
Competing Mechanisms with Multi-Unit

Consumer Demand

James Peck∗

The Ohio State University

March 17, 2017

Abstract

The competing mechanisms literature is extended to a market setting in

which firms have fixed capacity, and there is a continuum of consumers who

desire multiple units and can only purchase from one firm. Firms choose

incentive compatible mechanisms in which consumers report their utility

types; consumption of the good and payments of the numeraire are contin-

uous functions of the reports. Uniform price auctions with reserve prices,

reinterpreted as direct mechanisms, are not consistent with equilibrium.

However, modified auctions without reserve prices but with type-specific

entry fees do constitute an equilibrium of the competing mechanisms game

under additional regularity assumptions. When all firms announce fixed

prices at the perfectly competitive level, this profile also constitutes an

equilibrium of the competing mechanism game.
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1. Introduction

This paper extends the competing mechanisms literature to a market setting in

which consumers demand multiple units. Specifically, consider a market with a

finite number of firms with fixed capacity. There is a continuum of consumers,

each of whom demands multiple units and can only visit one firm during the

market period.1 There is no aggregate uncertainty about demand. In the Com-

peting Mechanisms Game, Γ, firms simultaneously announce mechanisms, then

consumers learn their utility type, choose a firm, and participate in that firm’s

mechanism. A feasible mechanism asks each of its consumers to report his type,

and specifies the amount of the good received by each consumer and the amount

of the numeraire each consumer pays to the firm, as a function of the measures

of each type reported to the firm. Mechanisms are required to be incentive com-

patible and continuous. Some indirect mechanisms that can be reinterpreted as

feasible mechanisms include (i) uniform price auctions, possibly with reserve prices

or entry fees; (ii) fixed-price-per-unit mechanisms, in which the firm specifies a

price and consumers are allocated their utility maximizing demands if resources

permit, and a per capita rationing limit clears the market if demand exceeds ca-

pacity; and (iii) fixed-price-per-share mechansisms, in which all consumers visiting

the firm make a pre-specified payment and receive an equal share of the firm’s

capacity.

Much of the literature involves competition in which sellers with one indivisible

unit choose second-price auctions with a reserve price. Typically, equilibrium

entails a positive reserve price which approaches zero as the number of sellers

approaches infinity. The results here, however, are considerably different. Reserve-

price competition does not survive if more general mechanisms are allowed. There

are no symmetric equilibria of Γ, even in mixed strategies, in which firms choose

uniform price auctions with a reserve price. If there were such an equilibrium,

and if the highest reserve price chosen in equilibrium is above the competitive

equilibrium price, , then a firm choosing this reserve price would face excess

capacity. There is a profitable deviation to another mechanism that maintains its

set of customers but fully allocates capacity. On the other hand, if the highest

reserve price chosen in equilibrium is at or below , then the reserve prices are

not binding. There is a profitable deviation to another mechanism that exploits

residual demand while fully allocating capacity. Under reasonable assumptions,

1For example, suppose each of  firms owns a mountain for downhill skiing, with a chair lift

that can accommodate a fixed number of ski runs during a particular day.
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we show that Γ has a symmetric equilibrium in which each firm’s pure strategy

is a modified uniform price auction with type-specific entry fees and zero reserve

prices. Market power by sellers is exploited through entry fees, which in the model

represents a transfer from buyers to sellers rather than an efficiency loss.2 The

concluding remarks discuss the conjecture that these main results carry over when

the model is extended to include aggregate demand uncertainty.

Surprisingly, given the negative result for reserve price mechanisms, we show

that Γ has a symmetric equilibrium in which every firm chooses a fixed-price-per-

unit mechanism at . There is a difference between all firms setting the price 

and all firms setting a reserve price equal to . In both cases, a firm that raises

either its price or its reserve price above  will induce a new consumer equilibrium

that loses some of its customers, and this outflow will lower the utility received by

consumers visiting other firms. With fixed-price mechanisms, there will be excess

demand and rationing at the other firms. With reserve price mechanisms, the

auction price at other firms will rise above the reserve price to clear the market.

This result, that the competitive equilibrium allocation is achieved with a finite

number of firms, is not the familiar Bertrand result. Osborne and Pitchik (1986)

consider a duopoly model of price competition with capacity constraints. For the

version of their model in which capacities are fixed, they find that equilibrium is

often in mixed strategies. Their model allows consumers to purchase from both

firms, so the competitive result here depends on the subtleties of the rationing

rule. The issue is discussed in Section 4. The concluding remarks discuss the

conjecture that fixed-price-per-unit mechanisms will not survive the extension to

include aggregate demand uncertainty.

Additional results are available for the case of one consumer type. If there is

one consumer type, then there is an equilibrium of Γ in which all firms choose a

fixed-price-per-share mechanism, but profits are higher than in the competitive

equilibrium.3 We also show that there is yet another equilibrium in which firms

extract all consumer surplus.

There is a considerable literature on competing mechanisms. McAfee (1993)

provides a model in which sellers with one unit of a good choose efficient auctions

2In a different context, Levin and Smith (1994) consider a single seller with one unit, and

show that the seller will choose a zero reserve price when values are i.i.d. and bidders face an

entry cost.
3For the skiing example, a fixed-price-per-share mechanism is simply a lift ticket. The cus-

tomer would pay for the right to go on multiple runs, with the lift queue guaranteeing that

all customers receive the same quantity, as determined by the lift capacity and the number of

customers. See Barro and Romer (1987).
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in equilibrium, out of a general class of mechanisms. The number of sellers is

assumed to be large enough that they can ignore their effect on the broader mar-

ket. Peters and Severinov (1997) restrict the space of mechanisms to second-price

auctions with a reserve price, and show that reserve prices converge to zero as the

number of sellers approaches infinity. Their solution concept specifies beliefs about

the distribution of customers they will receive if they deviate from the common

reservation price, and these beliefs are correct in the limit. Given these beliefs,

firms maximize their expected profit. Burguet and Sákovics (1999) model a game

with two buyers and two sellers who choose second-price auctions with a reserve

price. Although they cannot fully characterize the symmetric equilibrium, they

show that it involves mixed strategies, and the support of the equilibrium reserve

price is bounded above zero. Pai (2014) models competition between two sell-

ers, each with a single unit, who choose mechanisms from the space of “extended

auctions” (which includes posted prices). It is shown that two forms of ineffi-

ciency exist in equilibrium: sellers sometimes withhold the good, and the good is

sometimes allocated to an agent that does not have the highest valuation. Coles

and Eeckhout (2003) consider a model with two sellers, each with one unit, and

two identical buyers. When sellers can choose arbitrary anonymous mechanisms

within this environment, it is shown that there is a continuum of equilibria, includ-

ing price-posting and auctions with a reserve price. Virág (2007) generalizes Coles

and Eeckhout (2003) by introducing multiple buyer types, so that price-posting is

no longer efficient. Virág (2007) shows that, with two types, only ex-post efficient

mechanisms such as auctions are consistent with equilibrium. Peters and Sev-

erinov (2006) consider a dynamic competing auctions setting, where buyers have

multiple opportunities to place bids on any auction. A perfect Bayesian equilib-

rium is characterized in which buyers adopt the simple strategy of augmenting

the lowest available standing bid by the minimum increment, as long as their bid

does not exceed their value. It is shown that when the number of sellers is large,

they choose a zero reserve price. All of the above-mentioned papers assume that

sellers own one unit of the good and that buyers have unit demands.

A few papers study competing mechanisms in more general and abstract set-

tings. Peters and Troncoso-Valverde (2013) prove a folk-theorem, showing that

an allocation can be supported as an equilibrium outcome whenever it is incentive

compatible and individually rational. The construction requires players to coor-

dinate on very complicated messages involving encryption keys. See also Epstein

and Peters (1999) and Peters and Szentes (2012).

The present paper is unique in that it imposes an economic structure in which
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sellers have multiple units and consumers have downward sloping demand curves.

As a result, the set of available mechanisms is large. However, consumers report

their demand types, rather than complex messages about the mechanisms chosen

by other firms. There is a continuum of consumers of each type, and a single con-

sumer’s arrival choice or report has a negligible influence on any other agent in the

economy. This structure provides a tractable way to study imperfect competition

by the firms offering the mechanisms. The equilibrium mechanisms turn out to be

very simple, and often involve no reports whatsoever. Multiplicity of equilibrium,

a hallmark of the competing mechanisms literature, obtains here, even though

we rule out collusive outcomes achieved by consumers reporting on whether com-

peting firms have deviated. Intuitively, what the mechanism is prepared to offer

consumers, off the equilibrium path, can serve to soften or strengthen competition.

However, the only equilibrium mechanism we have identified, which is robust to

multiple types and seems to be robust to demand uncertainty, is an auction with

entry fees.

Section 2 sets up the economic environment and defines the competing mech-

anisms game. Section 3 contains results about auction mechanisms. Section 4

contains results about price-per-unit mechanisms. Section 5 contains additional

results for the case of one consumer type. Section 6 contains some examples.

