product then the firm must set 1 having learned

nothing about demand. If this 1 is less than the expected price that would prevail

without a boycott, then it is possible that all consumers would refuse to pay 0
during a boycott, while consumers with valuations above a cutoff would pay 0 in

the absence of a boycott. We use the term boycott success probability to refer to

the probability that a boycott equilibrium is selected in the subgame following 0,

when such an equilibrium exists. If the boycott success probability is small, then

boycotts can take place on the equilibrium path of the full game. If the boycott

success probability is large, then the firm will be induced to acquiesce and choose

0 lower than what it would have chosen without the boycott threat.

To be sure, many real world boycott movements are led by activists who

object to the policies of firms or nations. Baron (2001) and Baron and Diermeier

(2007) model the interplay between a monopolist, who faces a cost of reducing its

objectionable behavior, and an activist, who receives utility based on the firm’s

behavior and its own efforts in organizing a boycott or otherwise punishing the

firm. The activist, being a large player, avoids the free rider problem faced by an

individual consumer. Innes (2006) models an environmental activist who interacts

with duopolistic polluters, and shows that boycotts can arise on the equilibrium
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path even with symmetric information. John and Klein (2003) study the purchase

decisions of individual consumers who object to an “egregious act” on the part of

the producer. Thus, consumers care directly about the firm’s policy, but there is

a free rider problem due to the absence of a large activist. John and Klein (2003)

find that a consumer will join a boycott only if he (i) can significantly affect the

firm’s probability of abandoning the egregious act, (ii) incorrectly believes that

his purchase decision directly influences the firm, (iii) is extremely altruistic, or

(iv) derives utility from participating in the boycott, being part of a successful

boycott, having a clean conscience from not purchasing, etc. All of these features

are absent from the current model. Finally, Heijnen and van der Made (2012)

consider a model in which it suddenly becomes common knowledge that the firm’s

production is damaging to the environment, but the firm does not know the extent

of consumers’ (common) disutility for the practice. A partially pooling equilibrium

is derived in which some consumer types signal their high disutility by purchasing

less of the firm’s product than they would under perfect information, in order to

induce the firm to adopt a clean production process in the second period.

Not all real world boycotts involve egregious acts—sometimes consumers simply

object to the high prices being charged. Friedman (1995) documents a series of

consumer boycotts during the twentieth century, triggered by high prices and

mostly supported by social pressure and local monitoring. Rea (1974) provides a

theoretical analysis of boycotts, where again the only egregious act is the setting of

high prices, but under the assumption that social pressure can enforce cooperation

at the individual level.

When the market for e-books was first taking off in 2007 and 2008, some

Amazon Kindle e-book owners attempted to boycott e-books priced over $10, and

Amazon decided to incentivize its authors to price at or below $10. See the popular

press and new media articles by Ganapati (2009), Rich (2010), Eckstein (2012),

and Catan et al (2012). This is a complicated industry with competition from

Apple and others, supply chain issues, and antitrust issues. This paper is not a

model of the e-book industry. However, some features of this industry are captured

by the present model. This is a market in which there is significant uncertainty

about optimal prices, both for e-books relative to print books during 2007 and

2008 and for new titles in general. Consumers are forward looking and decide

on the timing of their purchase. It is difficult to see how social pressure can be

applied to enforce a boycott, so the question of individual incentives emerges. For

a potential best seller, an equilibrium of the model could support a self-fulfilling

boycott threat inducing the seller to accept an initial release price at $10, which
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would avoid a boycott and allow demand to be learned. Then if the title turns

out to have high demand, the price is increased, and if demand is moderate to

low, the price is maintained or decreased.

The layout of the paper is as follows. Section 2 lays out the model, and Section

3 characterizes the “non-boycott” equilibrium. In Section 4, it is shown that, if

demand uncertainty is multiplicative, boycott equilibria do not arise. Intuitively,

when the firm knows the demand curve up to a multiplicative factor, it has nothing

to learn about optimal prices and the model can be solved by backward induction.

Section 4 also considers the case of non-multiplicative uncertainty and provides

sufficient conditions under which the non-boycott equilibrium also has a boycott

equilibrium in the subgame following 0. We use this boycott threat to construct

a continuum of equilibria in which the firm cuts its price to avoid a boycott. In

Section 5, we augment the game to include a publicly observed sunspot variable,

and it is shown that equilibrium exists in which boycotts occur on the equilibrium

path with positive probability. Section 6 offers some concluding remarks, on

the connection to the literature on experimentation and learning, and the close

connection to the Diamond-Dybvig bank runs literature.

2. The Model

A monopoly seller with constant marginal production cost, normalized to zero

without loss of generality, sells a durable good over two periods. Consumers

demand either 0 or 1 unit of the good, and demand uncertainty is captured by the

parameter  ∈ [ ], so the measure of active consumers with valuation at least
 in state  is given by ( ). We assume that ( ) is twice continuously

differentiable and strictly decreasing in , over the support of valuations, [ ].

The highest possible valuation, , satisfies ( ) = 0 for all . We also assume

that − ()


is bounded from above and below, and that ( ) is strictly

increasing in  for all     , and satisfies the revenue concavity condition,


2( )

2
+ 2

( )


 0

The firm and all consumers share the same discount factor between period 0 and

period 1, denoted by   1. Thus, if a consumer with valuation  purchases the

good at price  in period 0, his utility is  − , and if he purchases in period 1,

his utility is ( − ).
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The firm and consumers know the distribution of , characterized by the con-

tinuous density function (), but they do not observe the realization. Think of

the following process generating the set of active consumers. First, nature draws

the demand state according to (). Then, out of the population of “potential”

consumers ( ), nature randomly and independently selects each consumer

to be active with probability
()

()
. Finally, for the selected active consumers,

nature randomly and independently selects a valuation  from the distribution

(1− ()

()
). To see that this procedure generates the appropriate demand func-

tion, the probability that an active consumer has a valuation less than or equal to

 equals [1− (active with valuation ≥ )] = [1− measure of active with valuation ≥
measure of active

] =

(1− ()

()
).

Because there is aggregate uncertainty, a consumer being active with valua-

tion  provides the consumer with information about . The probability of being

active, given state , is
()

()
. For small 4, the probability of having valua-

tion between  and  + 4, given state  and being active, is proportional to
()


( ). Intuitively, the slope of the demand curve at  measures how

many consumers have that valuation. Therefore, using Bayes’ rule, the density of

, conditional on being active of type , is given by1

() ≡
()


()R 



()


()

 (2.1)

Notice from (2.1) that a consumer of type  updates () to assign higher

probability weight to states in which there are a lot of active type  consumers.

Our results rely on two regularity assumptions. Assumption 1 and Assumption 2

ensure that the price in period 1 is an increasing function of , and that higher

valuation-types expect higher prices in period 1, due to the belief that higher 

is more likely.

Assumption 1: The expression, −[()


], is strictly increasing in  and the

expression,

¯̄̄̄
¯ 

2()

2

()



¯̄̄̄
¯, is weakly increasing in  for all .

The timing of the game is as follows. At the beginning of period 0, the firm

selects a price, 0. Then, active consumers find out that they are active and

1See Deneckere and Peck (2012). In that paper, an active consumer has the additional

information of his place in line, so the information effect is slightly different.
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decide whether to purchase at the price 0 or wait until period 1. The firm

observes the quantity of sales in period 0. At the beginning of period 1, the firm

chooses a price, 1, and active consumers who did not purchase in period 0 decide

whether to purchase at the price 1 or to not consume. The solution concept is

Perfect Bayesian Equilibrium (PBE). However, since all equilibria involve a cutoff

valuation ∗(0) above which a consumer purchases in period 0 and below which
a consumer does not purchase in period 0, the only relevant belief for the firm is

the probability distribution over  in period 1, contingent on observed purchases

in period 0.

Definition 1: The subgame following 0 has a boycott equilibrium if it has a

PBE in which no consumer purchases in period 0 for any  (that is, we have

∗(0) = ).

We now characterize the value of 0 above which a boycott equilibrium exists

for the subgame. This result is not interesting by itself, because 0 is treated as

exogenous, but it will be useful later on. If consumers boycott in period 0, then

consistency requires the firm to believe that  is distributed according to ().

In period 1, sequential rationality on the part of a consumer with valuation 

requires him to purchase at price  if and only if we have  ≥ . Therefore, the

sequentially rational period 1 price following a boycott, 1 , solves

max
1

Z 



1(1 )()

Because of our concavity assumption on revenue, 1 is defined to be the unique

solution to the first order conditionZ 



[1
(1 )


+(1 )]() = 0 (2.2)

Also, define  = (1− )+ 1 . One can interpret  to be the period 0 price such

that a type  consumer is indifferent between purchasing and waiting, given that

there will be a boycott by the other consumers and the period 1 price will be 1 .