Section 7 contains some brief concluding remarks. Proofs of all results are given

in the Appendix.

2. The Competing Mechanisms Game

We consider a market with  firms selling a homogeneous good, and for simplicity,

we assume that they all have the same capacity, normalized to 1, and no costs.

There are  types of consumers, and a continuum of consumers of each type.

Denote the measure of type  consumers as . Each consumer of type  has

the quasilinear utility function () +, where  is the consumption of the

(divisible) good and  is the consumption of the numeraire (or money). We

assume that each consumer has a sufficiently large endowment of money to make

any desired purchases, and that the utility function for each  satisfies 0()  0
and 00 ()  0 for all .
Although we think of firms as being geographically separated, so that a con-

sumer can visit at most one firm, the competitive-equilibrium benchmark will be

useful. A consumer of type  facing price  will choose the quantity of the good
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satisfying

0() = 

whose solution we denote by the demand function, (). Each firm inelastically

supplies its capacity, so the competitive equilibrium price, denoted by , is the

unique solution to
X

=1

(
) =  (2.1)

We assume that types can be ranked in terms of willingness to pay, so that   

implies ()  () for all .

In the Competing Mechanisms Game, denoted by Γ, firms simultaneously se-

lect a mechanism from a class of mechanisms,  , defined below. We restrict

attention to incentive-compatible direct-revelation mechanisms, where consumers

report their utility type. Let 

 denote the measure of agents participating in firm

 ’s mechanism and reporting type , and define  = (

1   


 ). A mechanism

for firm  , denoted by  , consists of continuous functions 

 (

) and 

 (

),

satisfying for all  the feasibility condition,

X
=1



 


 (

) ≤ 1

Given the reports  , 

 (

) is the consumption of the good received by a consumer

reporting type  at firm  , and 

 (

) is the money payment made by a consumer

reporting type  at firm  . The profit or payoff to firm  is given by
P

=1 

 


 (

).

The timing of Γ is as follows. First, firms simultaneously choose a mechanism.

Then consumers observe the profile of mechanisms selected by the firms, denoted

by  = (1 ). Finally, consumers choose which firm to visit, report a

type, and participate in that firm’s mechanism.4 Our solution concept is subgame

perfect Nash equilibrium in which all consumers of the same type choose the

same mixed strategy. That is, for any profile of mechanisms , all consumers

of the same type choose the same mixed strategy over arrivals. We denote an

equilibrium by SPNE, and unless otherwise specified we will consider equilibria in

which firms use pure strategies. Since we only consider type-symmetric equilibria

4We do not impose individual rationality restrictions. However, individual rationality holds

on the equilibrium path for all of the mechanisms considered in this paper. Also, individual

rationality on and off the equilibrium path would hold if we were to impose the Inada condition,

(0) = −∞.
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and the relevant subgame will always be clear from the context, we can denote

the probability that a consumer of type  visits firm  as 

 .
5 Given a non-zero

vector of arrival probabilities at firm  ,  = (

1   


 ), a mechanism is incentive

compatible if reports satisfy the truth-telling condition,

(

 (

))− 

 (

) ≥ (

(

))− 

 (

) for all  , where (2.2)



 = 


 holds.

We define  to be the set of continuous functions from reported types into a

quantity consumed and payment by each type, satisfying (2.2) for all  .

Example: Fixed-Price-Per-Unit Mechanism.

If firm  chooses a fixed price per unit,  , then if there is no excess demand at

firm  , each consumer receives his utility maximizing consumption and pays the

per unit price  . If there is excess demand, then some consumers are rationed

but each consumer continues to pay the per unit price  . We assume that there is

a maximum quantity that any consumer can choose,  , which clears the market

as defined below. Consumers whose demand exceeds  consume at the maxi-

mum limit, and consumers whose demand is less than  consume their utility

maximizing quantity.6

Here is the mechanism in which firm  chooses a fixed price per unit,  .

For

X
=1



 (

) ≤ 1



 (

) = (
) and 


 (

) = (
)

For

X
=1



 (

)  1 (2.3)



 (

) = min[(
) ()] and



 (

) =  min[(
) ()]

where () is the solution to

5We assume that the conclusion of the law of large numbers holds, so that if all type 

consumers use the mixing probability 

 , then the measure of type  consumers visiting firm 

is 

 .

6This rationing rule would arise if we think of consumers as waiting in a queue, purchasing

one unit at a time, then getting back into the queue if they desire to purchase more units.
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X
=1



 min[(

) ()] = 1 (2.4)

From (2.4), it follows that whenever the consumption limit matters,
P

=1 

 (

) 

1, then () is uniquely defined. It is easy to see that this mechanism is contin-

uous in  and is incentive compatible.

The class of allowable mechanisms,  , is fairly broad. However,  is far

from completely general. Consumers are reporting their valuation-types, but not

their full type which includes information about the other firms’ mechanisms.

See Epstein and Peters (1999) for an analysis of how to build a universal type

space. It seems reasonable, when we are modeling competition by firms who set

up their own markets to sell their capacity, to rule out incredibly complicated

mechanisms requiring higher order reports about the mechanisms of other firms.7

Whether or not a mechanism is incentive compatible can depend on  , and

requiring that incentive compatibility holds for all  can be restrictive.8 However,

this restriction is only used to guarantee the existence of a Nash equilibrium of

all subgames off the equilibrium path. The price-per-unit and price-per-share

mechanisms have the nice property that no reports of any sort are required, and

are obviously incentive compatible for any  .

Without the continuity assumption, we would typically have the problem that

no SPNE exists. The reason is that, following a deviation in which firm  chooses

a mechanism that is not continuous in  , the resulting consumer subgame often

has no Nash equilibrium, due to the fact that we have a continuum of consumers.

For example, suppose there is only one type of consumer and all firms other

than firm  choose a fixed price-per-unit of . Suppose firm  chooses the fol-

lowing mechanism (for some positive ), which is not continuous:



1(

) =
1



1



1 (

) = ( + )1(
) if 


1 ≥ 1



1 (

) = 0 if 

1  1.

7Peters and Troncoso-Valverde (2013) develop the notion of sequential communication mech-

anism. The mechanisms allow players to report sequentially, first reports about types and then

reports about the first-round reports of other players.
8See Peck (1997) for an example, in a different context, in which the revelation principle

might fail when only valuation-types are reported.
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For this profile of mechanisms, the consumer subgame has no Nash equilibrium.

There cannot be a NE with 

 ≥ 1


, because consumers are not rationed at the

other firms, and receive their competitive equilibrium utility; at firm  , consumers

pay more than what they would pay at other firms and receive less consumption,

so consumers visiting firm  are not best responding. There cannot be a NE

with 

 

1

, because consumers visiting other firms are rationed and receive less

than their competitive equilibrium utility; consumers at firm  receive well above

their competitive equilibrium utility, so consumers visiting other firms are not

best responding.

Fortunately, Lemma 1 shows that, for our class of allowable mechanisms, which

requires continuity and incentive compatibility, the consumer subgame always has

a Nash equilibrium.

Lemma 1: For any profile of mechanisms,  = (1 ), where  ∈ for

 = 1  , the resulting consumer subgame has a type-symmetric NE.

3. Auction Mechanisms

3.1. Uniform Price Auctions with Reserve Prices

Many types of auctions are included within the set of allowable mechanisms,  .

For example, if firm  holds a uniform price auction with reserve price  , its

consumers submit demand functions specifying, for each price greater than or

equal to  , the total bid at or above that price. The firm collects the submitted

demand functions, and the auction price is the highest rejected bid. That is, the

auction price is the price that clears the market if the total bid at  exceeds the

firm’s supply of 1, and the auction price is  otherwise. Since consumers are

negligible and cannot affect the auction price, in equilibrium a type  consumer

will bid his demand function, (), for  ≥  .

Here is the mechanism corresponding to a uniform price auction with reserve

price  . Given  , let  solve

X
=1



 () = 1
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and let  ≡ max[ ]. Then we have



 (

) = (
) and



 (

) = (
) (3.1)

Incentive compatibility and continuity are clearly satisfied.