Given 1 and , we have the following characterization.

Lemma 1: The subgame following 0 has a boycott equilibrium if and only if

0 ≥  holds.
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Proof. Suppose 0 ≥ (1− ) + 1 holds. Having specified the period 1 actions

and beliefs above, it remains to show that all consumers prefer not to purchase in

period 0. This will be the case if the highest valuation consumer prefers not to

purchase in period 0, which occurs if  − 0 ≤ ( − 1 ). Thus, the subgame has

a boycott equilibrium.

Now suppose 0  (1− ) + 1 holds. Then if no other consumers purchase

in period 0, a consumer with valuation  is better off purchasing, contradicting

the possibility of a boycott equilibrium. ¥

3. Non-Boycott Equilibrium

We now characterize the “non-boycott equilibrium,” based on a cutoff type ∗(0)
being indifferent between purchasing in period 0 and period 1, where ∗(0) varies
continuously from  to . Working backwards, given the price 1, a type  con-

sumer will purchase in period 1 if and only if  ≥ 1. Therefore, given the cutoff

type ∗ and the revealed state , the sequentially rational 1 solves

max 1((1 )−(∗ )) (3.1)

with necessary and sufficient first order condition,

(1 )−(∗ ) + 1
(1 )


= 0 (3.2)

Denote the unique solution to (3.2) as 1(
∗ ). Our regularity assumptions

guarantee that 1(
∗ ) is strictly increasing in ∗, and we will also require that

1(
∗ ) is weakly increasing in . Assumption 2, below, is satisfied, for example,

if the price elasticity of residual demand, ∗(1 ) ≡ (1 ) − (∗ ), is
increasing in 1 and decreasing in .

Assumption 2: 1(
∗ ) is weakly increasing in  for all ∗.

For a consumer observing the price 0 in period 0, the cutoff type 
∗(0) is

determined by the indifference condition,

∗ − 0 = (∗ −
Z 



1(
∗ )∗()) or
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(1− )∗ − 0 + 

R 

1(

∗ )(
∗)


()R 



(∗)


()
= 0 (3.3)

First we show that, if there is a cutoff solving (3.3), then higher valuations

prefer to purchase in period 0 and lower valuations prefer to wait, verifying the

cutoff property. The net advantage of purchasing for a type  consumer is

(1− ) − 0 + 

R 

1(

∗ )()


()R 


()


()

 (3.4)

We know from (3.3) that (3.4) is zero for  = ∗, so it will suffice to demonstrate
that the last term in (3.4) is weakly increasing in , holding ∗ fixed, which is
shown in the following lemma.

Lemma 2: The expression

 

1(

∗)()


() 


()


()

is weakly increasing in .

Proof. The derivative of the expression with respect to  isR 


∙
1(

∗ )−
 

1(

∗)()


() 


()


()

¸
2()

2
()R 



()


()

=

R 


∙
1(

∗ )−
 

1(

∗)()


() 


()


()

¸
2()

2

()



()R 

()

=

Z 



"
1(

∗ )−
R 

1(

∗ )()


()R 


()


()

#
2()

2

()



()

=

Z 



1(
∗ )

2()

2

()



()−
Z 



1(
∗ )()

Z 



2()

2

()



()

which is nonnegative if and only if we have

R 

1(

∗ )
2()

2

()



()R 


2()

2

()



()

≥
Z 



1(
∗ )() (3.5)
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This result follows from Assumption 1 and a weak-inequality version of Wang

(1993, Lemma 2).2 ¥

Second, we show that there is a unique interior solution to (3.3) whenever 0
is below some upper bound. Differentiating the left side of (3.3) with respect to

∗ yields

(1−)+
Z 



1(
∗ )

∗
∗()+

R 


∙
1(

∗ )−
 

1(

∗)(
∗)


() 



(∗)


()

¸
2(∗)

2
()R 



(∗)


()


(3.6)