In order to compare our setting to the competing auctions literature with

single-unit demands, before considering whether profiles of auction mechanisms

are equilibria to Γ, we consider the “reserve price game” Γ in which firms must

choose a mechanism as specified in (3.1) for some  . In any equilibrium of the

consumer subgame, the auction price at all firms attracting consumers must be

the same. If not, a consumer could instead choose a firm with a lower auction price

and receive his utility maximizing quantity at that price. For any firm  setting a

reserve price that is non-binding in the ensuing consumer equilibrium, obviously

it will sell its entire capacity. If there is a firm  attracting customers but whose

reserve price,  , is binding in the ensuing consumer equilibrium, the auction price

at all firms will be  , and it must be the case that    holds.9 Therefore,

the firms setting lower (non-binding) reserve prices sell all their capacity, and firm

 would not sell all of its capacity since there is excess capacity in the market at

this price.10

How does the SPNE of Γ relate to the competing auctions literature? Burguet

and Sákovics (1999) consider a duopoly reserve price game with two consumers

and single-unit demand. They show that symmetric equilibrium involves mixed

strategies by firms, and that the support of the equilibrium distribution of reserve

prices is bounded above zero. In the present setting, however, Γ could have a

SPNE in pure strategies in which all firms choose a zero reserve price. To see

this, consider the profit function of firm  , if all other firms choose a zero reserve

price. For   , firm  can only make positive profits if  is close enough

to  so that overall market demand at the price  exceeds the capacity of the

9A firm setting  ≤  will have a non-binding reserve price in the ensuing consumer

equilibrium, even if all other firms set a reserve price of zero.
10If several firms set the same (binding) reserve price as firm  , then it would be impossible

for all of these firms to sell all of their capacity. In the most natural consumer equilibrium, these

firms would be treated identically and all of them would have excess capacity.
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other firms, − 1. In this case, { }=1 satisfies
X

=1

(1− 

 )(

) = − 1 or

X
=1



 (

) =

X
=1

(
)− (− 1) (3.2)

From (3.2), we can write the profits of firm  as

() =

X
=1



 (

)

=  [

X
=1

(
)− (− 1)] (3.3)

Differentiating (3.3) with respect to  and evaluating at  =  yields

()0() = 1 + 
X

=1


0
(

) (3.4)

Whenever (3.4) is negative, and the second order condition,

2

X
=1


0
(

) +

X
=1


00
 (

)  0

holds for all  ≥ , then there is a SPNE where all firms set a zero reserve price.

To recap our analysis of the reserve price game, there is a SPNE in which all

firms choose a zero reserve price when (3.4) is negative. It can be shown that

(3.4) is negative when the market price elasticity of demand (in absolute value)

is greater than 1. Thus, unlike the literature that focuses on a finite number of

consumers with unit demand, the competitive outcome of all reserve prices being

zero can happen in equilibrium. This is likely to occur when there are many firms.

Now let us consider the competing mechanisms game, Γ. It turns out that

there is no SPNE in which all firms choose a uniform price auction with any

reserve price, even allowing for mixed strategies by firms. The idea is that, if

firm  sets  at the upper support of equilibrium reserve prices, it knows that
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some of its capacity will be wasted. There is a profitable deviation to another

mechanism that allocates all of its capacity, while continuing to attract the same

set of customers as before.

Proposition 1: There is no SPNE of Γ in which all firms choose reserve price

mechanisms, even allowing for mixed strategies by firms.

3.2. Uniform Price Auctions with Entry Fees

With additional structure on utility functions, the following proposition estab-

lishes that there is a SPNE to Γ in which firms choose a “modified auction with

entry fees” (− ) mechanism. First, an “auction with entry fees” mecha-

nism for firm  involves a zero reserve price and a set of entry fees, 

 , satisfying:

(1) 

 (

) = ((
)), (2) 


 (

) = ()((
)) + 


 , and (3) the auction

price () is determined by the market-clearing condition,

X
=1



 ((

)) = 1

If 

 varies across types, the mechanism might not be incentive compatible, for

example, when the measure of arriving consumers is small enough that the market

clearing price is near zero. Hence, we modify the concept to  − , in

which the entry fees fully apply in an  neighborhood of , and linearly drop to

zero as the price reaches  − 2 or  + 2. Thus, in an − , the entry

fee is given by



 if  −  ≤ () ≤  + µ

()−  + 2



¶



 if  − 2 ≤ () ≤  − µ

 + 2− ()



¶



 if  +  ≤ () ≤  + 2

and 0 otherwise.

Note that the profile of mechanisms given in Proposition 2 below remain consistent

with equilibrium without this modification; the modification is only used to ensure

that the mechanisms are within our allowable set,  .
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Proposition 2: Assume that for  = 1  , demand is of the form () =

(), where  is a positive parameter and 0()  0. Then if  is sufficiently

large and  is sufficiently small, there is a SPNE of Γ in which, for  = 1  ,

firm  chooses the following − mechanism:

∗ = −
[(

)]2

(− 1)0() for  = 1  

Along the equilibrium path, we have 

 =

1

for all  and  , each firm’s auction

price is , and each firm’s profit is

 − ()

(− 1)0() 

Using entry fees rather than reserve prices guarantees that capacity is utilized

efficiently by the firm and its customers. With entry fees as specified in Proposition

2, raising the entry fee sends some customers away and lowers the auction price,

but it also increases entry fee revenue, and these effects offset.

4. Fixed-Price-Per-Unit Mechanisms

The following proposition establishes that there is a SPNE of Γ in which all firms

choose the fixed-price-per-unit mechanism with the competitive equilibrium price.

Proposition 3: For sufficiently large , there is a SPNE of Γ in which, for

 = 1  , firm  chooses the price-per-unit mechanism defined in (2.3) with

 = , and 

 =

1

for all  and  along the equilibrium path.

The proof of Proposition 3 solves an optimization problem for a potential

deviator, firm  , which chooses its mechanism, 

 (

) and 

 (

), and chooses

consumer behavior, , to maximize profits subject to its resource constraint and

the consumer indifference condition necessary for  to be an equilibrium to the

consumer subgame. It is shown that no profitable deviation is possible.

It may seem surprising that firms are choosing the competitive equilibrium

price in equilibrium, but here is the intuition for why the firm would not choose
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a different price. If firm  decided to raise its price slightly above , the util-

ity offered to its customers declines, necessitating a reduction in the measure of

consumers visiting firm  and an increase in the measure of consumers visiting

the other firms. Thus, type 1 consumers visiting other firms will be rationed.11

The resulting equilibrium of the consumer subgame will involve type 1 consumers

being indifferent between buying as many units as they want at firm  at the

higher price, vs. paying the price  and being rationed at one of the other firms.

For a small price increase above  by firm  , the rate at which utility at firm  is

reduced is approximately 1(
). For type 1 consumers choosing some other firm,

, the rate at which utility is reduced is approximately

−

1


[01(


1)− ]

where 

1 is less than 1(

) due to excess demand and rationing. However, when

the price increase is small, the term in brackets in the above expression is ap-

proximately zero, due to the envelope theorem. For the indifference condition to

be satisfied, the above expression must equal 1(
), so



1


must equal negative

infinity. That is, we must have an infinite rate of outflow of demand from firm  at

the margin. In other words, for a small increase in the price chosen by firm  , the

reduction in the quantity sold is an order of magnitude greater than the increase

in the price. Locally, raising or lowering the price from  strictly lowers profits.

The assumption that  is sufficiently large is only needed as a sufficient condition

to establish the relevant second-order conditions. For the examples presented in

the Appendix, the competitive pricing result holds for all   1.

Other SPNE of Γ exist yielding the same price and allocation, but a different

pattern of consumer types across firms. Rather than all firms seeing the same

distribution of consumer types, as in Proposition 3, any mixed strategy profile

by consumers is consistent with equilibrium, as long as the total demand at each

firm, at the price , is exactly equal to the total capacity at each firm, 1.

A corollary of Proposition 3 is that competitive pricing is an equilibrium of the

game, Γ , in which firms are restricted to choose a price per unit. This form of

price competition, where the rationing rule requires consumers to purchase from

only one firm, has not been discussed before in the IO literature. It is worth

11Usually type 1 consumers will be the only type rationed in the consumer subgame following

the deviation, but the proof of Proposition 3 takes into account the possibility that several types

could be rationed at other firms.
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emphasizing that the reason for the perfectly competitive outcome is completely

different from that of the Bertrand model without capacity constraints. True,

when all firms choose a price per unit, , where    holds, then firms will

not sell all of their capacity, and a firm that deviates to a slightly lower price

can profitably sell more or all of its capacity. However, when all firms choose a

price per unit where    holds, then a firm that deviates to a higher or lower

price does not face an infinite rate of outflow or inflow of customers, even at the

margin; there would be a profitable deviation to a higher price. The actual case

in which all firms set  =  is a borderline case. All capacity is used, so a firm

could never benefit from lowering its price. However, a firm does not want to

raise its price either, due to the envelope theorem logic explained above. Osborne

and Pitchik (1986) study a duopoly model with fixed capacities, which they later

endogenize. Their model with fixed capacity is very similar to this one, but with

a rationing rule that allows consumers to purchase from both firms. Competitive

pricing does not necessarily obtain in their model when demand and capacity

parameters correspond to what we assume here.12

5. Additional Results for  = 1

5.1. Fixed-Price-Per-Share Mechanisms

With a fixed-price-per-share mechanism, rather than setting a price for each unit

and letting consumers decide how many units to buy, here a firm sets a price for

the right to consume an equal share of the firm’s capacity. Here is the mechanism

in which firm  chooses a fixed price-per-share,   .