Because the last term in (3.6) was shown to be nonnegative in Lemma 2, it

follows that (3.6) is strictly positive. The left side of (3.3) is positive for 0 = 0

and negative for sufficiently large 0, so ∗(0) is uniquely determined by the
indifference condition whenever 0 is above the price for which  solves (3.3) and

below the price for which  solves (3.3). Define the price for which  solves (3.3)

as max, given by

max = (1− ) + 

Z 



1( )() (3.7)

To recap, consumer behavior in the subgame following 0 is as follows. If

0  max, then ∗(0) solves (3.3), types  ≥ ∗(0) purchase in period 0, and
types   ∗(0) wait.3 If 0 ≥ max, then no one purchases in period 0. In

period 1, following 0 and 0  0, the firm assigns probability one to the  solving

(∗(0) ) = 0, and sets the price 1(
∗(0) ).4 In period 1, following 0 and

0 = 0, the firm believes that  is distributed according to (), and sets the price

1 . In period 1, for any history given 1, a consumer of type  purchases if and

only if  ≥ 1 holds.

To complete the characterization of the non-boycott equilibrium, we determine

the sequentially rational 0. Clearly, the firm will choose 0  max in order to

learn  and will want to induce an interior cutoff. It is convenient to think of the

2In Wang’s notation,  = (),  =
¯̄̄
2()

2

()



¯̄̄
, and  = 1(

∗ ).
3If 0 is so low that all types strictly prefer to purchase, then they do so, 

∗(0) = .
4If (∗(0) )  0 holds, then the firm assigns probabilty one to state  and considers the

cutoff to solve (∗ ) = 0. If (
∗(0) )  0 holds, then the firm assigns probabilty one

to state  and considers the cutoff to solve (∗ ) = 0.
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firm as choosing ∗, where 0(∗) is the inverse of ∗(0), given by

0(
∗) = (1− )∗ + 

R 

1(

∗ )(
∗)


()R 



(∗)


()
 (3.8)

We have already shown that 0(
∗) is strictly increasing in ∗. The firm’s total

profit can be written as

(∗) ≡
Z 



[0(
∗)(∗ ) + [1(

∗ )((1(
∗ ) )−(∗ ))]] ()

(3.9)

Differentiating, we have

0(∗) =

Z 



∙
0(

∗)
(∗ )


+(∗ )00(

∗)

¸
()+



Z 



1(
∗ )(

(1(
∗ ) )



1(
∗ )

∗
− (∗ )


)()+



Z 



((1(
∗ ) )−(∗ ))

1(
∗ )

∗
()

Using the necessary first order conditions for 1(
∗ ), this expression simplifies

to

0(∗) = 00(
∗)
Z 



(∗ )()+
Z 



[0(
∗)− 1(

∗ )]
(∗ )


()

Substituting for 0(
∗) from (3.8), and after much manipulation, 0(∗) can be

written as

0(∗) = 00(
∗)
Z 



(∗ )()+ (1− )∗
Z 



(∗ )


() (3.10)

Establishing the concavity of (∗) would guarantee that there is a unique non-
boycott equilibrium, but sufficient conditions would be extremely complicated and

involve assumptions about third derivatives of demand. However, the following

proposition demonstrates that a non-boycott equilibrium exists, by demonstrating

that (∗) is maximized for some ∗  . Typically the equilibrium involves an

interior cutoff type, but it is possible for the firm to sell to all consumers in period

0, as would be the case, for example, if  is close to  and  is small.
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Proposition 1: There exists a non-boycott equilibrium characterized by a period

0 price, 
0 , satisfying 

0  max.

Proof. The subgame following each 0 has been uniquely characterized above,

and sequential rationality and consistency have been shown to be satisfied. From

(3.9), it is clear that (∗) is a continuous function on [ ], and therefore achieves
it’s maximum for some ∗ ∈ [ ]. Evaluated at , we have

0() = (1− )

Z 



( )


()  0,

so any profit maximizing ∗on [ ] satisfies ∗  , as required in order to have

period 0 sales reveal . Given a profit maximizing ∗, choose 
0 = 0(

∗) from
(3.8). Since ∗   holds, it follows that 

0  max holds. ¥

4. Boycott Equilibrium

In this section, we show that boycotts and boycott threats do not occur under

multiplicative uncertainty. It is then shown that, if Assumption 2 holds strictly,

then for  sufficiently close to one, the subgame following 
0 has a boycott

equilibrium.