 (

) =
1P

=1 



(5.1)



 (

) =   

In (5.1), capacity is divided evenly across all consumers at firm  , and each con-

sumer makes a total payment equal to   , independent of how many consumers

12For the Osborne and Pitchik (1986) rationing rule which allows consumers to purchase from

multiple firms, whether or not there is a pure strategy equilibrium with  =  depends on the

price elasticity of demand. If demand is sufficiently inelastic, then if all firms choose  = , a

local deviation to a higher price is profitable. Here, in contrast, a local deviation to a higher

price is always unprofitable.
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choose firm  . This mechanism implies infinite consumption when the measure of

consumers is zero, so we will have to modify it slightly to avoid a discontinuity at

zero. A modified fixed-price-per-share mechanism caps consumption at , with

the idea that  is so large that it cannot bind in equilibrium.



 (

) = min[
1P

=1 



] (5.2)



 (

) =   

This mechanism is continuous and incentive compatible. Proposition 4, below,

shows that for the special case of one consumer type there is a SPNE of Γ in which

all firms choose a modified fixed-price-per-share mechanism. In this equilibrium,

consumers receive the same consumption of the good as in the competitive equi-

librium, but their total payment is higher than in the competitive equilibrium.

The cap,  = 
1
, is only needed to ensure that the mechanism is continuous

everywhere and within the allowable set,  ; it is not needed for the result itself.

Proposition 4: If we have  = 1, then for sufficiently large , there is a SPNE

of Γ in which all firms choose a modified fixed-price-per-share mechanism defined

in (5.2). That is, each firm  chooses the share price

  =  ∗ ≡ 

(− 1)1
and any (non-binding) cap,   

1
. Consumers (on the equilibrium path) choose

a mixed strategy that assigns probability 1

to each firm.

What is the intuition for why firms raise its effective price13 above  with price-

per-share competition, but not with price-per-unit competition? The answer is

that, in the two equilibria, there is a different effect of a price increase on the

utility received in the consumer subgame. In both equilibria, a price increase by

firm  sends consumers to the other firms, so that the quantity they consume at

other firms in the consumer subgame falls. With price-per-unit competition, the

payment consumers make at other firms also falls. However, with price-per-share

13The effective price of firm  with price-per-share competition (Proposition 4) is defined to

be   .
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competition, when firm  increases its price and consumers shift to the other

firms, the payment consumers make at other firms does not fall. It turns out that

this softening of competition provides an incentive to raise the share price above

. In Proposition 4, the assumption that  is “sufficiently large” is only used as a

convenient way of demonstrating the second order conditions. Examples indicate

that  can be as small as 2.

When   1 holds, there is no hope for a SPNE in which all firms choose

the same fixed-price-per-share mechanism, because that would entail the same

consumption by all consumers. Barro and Romer (1987) assume that firms are

perfectly competitive, and argue that, with heterogenous consumers, there will be

an equilibrium in which firms specialize in serving one consumer type. Translated

into the current notation, a firm serving type  will choose a share price (they call

it a lift-ticket price) equal to (
). The number of firms serving type , denoted

by , would be determined by the condition that per capita consumption is (
),

so  = (
) would hold. Is there a similar result for Γ with imperfect com-

petition? The answer, generically, is no, due to integer constraints.14 To prevent

a local deviation targeting the same consumer type, the consumption of type 

consumers will generally have to differ from (
). As a result, marginal rates of

substitution will not be equated across consumer types, creating the incentive for

a firm to adopt a more complicated mechanism that attracts multiple consumer

types.15

5.2. Full Surplus Extraction with  = 1

When there is only one consumer type,  = 1, there are other equilibria to Γ in

which firms receive even higher profits than the equilibria of Propositions 3 and 4,

based on mechanisms that become very generous to consumers when fewer than

expected arrive at the firm. Proposition 5 shows that full surplus extraction is

possible in equilibrium.

Proposition 5: Assume that there is only one consumer type,  = 1, and that

1(0) is finite. Then for a sufficiently large parameter (of the mechanism), ,

14Barro and Romer (1987) ignore integer constraints, presumably because they imagine that

 is large.
15Details were in an earlier version of the paper, and are available upon request.
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there is a SPNE of Γ in which, for  = 1  , firm  chooses the following

mechanism:



1(

) =
1



1



1 (

) = 1(
1



1

)− 1(0) if 

1 ≥ 1



1 (

) = (

1 − 1) + 1(

1

1
)− 1(0) if 


1  1.

On the equilibrium path, we have 

1 =

1

for all  , and firms extract full surplus.

The intuition for full surplus extraction in Proposition 5 is that firms dras-

tically reduce the payment consumers make when they receive fewer customers

than “expected,” even allowing the payment to be negative. The mechanism is

continuous, but no firm will want to steal any consumers at all from the other

firms. However, if other firms receive at least as many customers as expected,

they leave consumers with zero surplus. Therefore, the best response is to split

the market but extract all surplus. With more than one type of consumer, a

consumer could pretend to be a lower-demand type, so incentive compatibility

precludes full surplus extraction.

6. Examples

In this section, examples with  = 1 and  = 2 are computed, to illustrate the

results and to demonstrate that the number of firms need not be very large.

Consider the class of examples in which utility is of the form, () = −

, which

implies () = (


)12 and 0() = −12()12−32.

6.1. Example 1:  = 1 1 = 1 1 = 1.

Since there is only one type, we omit the subscript denoting type. The competitive

equilibrium price satisfies the market clearing condition,

(
1


)12 = 1

so  = 1. To see that the fixed-price-per-unit mechanism equivalent to setting

 = 1 is part of an equilibrium of Γ, consider the optimization problem of firm 
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within the space of all mechanisms that fully allocate capacity (i.e.,  = 1(),

given that others are setting the competitive price. Clearly the firm will not set a

price below 1, so we have

max
≤ 1


 

 

subject to

− −   = −((1− )

− 1 )− − 1
(1− )



The constraint characterizes the equilibrium of all subgames following a unilat-

eral deviation. Substituting the constraint into the objective, we have the uncon-

strained problem to maximize


∙
(
(1− )

− 1 ) +
− 1

(1− )
− 

¸


Setting the derivative with respect to  equal to zero and solving the cubic

equation (messy details omitted), there are three roots, but only the root  = 1


lies between 0 and 1

. The second-order conditions are satisfied for any   1,

because the second derivative is increasing in  and takes the value

−2(− 2)
2

(− 1)2

at  = 1

. Therefore, the best response for firm  is to set  = 1


, yielding the

same profits as it receives by setting the constant price,  = 1.

Now consider the equilibrium of Γ in which all firms choose the fixed-price-

per-share mechanism,

 ∗ =


− 1 
The best response for firm  is the solution to

max
≤1 

 

subject to

− −   = −((1− )

− 1 )− 

− 1 
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Substituting the constraint into the objective, we have the unconstrained problem

to maximize


∙
(
(1− )

− 1 ) +


− 1 − 
¸


Taking the derivative with respect to  yields the expression,

−2(
− 1)

− 1 

so the appropriate solution to the first-order condition is  = 1

, yielding the same

profits as it receives by choosing the fixed-price-per-share mechanism,   = 
−1 .

The second-order conditions are satisfied, because the second derivative of the

objective is negative for   1.

Finally, consider the equilibrium of Γ in which for all  , firm  chooses the

− mechanism given by

∗ = − (
)

(− 1)P

=1 
()



=
2

(− 1) 

It follows that, for a non-deviating firm  0, we have 
0
= 1−

−1 , so the market

clearing price at firm  0 is [(1−
 )

−1 ]2. Therefore, consumption offered by firm  0 is
−1

(1− ) , so utility offered by firm  0 is −(2(1− )
−1 ) − 2

−1 . The best response for
firm  is the solution to

max
≤1 

 

subject to

− −   = −(2(1− )

− 1 )− 2

− 1 

Substituting the constraint into the objective, we have the unconstrained problem

to maximize


∙
2(1− )

− 1 +
2

− 1 − 
¸


Taking the derivative with respect to  yields the expression,

−2(
− 1)(+ 1)

− 1 
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so the appropriate solution to the first-order condition is  = 1

, yielding the same

profits as it receives by choosing the − mechanism. The second-order

conditions are satisfied, because the second derivative of the objective is negative

for   1.

It is interesting to compare outcomes in these three equilibria. In all three

equilibria, per capita consumption of the good is 1 unit, but the total payment

by consumers and firm profits differ. With fixed-price mechanisms, the price per

unit is 1, and profits are at the competitive level, equal to 1. With fixed-price-

per-share mechanisms, the effective price per unit and profit are equal to 
−1 .

With − mechanisms, the effective price per unit and profit are equal

to 1+ 2
−1 . Thus, the − mechanisms yield the highest profit, followed

by the fixed-price-per-share mechanisms, with fixed-price mechanisms exhibiting

no market power and yielding the lowest profit.

6.2. Example 2:  = 2 1 = 4 2 = 1 1 = 2 =
1
3
.

The competitive equilibrium price satisfies the market clearing condition,

1

3
(
4


)12 +

1

3
(
1


)12 = 1

so  = 1. To see that the fixed-price-per-unit mechanism equivalent to setting

 = 1 is part of an equilibrium of Γ, see the proof of Proposition 3, which shows

that the best deviation for a firm is to attract only type 1 consumers. We can

write (8.33), the derivative of profits, as

−4

1

3
+
4(1− 


1)

3(2
3
− 1) +

3(2
3
− 1)

(1− 

1)

+

1

∙
−4
3
− 4

3(2
3
− 1) +

3(2
3
− 1)

(1− 

1)
2

¸
 (6.1)

Setting expression (6.1) equal to zero and solving the cubic equation yields only

one sensible root, 

1 =

3
2
, which yields firm  the same profit as it earns by

setting the fixed price equal to the competitive price, 1. Second order conditions

can be shown to be satisfied whenever   2 holds. It can also be shown that

when  = 2 holds, profits are maximized at 

1 =

3
2
, even though profits are not

globally concave in 

1 .
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Now consider the equilibrium of Γ in which for all  , firm  chooses the  −
 mechanism given by

∗1 =
4

(− 1) and ∗2 =
2

(− 1) 

The best response for firm  is the solution to

max
 


1 


2 


1 


2



1


1 + 


2


2

subject to

1

3



1


1 +

1

3



2


2 = 1

4



1

+ 

1 = 4

pe+ 4

(− 1) 
1



2

+ 

2 = 2

pe+ 2

(− 1) 

 ≥ 0

where e satisfies market clearing condition,
1 =

1
3
(1− 


1)

− 1
2pe +

1
3
(1− 


2)

− 1
1pe

solved to be

e = "(3− 21 − 

2)

3(− 1)

#2


Imposing the necessary condition that marginal utilities are equated yields 

1 =

2

2 ≡ . Then, defining  ≡ 21 + 


2 , we can rewrite the constraints as

6


= 



1 = 4

∙
(3−)

3(− 1)
¸
+

4

(− 1) −
4






2 = 2

∙
(3−)

3(− 1)
¸
+

2

(− 1) −
2




From the two indifference constraints, we see that 

1 = 2


2 ≡   must hold, so

we can simplify the optimization problem to the unconstrained problem,
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max




∙∙
(3−)

3(− 1)
¸
+

1

(− 1) −


6

¸


Setting the derivative of this objective equal to zero and solving, we have  = 3

.

The second derivative of this objective is

−(+ 1)
3(− 1) 

so the second order conditions are satisfied. Firm  has no incentive to deviate,

since following the equilibrium satisfies the resource and indifference constraints

and achieves 

1 = 


2 =

1

and  = 3


.

7. Concluding Remarks

This paper develops a framework for studying competing mechanisms in an eco-

nomic environment where firms sell and consumers demand multiple units. There

is a literature in which firms selling a single unit compete by choosing auctions

with a reserve price. In the present setting, where consumers are negligible and

there is no aggregate uncertainty, we find that these reserve-price mechanisms are

not used in equilibrium. Under certain assumptions, equilibrium exists in which

firms choose auctions with type-specific entry fees but no reserve price. This is

the most compelling equilibrium, because if we are to augment the model with

aggregate demand uncertainty, an − mechanism is flexible enough to

allocate the good efficiently across consumers, no matter how many consumers

show up. I conjecture that the competiting mechanisms game with demand un-

certainty will have an equilibrium in which all firms choose an  − 

mechanism for suitably chosen entry fees.

We also show that Γ has an equilibrium in which all firms choose a fixed-price-

per-unit mechanism with the price equal to the competitive equilibrium price.

While this result is a contribution to the literature on price competition with

capacity constraints, I can confidently conjecture that fixed-price-per-unit mecha-

nisms will not be consistent with equilibrium of the competiting mechanisms game

when there is aggregate demand uncertainty. The reason is that, if the price at

firm  clears the market in one demand state, then there will be excess demand
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and rationing in higher demand states, and wasteful excess supply in lower de-

mand states. Holding fixed the probabilities with which consumers choose firm

 , the firm could deviate to a mechanism that maintains the expected utility of

each consumer type at firm  , while efficiently allocating the good and generating

higher total surplus. Such a deviation would have to be profitable. Introducing

demand uncertainty is a subject for future work.

Much of the tractability of this model stems from the fact that individual

consumers are unable to affect anyone’s allocation other than their own. Besides

enhancing tractability, the assumption of negligible consumers may be a desirable

description of certain markets. Although the model is quite tractable, some of

the proofs are difficult, owing to the requirement that mechanisms be continuous

and incentive compatible off the equilibrium path. For example, if all firms chose

auctions with entry fees as specified in Proposition 2, but where the entry fee

did not depend on the reports of other consumers, this profile would be a Nash

equilibrium of Γ. However, this mechanism might not be incentive compatible if

the measure of arriving consumers is very small.

Throughout the paper, we assume that consumers must commit to a single

mechanism. This rules out more complicated environments in which a consumer

could contact a firm, attempt to arrange a transaction, and contact a different

firm if a favorable transaction could not be completed. See Peters and Severinov

(2006) and Peters (2015) for important steps in this direction. It might be both

useful and tractable to combine the possibility of consumers contacting multiple

firms with the framework of a continuum of consumers who cannot individually

affect the market.

8. Appendix: Proofs

Proof of Lemma 1. Fix a profile of mechanisms, . For  = 1  , let 

 ()

denote the utility received by type  consumers who choose firm  when consumers

mix across firms according to . Note that 

 () depends on  only through 

 .

Given that all mechanisms are incentive compatible for any , it follows that



 () is continuous in . Consider the mapping  : 4 → 4 , where



 () =



 +max[0 


 ()−

P

=1 




 ()]

1 +
P

0=1max[0 
0
 ()−

P

=1 




 ()]


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Because each 

 () is continuous, it follows that  is a continuous function. The

simplex is a compact, convex set. Applying Brouwer’s fixed point theorem, we

have at the fixed point,





X
0=1

max[0 
0
 ()−

X
=1






 ()] (8.1)

= max[0 

 ()−

X
=1






 ()] for all   .

Consider the possible cases. From (8.1), if



 () 

X
=1






 () (8.2)

holds, then the right side of (8.1) is zero. Then either 

 = 0 holds, or we have


0
 () ≤

P

=1 




 () for all 

0. But the latter cannot occur, because it would

imply 
0
 () = 


 () for all  

0, in contradiction to (8.2). Thus, for all  , we
have either 


 = 0 or



 () ≥

X
:


0






 () (8.3)

Applying (8.3) to all 0 such that 
0
  0, it follows that 


 () = 

0
 () for all 

and for all  0 such that   0 and 
0
  0. Therefore, all consumer choices are

best responses, and the fixed point is a Nash equilibrium of the subgame. ¥

Proof of Proposition 1. Suppose that there is a SPNE of Γ in which all firms

choose reserve price mechanisms, possibly in mixed strategies. Let  denote the

supremum of reserve prices in the support of the equilibrium profile of mechanisms.

Case 1. We have   .

First, it cannot be the case that two or more firms have a mass point at . If

so, there would be a positive probability that all of the firms with a mass point at

 choose that reserve price. Total sales by firms setting the reserve price  must

be positive in this situation, or else  would always yield zero revenue. Let firm

 be a firm such that, of all the firms setting the reserve price  in this situation,

firm  is selling the least of its capacity. Firm  must be selling strictly less than
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all of its capacity, since    holds. However, firm  could slightly reduce its

reserve price, selling strictly more of its capacity, thereby increasing its profits.

Second, suppose that  is in the support of reserve prices chosen by firm  .16

Since no firm, other than possibly firm  , can have a mass point at , when firm

 chooses the reserve price , it knows that it is the only firm with a reserve

price that high. If firm  receives zero revenue in any consumer equilibrium, this

contradicts the fact that  is a best response to the mixed strategies of the other

firms. Therefore, in the ensuing consumer equilibrium, the auction price at all

firms is  and all firms other than firm  sell all their capacity. It follows that,

no matter what reserve prices the other firms choose, the consumer equilibrium 

satisfies the market clearing condition

X
=1

(1− 

 )() = − 1 (8.4)

and the profits of firm  are

X
=1



 ()

Substituting (8.4) into the profit expression yields profits of"
X

=1

()− (− 1)
#
 (8.5)

Furthermore, any consumer mixed strategy profile  satisfying (8.4) is an equi-

librium of the consumer subgame, yielding the profits given in (8.5). Let ∗ be a
consumer equilibrium satisfying 

∗
1  0.

We will construct a profitable deviation for firm  . Intuitively, the new mech-

anism is constructed so that utility is unaffected if consumers continue to mix

according to ∗, so this remains an equilibrium of the consumer subgame. If

reports are consistent with ∗, then some of the capacity that was not utilized
under the mechanism  is allocated to type 1 consumers in exchange for an ad-

ditional payment. Then the mechanism is extended to other reports to maintain

continuity, incentive compatibility, and profitability.