Definition 2: Demand uncertainty is multiplicative if there exists a function e
such that we have ( ) =  e().
Proposition 2 below shows that when demand uncertainty is multiplicative, for

any equilibrium period 0 price 0, there are positive sales in period 0, revealing

the state, and there is no boycott equilibrium to the subgame. Intuitively, under

multiplicative uncertainty the firm knows the per capita demand curve e() but
not the size of the market. Since pricing decisions do not depend on , there is

no benefit from boycotting in period 0. A boycott would increase the residual

demand in period 1, to the disadvantage of consumers.

Proposition 2: If demand uncertainty is multiplicative, then in any PBE, sales

are positive in period 0, and the subgame following the equilibrium 0 does not

have a boycott equilibrium.
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Proof. In any PBE, following any 0, there is a cutoff valuation ∗(0) above
which a consumer purchases in period 0 and below which a consumer waits. The

reason is that () is independent of  under multiplicative uncertainty, so if

type  weakly prefers to purchase in period 0, a higher valuation type will strictly

prefer to purchase in period 0. Looking ahead to period 1, the firm observes 0
and 0, and therefore infers 

∗(0). Sequential rationality requires that a consumer
with valuation  purchases at price 1 if and only if we have  ≥ 1. Denoting the

firm’s beliefs about the state by (), the sequentially rational 1 solves

max
1

Z 



1[ e()−  e(∗(0))]()
= 1[ e(1)− e(∗(0))]Z 



()

characterized by the first order condition given by the unique solution to the first

order condition

1
 e(1)


+ e(1)− e(∗(0)) = 0 (4.1)

Notice that 1 depends only on ∗ and not the firm’s beliefs about . We denote
the price by 1(

∗(0)), which is strictly increasing in ∗(0)
An interior cutoff satisfies the indifference condition,

(1− )∗(0)− 0 + 1(
∗(0)) = 0 (4.2)

It is without loss of generality to consider 0 such that (4.2) holds. If the cutoff is

, the firm loses profits if that type strictly prefers to purchase; if the cutoff is ,

nothing is gained if 0 is such that type  strictly prefers to purchase. Thus, finding

the firm’s sequentially rational 0 is equivalent to finding the ∗ to maximize
profits,

(∗) =

Z 



h
0(

∗) e(∗) + 1(
∗)[ e(1(∗))−  e(∗)]i () or

(∗) =
h
0(

∗) e(∗) + 1(
∗)[ e(1(∗))− e(∗)]i Z 



() (4.3)

where 0(
∗) is given by

0(
∗) = (1− )∗ + 1(

∗) (4.4)
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Substituting (4.4) into (4.3), differentiating with respect to ∗, and using (4.1)
to simplify, we have

0(∗) = (1− )[∗ e0(∗) + e(∗)] +  e(∗)01(∗) (4.5)

Evaluated at ∗ = , we have 0() = (1 − ) e0()  0. Thus, the firm will

induce a cutoff strictly below . From (4.4), we have 0  (1− ) + 1() = .

Therefore, the firm strictly prefers to induce an interior cutoff, sales in period 0

are strictly positive, and given the equilibrium 0, there does not exist a boycott

equilibrium. ¥

When demand uncertainty is not multiplicative, then the optimal price in

period 1 depends on the firm’s beliefs about . We show here that, whenever

Assumption 2 holds strictly and  is sufficiently close to one, the non-boycott

equilibrium satisfies 
0  , so the subgame following 

0 also has a boy-

cott equilibrium. We then use this boycott threat to construct equilibria with

0  
0 . In the next section, we introduce the augmented game with a sunspot

variable that triggers a boycott with a probability between zero and one, which

allows for equilibrium with actual (and not just threatened) boycotts on the equi-

librium path.

Assumption 20: 1(∗ ) is strictly increasing in  for all ∗.

For the case of multiplicative uncertainty, 1(
∗ ) is independent of , so

Assumption 2 holds but Assumption 20 does not hold.

Proposition 3: If, in addition to our maintained assumptions, Assumption 20

holds and  is sufficiently close to one, the subgame following 
0 has a boycott

equilibrium.