16For the third situation, where  is not in the support of reserve prices chosen by any firm,

then for  sufficiently close to , firm  knows that its reserve price is highest with probability

arbitrarily close to one, and the argument mirrors the second situation of  in the support.
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Here is the deviation mechanism for Case 1, denoted by  .

If there is no excess demand at the price based on the reports, so
P

=1 

 () ≤

1 holds, then we have



 (

) = () for   1



 (

) = () for   1



1(

) = 1() +
1−P

=1 

 ()

+ 

1

(8.6)



1 (

) = 1() + 1(

1(

))− 1(1())

+[1−
X

=1



 ()]max[0 1

∗
1 − 


1 ]

The positive parameters  and  are chosen as part of the mechanism. The

purpose of  is to guarantee that type 1 consumption is well defined even if



1 = 0 holds. Larger values of  mean that less of the excess supply is allocated

to type 1 consumers. The term involving  is used below to ensure that there

cannot be an equilibrium to the consumer subgame in which too few consumers

report type 1.

If there is excess demand at the price based on the reports, so
P

=1 

 () 

1 holds, then we implement a uniform price auction. Defining  as the solution

to
P

=1 

 (

) = 1, we have



 (

) = (
)



 (

) = (
).

This completes the definition of  .

 is feasible for large A and small ε, satisfying continuity and IC:

It is immediate that  is continuous in  . Incentive compatibility holds for

sufficiently large  and sufficiently small , which follows from the fact that, when

there is excess supply at the price , a type 1 consumer receives utility close to

1(1()) − 1(), which is higher than utility from reporting any other type.

Also, if a type   1 were to report type 1, his net increase in utility is given by

(

1(

))− 

1 (

)− (()) +()

= (

1(

))−1()− 1(

1(

)) + 1(1()) (8.7)

−(()) +()− max[0 1
∗
1 − 


1 ]
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In the limit, as →∞ and → 0, (8.7) approaches£
(1())−1()

¤− £(())−()
¤
 0

The mechanism  yields higher profits than the mechanism :

First, if the consumer equilibrium following the deviation to  satisfies

X
=1


∗
 () ≤

X
=1



 () ≤ 1

then we must have 

1 ≥ 1

∗
1  0, because otherwise the auction price at firms

other than  is at most  and type 1 consumers would be receiving strictly lower

utility from firm  , due to the  term in (8.6). Therefore, the profits are greater

than the profits of the mechanism  by at leasth
1(


1(

))− 1(1())
i


1 

which is strictly positive.

Second, if the consumer equilibrium following the deviation to  satisfies

X
=1



 () 

X
=1


∗
 ()

then the auction price at firms other than  is strictly greater than, so consumers

of type   1 are strictly better off at firm  , contradicting consumer equilibrium.17

Third, if the consumer equilibrium following the deviation to  satisfies

X
=1



 ()  1

then firm  sells all of its capacity at a price greater than , so again the mecha-

nism  yields higher profits than the mechanism .

Case 2. We have  ≤ .

17If there is only one type,  = 1, then set  = 0 and the argument goes through since incentive

compatibility is not an issue.
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In this case, consumers distribute themselves across firms so that none of the

reserve prices is binding, and all of the auction prices are equal to . We now show

that there is a profitable deviation to a mechanism that, roughly speaking, raises

the auction price at the other firms to some price e, allocates (e) to its type 
customers at price e, and allocates its remaining capacity as extra consumption
to type 1 customers. Then the mechanism is extended continuously to satisfy

feasibility and incentive compatibility off the equilibrium path.

Here is the deviation mechanism for Case 2, denoted by e .

Below, we treat , , and e as parameters of the mechanism. First, let ()
be defined by

() =

X
=1



 (e)−

"
X

=1

(e)− (− 1)# 
The economic interpretation of () is the amount by which the actual demand

at firm  at price e, based on reported types, exceeds the anticipated demand,
based on the residual market demand faced by firm  . We will suppress the

dependence on  and refer to () as .

For  ≤ 0, e is given by18



 (

) = (e) for   1



 (

) = e(e) for   1



1(

) = 1(e) + −P

=1 (e)
+ 


1



1 (

) = e1(e) + 1(

1(

))− 1(1(e))− max[0 1 − 

1 ]

For   0, e is given by

18If we have only one type,  = 1, then e must be modified, but a simpler proof along the

same lines is available, which eliminates the term, max[0 1− 

1 ]. We omit the details to save

space.
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

 (

) = (b) for   1



 (

) = b(b) for   1



1(

) = 1(b) + −P

=1 (e)
+ 


1



1 (

) = b1(b) + 1(

1(

))− 1(1(b))− max[0 1 − 

1 ]

where b is the unique solution to
X

=1



 (b) = X

=1

(e)− (− 1)
Note that   0 implies b  e.

e is feasible for small ε, satisfying continuity and IC:

Because we have   0, and as  approaches 0 from above b approaches e, it
is immediate that e is continuous. For small enough , the consumption of each

type is arbitrarily close to the utility maximizing consumption at price e or b,
depending on . Thus, there is no incentive for a consumer to report a different

type.

The mechanism e yields higher profits than the mechanism :

We claim that for e close enough to , there is a consumer equilibrium, ,

satisfying 

1 =

1

, in which the auction price at other firms will be e. The price

at other firms is e if and only if we have
X

=1

(1− 

 )(e) = (− 1) or

X
=1



 (e) =

X
=1

(e)− (− 1) (8.8)

For e close enough to , the right side of (8.8) is positive. Then any  that

satisfies (8.8) gives rise to  = 0 under truthful reporting. The mechanism e

then delivers the same utility to each type as they would receive at other firms
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if 

1 =

1

and therefore 1 = 


1 holds, ensuring that  is an equilibrium of the

consumer subgame.19

The profits for firm  are then given by

X
=1



 (e)e+ 1[1(1(e) + −P

=1 (e)
+ 1

)− 1(1(e))] (8.9)

which, from (8.8), can be written as

(e) = e" X
=1

(e)− (− 1)#

+1[1(1(e) + −P

=1 (e)
+ 1

)− 1(1(e))] (8.10)

Differentiating (8.10) yields

()0(e) =

X
=1

(e)− (− 1) + e X
=1


0
(e)

+1
0
1(


1(

))

"
01(e)−P

=1 
0
(e)

+ 1

#
(8.11)

−101(1(e))01(e)
Evaluating (8.11) at e = , which implies

P

=1 (e) =  and 01(

1(

)) =

01(1(e)) = , yields

()0() = 1 +

µ
1− 1

+ 1

¶


X
=1


0
(

)

For  sufficiently close to zero, ()0() is positive, so for e slightly greater than
.

19If we have  = 1, then there is a unique consumer equilibrium, but 

1 will be slightly less

than 1

for e close enough to . With   1, there will be a consumer equilibrium with 


1 =

1


for e close enough to , because types   1 can go to other firms.
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What if a different consumer equilibrium is selected in response to this devia-

tion? If we have  = 0 and 

1  1, then profits are given by

X
=1



 (e)e+ 


1 [1(1(e) + −P

=1 (e)
+ 1

)− 1(1(e))]
which is greater than the expression in (8.9), so once again the deviation is prof-

itable.

If we have  = 0 and 

1  1, then type 1 consumers receive higher utility

at firm  than at the other firms, which is inconsistent with equilibrium of the

consumer subgame. If we have   0, then the auction price at the other firms

will be greater than e, so all consumers receive higher utility at firm  than at

the other firms, which is inconsistent with equilibrium of the consumer subgame.

Now consider the possibility of   0. If somehow this is consistent with

equilibrium of the consumer subgame, this would imply b  e, and also that the
auction price at other firms is less than e. However, a consumer of type   1

is worse off at firm  , which is inconsistent with equilibrium of the consumer

subgame. ¥

Proof of Proposition 2. First, notice that the  − mechanism

in the statement of Proposition 2 is within the class of available mechanisms.

Continuity follows from the facts that the market clearing price is continuous

in  and competitive equilibrium consumption is continuous in price. When

the auction price is outside the 2 neighborhood of , entry fees are zero, and

incentive compatibility follows immediately. When the auction price is inside the

2 neighborhood of , incentive compatibility follows from the fact that when 

is sufficiently large, entry fees are close to zero, and any difference in entry fees

across types is swamped by the loss of utility associated with misreporting and

receiving consumption that does not maximize utility given the equilibrium price.

For any profile of mechanisms, the ensuing consumer subgame has a type-

symmetric Nash equilibrium, which follows from Lemma 1. Select an arbitrary

type-symmetric Nash equilibrium following a deviation by two or more firms.

On the equilibrium path, since all firms are choosing the same mechanism, it

is clear that 

 =

1

for all   forms an equilibrium of the subgame. The auction

price at each firm is therefore , so the profits of each firm are given by

X
=1

(
) −

X
=1

(
)2

(− 1)0() 
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Because the competitive equilibrium price satisfies
P

=1 (
) = 1, the profit

expression simplifies to

 − ()

(− 1)0() 

Now consider a potential deviation by a single firm,  . An upper bound to the

profits available is the solution to the following optimization problem, in which

firm  chooses its mechanism and its arrival vector,  , subject to its capacity

constraint and the constraint that consumers are indifferent between firm  and

the other firms20:

max

X
=1



 




subject to
X

=1



 


 = 1 (8.12)

(

 )− 


 = ((e()))− e()(e())−∗  for  = 1  

1 ≥ 

 ≥ 0 for  = 1  

In (8.12), e() is defined to be the auction price at other firms when the arrival
vector at firm  is  . Then, suppressing the dependence on  , e solves

1 =

X
=1

(1− 

)(e)

− 1  (8.13)

Letting  denote the Lagrange multiplier on the capacity constraint and  de-

note the multiplier on the indifference constraint for type , some of the necessary

first-order conditions are, for  = 1  , the equality constraints in (8.12) and


0
(


 ) = 


 (8.14)



 =  (8.15)

20It is without loss of generality to impose the indifference constraint for each type in (??),

because if some type  strictly prefers to visit other firms and 

 = 0 holds for some type at the

solution, there is another solution in which type  consumers are indifferent and 

 = 0 holds.
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In particular, we have 0(

 ) =  ≡  for all  such that 1  


  0. Equivalently,

we have 

 = (

) for all , which implies

X
=1



  =

1

()
 (8.16)

Based on the above necessary conditions, it follows that for any solution to

(8.12),  must solve (suppressing the dependence of  and e on  through

(8.13) and (8.16))

max
0≤ ≤1=1

X
=1



 [((

))− ((e)) + e(e) +∗ ] (8.17)

Because a continuous function on a compact set has a maximum, we know that

there is a solution to (8.17). An interior solution must satisfy the first order

conditions, simplified by the condition that 0(()) =  holds and the compact

notation 

 = ((

))− ((e)) + e(e) +∗ , given by



 + (

X
=1



)(e) e





+ (

X
=1



)

0()






= 0 (8.18)

for  = 1  .

The first order conditions (8.18) can be simplified further. Using (8.16), we

have



 +

(e)
()

e





+
0()
()







= 0 (8.19)

Differentiating (8.16), we derive







= −(
)2

0()
 (8.20)

Also, we can differentiate (8.13) to derive

e





=
(e)2
(− 1)0(e)  (8.21)

Substituting (8.20) and (8.21) into (8.19) yields



∙


 +

(e)3
(− 1)()0(e) − 

()

¸
= 0 (8.22)
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We now argue that adopting the same − mechanism adopted by

the other firms is a solution to (8.12). This mechanism corresponds to 

 =

1

for

all , which implies  = e = . Since the corresponding value of 

 is

(
) − (

)2

(− 1)0() 

it follows that (8.22) is satisfied.

This establishes that the  − mechanism corresponds to  that

solves (8.22) for each , the necessary first order conditions to (8.12). To complete

the proof, we first show that ignoring corner solutions is without loss of generality.

Then we show any interior solution to (8.12) requires  = e = , which pins

down the profits of firm f and establishes the − mechanism as a best

response.

Claim: For any corner solution to (8.17), ∗ , there is an interior solution
yielding the same payoff.

Proof of Claim: Any  satisfying

X
=1



  =

X
=1


∗
  (8.23)

yields the same payoff as ∗ . Since ∗ = 0 cannot be optimal, we must have


∗
  0 for some . For any 

∗
 = 0, we can reduce 

∗
 and increase 

∗
 , such

that (8.23) holds. Similarly, if we have 
∗
  1 for some , then for any 

∗
 = 1,

we can increase 
∗
 and reduce 

∗
 , such that (8.23) holds.

The only remaining case is 
∗
 = 1 for all . But this implies e = 0. One can

show that profits are strictly less than the profits from 

 =

1

for all , so this

case is impossible, thereby proving the claim.

Claim: Any interior solution to (8.17) must yield  = e = , and all such

solutions yield the same profits.

Proof of Claim: Substituting



 = ((

))− ((e)) + e(e) +∗

into (8.22) implies the necessary condition,

0 = ((
))− ((e)) + e(e) +∗

+
(e)3

(− 1)()0(e) − 
() (8.24)
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Using (8.13) and (8.16), we can express e in terms of  , given by
(e) = (− 1)()

()
P

=1  − 1
 (8.25)

so the right side of (8.24) depends only on  . Differentiating (8.24) with respect

to  , and simplifying using the condition, 0(()) =  yields the expression,

(e) e

− (

) +



[

(e)3
(− 1)()0(e)] (8.26)

Also, differentiating (8.25) yields

e


= − (− 1)0()
[()

P

=1  − 1]2
 (8.27)

For sufficiently large , the last term in (8.26) is negligible, and it is clear from

(8.27) that the first term in (8.26) is negligible. Therefore, the entire expression

is arbitrarily close to −(), which is strictly negative. Thus, the second-order
conditions with respect to  are satisfied, so the only value of  that satisfies

(8.24) is . ¥

Proof of Proposition 3. First, for any profile of prices, the ensuing consumer

subgame has a type-symmetric equilibrium, by Lemma 1. Select an arbitrary

type-symmetric equilibrium following a deviation by two or more firms.

Now consider a potential deviation by a single firm,  . To show that the

deviation is not profitable, we will show that there is no profitable deviation,

even if firm  could choose any equilibrium of the subgame. Since it is without

loss of generality to restrict attention to mechanisms that fully allocate capacity,

thereby allowing a higher total payment, an upper bound to the profits available

is the solution to the following optimization problem, in which firm  chooses its

mechanism and its arrival vector,  , subject to its capacity constraint and the

constraint that consumers are indifferent between firm  and the other firms:21

21It is an upper bound because we do not impose incentive compatibility, but as it turns out,

incentive compatibility is not binding. It is without loss of generality to impose the consumer

indifference condition. Also, (
 ) is the consumption level at other firms (utility maximizing

demand or rationing level, whichever is smaller), which depends on firm  ’s choice of  .
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max

X
=1



 




subject to
X

=1



 


 = 1 (8.28)

(

 )− 


 = ((

))− (
) for  = 1  



 ≥ 0 for  = 1  

Letting  denote the Lagrange multiplier on the capacity constraint and  denote

the multiplier on the indifference constraint, the necessary first-order conditions

with respect to 

 and 


 are


0
(


 ) = 


 and



 = 

implying 0(

 ) =  for all . Therefore, we have 


 = () for all .

We now show that the solution to (8.28) involves 

 = 0 for all   1. Suppose

instead that 

  0 for some   1. Firm  could increase profits by altering 

in such a way as to increase the total capacity offered to type 1 consumers and

decrease the total capacity offered to type  consumers, both by   0. To see

this, the measure of type 1 consumers visiting other firms goes down by 
1()

 and

the measure of type  consumers visiting other firms goes up by 
()

. Notice that

1()  () holds, and both type 1 and type  consumers must be rationed at the

other firms and purchasing the same amount, up to the rationed limit. Therefore,

the net effect of this  switch is to increase the measure of consumers purchasing

up to the rationed limit at other firms, which lowers the utility offered at other

firms and allows firm  to extract higher payments, a contradiction. Therefore,

the best deviation for firm  is to attract only type 1 consumers. We know that

for sufficiently large , 

1 must be small, and certainly less than 1, or else firm 

would be offering type 1 consumers lower utility than the other firms, even if its

price is zero.22

22Moreover, even if  is not large, there is still no profitable deviation in the neighborhood

of  = . Then the firm would be forced to try to attract all of type 1 consumers and some

lower type consumers if it attempts to deviate, which would be even less profitable than if the

firm had plenty of type 1 consumers to attract.
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Thus, we can simplify the optimization problem of firm  as follows.

max


1 


1

1

1


1

subject to (8.29)

1(
1

1

1

)− 

1 = 1()− 

where  is the rationing level offered by other firms, which depends on 

1 . There-

fore,  must be at least as high as what would obtain if type 1 consumers visit

each of the other firms with probability (1 − 

1)( − 1), other consumers visit

each of the other firms with probability 1(− 1), and only type 1 consumers are
rationed. In this case, a lower bound for  (which represents an upper bound to

firm  ’s profit) is the solution to

(1− 

1)1

− 1 +

P

=2 (
)

− 1 = 1 (8.30)

From (2.1), we have
X

=2

(
) = − 11(

) (8.31)

Combining (8.30) and (8.31), we have a lower bound for  given by

 =
11(

)− 1
(1− 


1)1



Since the solution to (8.29) will have the constraint hold with equality, we can

substitute the constraint into the objective, so an upper bound to the firm’s profit

is the solution to

max


1

1

1

∙
1(

1

1

1

)− 1(
11(

)− 1
(1− 


1)1

) + 
11(

)− 1
(1− 


1)1

¸
 (8.32)

Differentiating the profit expression in (8.32) with respect to 

1 yields

1

∙
1(

1

1

1

)− 1(
11(

)− 1
(1− 


1)1

) + 
11(

)− 1
(1− 


1)1

¸
(8.33)

+

1

∙
01(

1

1

1

)(− 1

(

1)
2
)− 01(

11(
)− 1

(1− 

1)1

)(
11(

)− 1
(1− 


1)
2
) + 

11(
)− 1

(1− 

1)
2

¸

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Evaluating the first order condition at 

1 =

1
11()

, which implies 

1 =  =

1(
), (8.33) becomes

1
1(

)+[−01(1())(11())+(−01(1()))
1

11()

11(
)− 1

(1− 1
11()

)2
]

which is zero, due to the fact that 01(1(
)) = . Thus, as long as the second

order condition is satisfied, firm  can do no better than to offer the price .