Proof. A necessary condition for a non-boycott equilibrium is that ∗(
0 ) solves

0(∗) = 0 in (3.10). It is easy to see that 00(
∗) is the expression in (3.6), which

strictly exceeds (1 − ). Then for all   0, there exists   1 such that  ≥ 

implies  − ∗(
0 )  . Otherwise, if for some , we have  − ∗(

0 )   for

all  sufficiently close to one, then
R 

(∗ )() is bounded above zero, so

the first term in (3.10) is bounded above zero. However, the second term in (3.10)

is arbitrarily close to zero, so we would have 0(∗(
0 ))  0, contradicting that

∗(
0 ) solves 0(∗) = 0. Thus, as  converges to one, ∗(

0 ) converges to ,
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which implies that 
0 converges to max. That is, for all   0, there exists b  1

such that  ≥ b implies max − 
0  .

By definition of max and , we have

max −  = 

R 

1( )

()


()R 



()


()

− 

Z 



1( )() (4.6)

Since −()


is strictly increasing in  by Assumption 1, and 1( ) is strictly

increasing in  by Assumption 20, it follows from Wang (1993, Lemma 2) that

the right side of (4.6) is strictly positive. Therefore, we have max  , so there

exists  such that max ≥ + . Since there exists b such that max−
0   also

holds for  ≥ b, it follows that 
0   holds, so the subgame following 

0 has

a boycott equilibrium for  ≥ b . ¥
We now use the result in Proposition 3 to show that the game has multiple

equilibria. Besides the non-boycott equilibrium, there are a continuum of equi-

libria in which the firm chooses 0 ∈ ( 
0 ), in order to avoid a threatened

boycott.

Proposition 4: Suppose that, in addition to our maintained assumptions, As-

sumption 20 holds. Then for all   0, there exists   1 such that  ≥  implies

there is a continuum of PBE, indexed by ∗0 ∈ ( 
0 − ), in which a boycott

threat induces the firm to choose 0 = ∗0.

Proof. From Proposition 3, we know that 
0   holds, so there is a continuum

of prices within the range, ( 
0 −) for sufficiently small . Fix ∗0 ∈ ( 

0 −).
Here is the strategy profile. The firm chooses 0 = ∗0. For any history with
0 ≤ ∗0, the continuation strategies (and beliefs) are exactly as in the non-boycott
equilibrium. It follows that sequential rationality and consistency hold for any

such history.

For the subgame following 0  ∗0, all consumers boycott (no one buys), and
0 = 0. In period 1, for all histories with 0  ∗0 and 0 = 0, the firm believes that
 is distributed according to () and sets 1 = 1 . In period 1, for all histories

with 0  ∗0 and 0  0, the firm assigns probability one to the belief that

 =  holds, considers the cutoff to solve (∗ ) = 0, and sets 1 = 1(
∗ ).

Then a type  consumer purchases in period 1 if and only if  ≥ 1. Sequential

rationality and consistency are satisfied for the subgame following 0  ∗0. In
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particular, since we have 0  ∗0  , it is sequentially rational for all consumers

to boycott. Also, given 0  ∗0 and 0  0, any beliefs are consistent, but the

price in period 1 is sequentially rational given those beliefs.

We now show that 0 = ∗0 is sequentially rational. Based on equation (3.9)
for the non-boycott equilibrium, the profits are given by

(∗(∗0)) =
Z 



[∗0(
∗(∗0) ) + [1(

∗(∗0) )((1(
∗(∗0) ) )−(∗(∗0) ))]] ()

Given , choose  such that 0(∗)  0 holds for all ∗  ∗(
0 − ). We know

there exists such a  from the proof of Proposition 3. Since we have ∗0  
0 −,

it follows that (∗(∗0))  (∗()) holds. We have

(∗()) =

Z 



[(∗() ) + [1(
∗() )((1(

∗() ) )−(∗() ))]] ()



Z 



£
(∗() ) + [1 ((


1  )−(∗() ))]

¤
() (4.7)

 

Z 



(− 1 )(
∗() )()+ 

Z 



1 ((

1  )()

Inequality (4.7) follows from the fact that 1(
∗() ) is sequentially rational in

period 1, yielding higher profits than 1 . If, instead of setting 0 = ∗0, the firm
set 0  ∗0, this would trigger a boycott, and profits would be



Z 



1 ((

1  ) )() (4.8)

Thus, the deviation would result in lower profits. If the firm set 0  ∗0, profits
would be (∗(0)), where ∗(0)  ∗(∗0) holds. Because 