The derivative of (8.33) with respect to 

1 is

2

∙
01(

1

1

1

)(− 1

(

1)
2
)− 01(

11(
)− 1

(1− 

1)1

)(
11(

)− 1
(1− 


1)
2
) + 

11(
)− 1

(1− 

1)
2

¸
+


1

∙
001(

1

1

1

)(
1

1(

1)
4
) + 01(

1

1

1

)(
2

(

1)
3
)

¸
−1

∙
001(

11(
)− 1

(1− 

1)1

)(
11(

)− 1
1

)(
11(

)− 1
(1− 


1)
4
)

¸
−1

∙
201(

11(
)− 1

(1− 

1)1

)(
11(

)− 1
(1− 


1)
3
)

¸
+ 


1

∙

11(

)− 1
(1− 


1)
3

¸


which, after simplifying and substituting  for
11(

)−1
(1−1 )1

, becomes

1

"
2

(1− 

1)
3
([ − 01()] + 001(

1

1

1

)(
1

(1)2(

1)
3
)− 001()



1

2

(1− 

1)
4

#


(8.34)

Because type 1 consumers are rationed at the other firms, we have   01(). Be-
cause  is large, firm  must choose 


1 that is small enough that 


1 is bounded

from above, or else it would be impossible to satisfy the constraint in (8.29).

Therefore, the first term in (8.34) is negative, the second term becomes unbound-

edly negative as  gets large, and the third term is positive but becomes negligible

as  gets large. We conclude that the second order conditions are satisfied. ¥

Proof of Proposition 4. First, for any profile of share prices, the ensuing

consumer subgame has a type-symmetric equilibrium, which follows from Lemma

1. Select an arbitrary type-symmetric equilibrium following a deviation by two

or more firms. On the equilibrium path, it is obvious that consumers are best
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responding to each other in the ensuing consumer subgame, by choosing each firm

with probability 1

.

Now suppose that all firms, except possibly firm  , choose the share price

 ∗ = 

(−1)1 . Consider a potential deviation by a single firm,  . To show that
a deviation is not profitable, we will show that firm  cannot increase its profits,

even if it could choose the equilibrium of the consumer subgame following its de-

viation. To show that there is no profitable deviation, we can restrict attention to

mechanisms that fully allocate capacity, thereby allowing a higher total payment.

Thus, the optimal deviation can be seen as choosing 

1 and 


1 to maximize prof-

its, subject to the constraint of making type 1 consumers indifferent between firm

 and the other firms (i.e., that consumers adjust their arrival probabilities to

form a Nash equilibrium of the subgame):23

max 1

1


1

subject to

1(
1

1

1

)− 

1 = 1(

− 1
1(1− 


1)
)−  ∗

Substituting the constraint into the objective, we have the equivalent uncon-

strained problem of choosing 

1 to maximize

1

1

∙
1(

1

1

1

)− 1(
− 1

1(1− 

1)
) +  ∗

¸
 (8.35)

The necessary first order conditions are given by

0 = 1

∙
1(

1

1

1

)− 1(
− 1

1(1− 

1)
) +  ∗

¸
(8.36)

+

1

∙
01(

1

1

1

)(
−1
(


1)
2
)− 01(

− 1
1(1− 


1)
)(

− 1
(1− 


1)
2
)

¸


Differentiating the right side of (8.36) with respect to 

1 and simplifying, the

23For a deviation that attracts so many consumers that the consumption cap, , is reached

at the other firms, the utility received by consumers is so high that the deviation cannot be

profitable. Therefore, it suffices to consider this simplified optimization problem.
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second derivative of profits is given by

−201(
− 1

1(1− 

1)
)(

− 1
(1− 


1)
3
) + 001(

1

1

1

)(
1

1(

1)
3
)

−001(
− 1

1(1− 

1)
)(
(− 1)21
1(1− 


1)
4
) (8.37)

The second order conditions are satisfied if (8.37) is negative, which must be the

case if the sum of the first and third terms is negative, given by

−( − 1
(1− 


1)
3
)

∙
201(

− 1
1(1− 


1)
) + 001(

− 1
1(1− 


1)
)(

− 1
1(1− 


1)
)(


1)

¸
 (8.38)

When  is sufficiently large, 

1 must be close to zero, or else type 1 consumers

would prefer one of the other firms even if firm  chose a share price of zero.

Also, the consumption offered by other firms, −1
1(1−1 )

, is bounded from above

and below. Therefore, the expression in brackets in (8.38) must be positive, so

the second order conditions are satisfied.

Substituting 

1 =

1

and  ∗ = 

(−1)1 = 01(
1
1
) 1
1


−1 into (8.36), we see that

the first order conditions are satisfied, so firm  has no profitable deviation. From

the constraint, the corresponding value of 

1 is 

∗, so the mechanism chosen by

firm  is the same fixed-price-per-share mechanism chosen by the other firms. ¥

Proof of Proposition 5. For any profile of mechanisms, the ensuing consumer

subgame has a type-symmetric equilibrium, which follows from Lemma 1. Select

an arbitrary type-symmetric equilibrium following a deviation by two or more

firms.

Consider a potential deviation by a single firm,  . To show that there is no

profitable deviation, we can restrict attention to mechanisms that fully allocate

capacity, 1 =
1

1

1

, thereby allowing a higher total payment. Thus, the optimal

deviation can be seen as choosing 

1 and 


1 to maximize profits, subject to

the constraint of making type 1 consumers indifferent between firm  and the

other firms (i.e., that consumers adjust their arrival probabilities to form a Nash

equilibrium of the subgame).

If 

1 ≤ 1


holds, consumers at other firms receive zero surplus, so the opti-

mization problem for firm  is given by
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max 1

1


1

subject to

1(
1

1

1

)− 

1 = 1(0)

Substituting the constraint into the objective, we equivalently have the uncon-

strained problem of maximizing



1 [1(

1

1

1

)− 1(0)]

The derivative of this function is

1(
1

1

1

)− 1(0)− 

1

0
1(

1

1

1

)
1

1(

1)
2

= 1(1)− 1(0)− 01(1)1

which is strictly positive due to the strict concavity of 1(1). Thus, the objective

is increasing in 

1 , and the highest payoff within this range is to choose 


1 =

1

.

If 

1 ≥ 1


holds, we have 


1 =

(1−1 )1
−1  1 at firms  6=  , so the optimization

problem for firm  is given by

max 1

1


1

subject to

1(
1

1

1

)− 

1 = 1(

− 1
(1− 


1)1

)−1

"
1− 


1

− 1

#
− 1(

1

1
) + 1(0)

which is equivalent to the unconstrained problem of maximizing



1

"
1(

1

1

1

)− 1(
− 1

(1− 

1)1

) +1

"
1− 


1

− 1

#
+ 1(

1

1
)− 1(0)

#
 (8.39)

Differentiating (8.39) with respect to 

1 yields

−1
"
(+ 1)


1 − 1

− 1

#
+ 1(

1

1

1

)− 1(
− 1

(1− 

1)1

) + 1(
1

1
) (8.40)

−1(0) + 

1

∙
−01(

1

1

1

)
1

1(

1)
2
− 01(

− 1
(1− 


1)1

)
− 1

(1− 

1)
21

¸

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Since 

1 ≥ 1


holds, the first expression in brackets in (8.40) is greater than 1

(−1) ,
so the first overall term can be made arbitrarily negative for sufficiently large .

Also, the optimal 

1 must be bounded well below 1 for sufficiently large , or else

satisfying the indifference constraint would require 

1 to be negative. Therefore,

(8.40) is strictly negative. Since profits for firm  are decreasing in 

1 , it follows

that the optimal choice within this range is 1

, and the indifference constraint

implies 

1 = 1(

1
1
) − 1(0). Firm  receives the same profit as it would by

adopting the mechanism specified in the statement of Proposition 6, so there is

no profitable deviation. ¥
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