0(∗)  0 holds in this
range, the deviation would result in lower profits. ¥

Remark: A maintained assumption is   1, but it is interesting to consider the

limiting case of  = 1. Since any positive quantity of sales reveals  in the non-

boycott equilibrium, and ∗(
0 ) converges to  as  converges to one, there is a

discontinuity in the limiting case,  = 1. In the limit, ∗(
0 ) =  holds, there are

no sales, and nothing about the state is revealed. On the other hand, if nothing

about the state is revealed, the firm would be better off choosing a lower price

and learning demand. Thus, a non-boycott equilibrium does not exist in the limit
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if Assumption 20 holds. Interestingly, the equilibrium constructed in Proposition

4 continues to hold in the limit, since ∗(∗0)   holds. For the limiting case of

 = 1, and under Assumption 20, boycott threats boycott threats are required for
the existence of equilibrium.

5. Boycotts on the EquilibriumPath: The Augmented Game

In the previous section, we showed how the threat of a boycott can credibly force

the firm to offer lower prices. In this section, we show that boycotts can occur

with positive probability on the equilibrium path. To model the uncertainty over

whether a boycott effort will be successful, we introduce to the game a stage in

which agents observe a public random variable that has no intrinsic effect on pay-

offs but may serve to coordinate actions. In the bank runs and macro literatures,

this is called a sunspot variable. Here is the timing of the augmented game. At

the beginning of period 0, the firm selects a price, 0. Then, all agents (including

the firm) observe the realization of a sunspot variable, , which without loss of

generality is uniformly distributed on the unit interval. Next, active consumers

find out that they are active and decide whether to purchase at the price 0 or

wait until period 1. The firm observes the quantity of sales in period 0. At the

beginning of period 1, the firm chooses a price, 1, and active consumers who did

not purchase in period 0 decide whether to purchase at the price 1 or to not

consume.

We now construct an equilibrium of the augmented game in which boycotts

occur on the equilibrium path, with positive probability.

Proposition 5: Suppose that, in addition to our maintained assumptions, As-

sumption 20 holds. Then there exists   1 such that  ≥  implies there is a

continuum of PBE of the augmented game, in which boycotts occur with positive

probability along the equilibrium path.

Proof. We will construct a class of equilibria, parameterized by a boycott success

probability . That is, a boycott occurs if the subgame following 0 and  has a

boycott equilibrium and  ≤ . Here is the strategy profile. The firm chooses

0 = 
0 . For any history with    or any history with  ≤  and 0 ≤ , the

continuation strategies (and beliefs) are exactly as in the non-boycott equilibrium.

It follows that sequential rationality and consistency hold for any such history.
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For the subgame following  ≤  and 0  , all consumers boycott (no one

buys), and 0 = 0. In period 1, following  ≤ , 0  , and 0 = 0, the firm

believes that  is distributed according to () and sets 1 = 1 . In period 1,

following  ≤ , 0  , and 0  0, the firm assigns probability one to the

belief that  =  holds, considers the cutoff to solve (∗ ) = 0, and sets

1 = 1(
∗ ). For any history, a type  consumer purchases in period 1 if and

only if  ≥ 1. Sequential rationality and consistency are satisfied for the subgame

following  ≤  and 0  . In particular, following  ≤ , 0  , and 0  0,

any beliefs are consistent, but the price in period 1 is sequentially rational given

those beliefs.

We now show that 0 = 
0 is sequentially rational. We choose , based on

Proposition 3, to satisfy 
0  . Denote profits in the boycott equilibrium, given

in (4.8), as . Then profits in the augmented game, by choosing 0 = 
0 , are

(1− )(∗(
0 )) +  (5.1)

If the firm were to deviate to some other price, 0  , profits are

(1− )(∗(0)) +  (5.2)

Because 
0 is sequentially rational in the non-boycott equilibrium, we have

(∗(
0 )) ≥ (∗(0)), so the expression in (5.1) is greater than or equal to

the expression in (5.2), and the deviation is not beneficial.

If the firm were to deviate to some other price, 0 ≤ , profits are (∗(0)).
However, we must have (∗(

0 ))  (∗(0)) for all 0 ≤ , so there exists   0

such that (1−)(∗(
0 ))+ ≥ (∗(0)) holds. That is, for sufficiently small

, the deviation is not beneficial. This establishes that 0 = 
0 is sequentially

rational. A boycott occurs with positive probability, , along the equilibrium path.

¥

The assumption that the firm observes  is not needed for our results, because

whenever sales are zero the firm can infer that a boycott is taking place. It seems

more natural to specify a model in which the firm observes ; for most markets,

consumers could not organize a boycott without the firm finding out about it.

The equilibrium has the property that, with fixed probability , the consumers

boycott whenever a boycott equilibrium exists. Different equilibria are also pos-

sible. One could construct an equilibrium in which, with fixed probability ,

consumers boycott only a subset of the period 0 prices admitting a boycott equi-

librium. Alternatively, one could construct a more complicated equilibrium in

which the probability of a boycott following 0 depends on the value of 0.
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There are many demand functions with non-multiplicative uncertainty satis-

fying our assumptions, including Assumption 20. One such example is ( ) =
1 − . While numerical computations for this demand system are easy to do,

there do not exist closed-form solutions for ∗(0).

6. Concluding Remarks

One aspect of the boycotts modeled in this paper seems very unrealistic. That is,

even the most successful of boycotts will not be 100% effective. Are there equilibria

of the model in which only a fraction of consumers participate in a boycott? If a

known fraction of consumers do not participate, then the firm would be able to

infer demand, undermining the incentive for others to join a boycott. However,

if signals are not perfectly correlated, I conjecture that there can be equilibria

with partial boycotts on the equilibrium path, supported by uncertainty about

the extent of the boycott. Consumers receiving a signal to join a boycott would

update their beliefs in favor of large boycotts and fewer sales in period 0, while

consumers not receiving a signal to join a boycott would update their beliefs in

favor of small boycotts and more sales in period 0. Thus, for a given valuation, a

consumer receiving a signal to join a boycott would expect a lower price in period

1 than a consumer not receiving a signal to join a boycott, thereby incentivizing

the former consumer to join and the latter consumer not to join.

Rothschild (1974), Easley and Kiefer (1988), and other papers on learning and

experimentation also model a monopolist learning about demand through its pric-

ing decisions. However, this literature differs from the current paper in several

crucial respects. These papers assume that the demand function in each period

contains unknown permanent parameters and a period-specific shock. The mo-

nopolist learns about the demand parameters over time by observing the quantity

sold, may choose prices that do not maximize within-period profits in order to

better learn demand, and learning may be incomplete. In this literature, demand

is tied to a single period, so that the price charged and quantities sold in one

period has no effect on the demand curve in future periods. In the present paper,

demand is not tied to a single period, and consumers explicitly optimize over when

to purchase. The residual demand in period 1 is affected by sales in period 0. In

equilibria of the sort presented in Proposition 4, the firm chooses a price in period

0 that is low enough to prevent a boycott from taking place, thereby allowing

the firm to learn demand. However, it would be wrong to say that the firm is

experimenting or investing in information. In Rothschild (1974) and Easley and
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Kiefer (1988), there is uncertainty about permanent parameters and about the

realization of temporary shocks. In the present paper, there are no temporary

shocks because consumers active in any period are active in all periods.5

We conclude with a discussion on the connection to the Diamond-Dybvig (DD)

bank runs model. In the DD model, the bank offers a deposit contract and agents

deposit their endowment in period 0. In period 1, some agents learn that they

are “impatient” and must consume during that period, while others are “patient”

and can consume during either period 1 or period 2. In the non-run equilibrium,

patient consumers prefer to withdraw their deposits in period 2, and this is the

best equilibrium for consumers. However, there is also a run equilibrium, since

if everyone withdraws in period 1, the bank will liquidate all of its resources in

period 1 and there will be nothing left for a patient deviator who waits until period

2.6

The boycott equilibrium considered in this paper is a kind of “anti-run.” That

is, the boycott equilibrium corresponds to the non-run equilibrium, because con-

sumers coordinate on the most efficient equilibrium (for them) and wait to trans-

act. The non-boycott equilibrium characterized here corresponds to the run equi-

librium; we can think of consumers as panicking and failing to coordinate on the

boycott equilibrium. The boycott success probability, in which sunspots serves to

coordinate whether or not a boycott equilibrium occurs in the subgame, plays the

same role as the propensity to run in Peck and Shell (2003), in which sunspots

serves to coordinate whether or not a run equilibrium occurs in the post-deposit

subgame.
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