
Games in Strategic Form

Definition 11.1: A strategic game consists of:

1. a finite set N (the set of players),

2. for each player i ∈ N , a nonempty set Ai (the set of
actions available to player i),

3. for each player i ∈ N , a preference relation %i on
A = ×j∈NAj.

If the set of actions for every player is finite, then the
game is finite.

We refer to an action profile, a = (aj)j∈N , as an out-
come.



Note: Equivalently, we can define preferences, not over
outcomes, but over the consequences of those outcomes.
(Sometimes it is more natural this way. In Cournot com-
petition, firms receive payoffs based on profits rather than
quantities.)

g : A→ C

If %∗i is the preference relation over consequences, then
%i is defined by a %i b if and only if g(a) %∗i g(b).

Note: Sometimes there is randomness in determining the
consequences that result from actions. We model this
with a probability space, Ω, and a function, g : A×Ω→
C. Then a profile of actions induces a lottery on C,
and preferences %∗i must be defined over the space of
lotteries.

We can model random consequences in Definition 11.1
by introducing nature as a player.



Often %i can be represented by a payoff function (or
utility function), ui : A→ R. Then we denote the game
by hN, (Ai), (ui)i rather than hN, (Ai), (%i)i. We can
describe finite strategic games with two players in a table
or matrix.

Example: Prisoner’s Dilemma.

player 2
cooperate defect

player 1 cooperate 3, 3 0, 4
defect 4, 0 1, 1

Interpretations of the model: (1) The game is only played
once, and players choose their actions simultaneously and
independently.

(2) The game or a similar game has been played in the
past. We observe the “history,” but there are no strategic
links between the plays. (Maybe different individuals
played the game previously.)

(3) By simultaneous, it is only important that each player
acts in ignorance of the other players’ actions.



Nash Equilibrium

Definition 14.1: A Nash equilibrium of a strategic
game hN, (Ai), (%i)i is a profile of actions, a∗ ∈ A,
such that, for every player i ∈ N , we have

(a∗−i, a
∗
i ) %i (a

∗
−i, ai) for all ai ∈ Ai.

Given the others’ strategies, no player can profitably de-
viate.

Each player is choosing an action in his/her best response
correspondence, a∗i ∈ Bi(a

∗
−i) for all i ∈ N , where

Bi(a−i) = {ai ∈ Ai : (a−i, ai) %i (a−i, a
0
i) for all a

0
i ∈ Ai}.



Interpretations of Nash equilibrium

1. If a theory of rational play is to predict a unique
outcome, then it must be a Nash equilibrium.

2. Self-enforcing agreement.

3. A steady state of a learning or evolutionary process.

4. A stable profile of strategies. Each player has ra-
tional expectations about how the others will play, and
optimizes accordingly. (Form beliefs, which turn out to
be correct.) Thus, N.E. does is not a prediction of how
the game will be played, but it is a consistent theory of
how the game might be played.



Existence of Nash Equilibrium

Not every game has a Nash equilbrium (in pure strate-
gies): Matching Pennies

player 2
heads tails

player 1 heads 1,−1 −1, 1
tails −1, 1 1,−1

Proposition 20.3: The strategic game, hN, (Ai), (%i)i,
has a Nash equilibrium if for all i ∈ N ,

1. Ai is a nonempty, compact, convex subset of Euclid-
ean space,

2. Preferences are continuous on A, and quasi-concave
on Ai.



Lemma 20.1 (Kakutani’s fixed point theorem): Let X
be a compact, convex subset of Rn and let f : X → X

be a correspondence such that

(i) for all x ∈ X, the set f(x) is nonempty and convex,
and

(ii) the graph of f is closed. [For all sequences such that
xn→ x, yn→ y, and yn ∈ f(xn), we have y ∈ f(x).]

Then there exists x∗ ∈ X such that x∗ ∈ f(x∗).



Proof of Prop. 20.3: Let B(a) = ×i∈NBi(a−i). Then
B : A → A. Since preferences are continuous and
defined over a compact set, B(a) is nonempty. By quasi-
concavity, Bi(a−i) is a convex set.

Suppose we have sequences (a)n→ a and yn→ y, such
that (yi)n ∈ Bi((a−i)n), but yi /∈ Bi(a−i). Then
there exists bai ∈ Ai such that (bai, a−i) %i (yi, a−i)
holds strictly. By continuity of preferences, for suffi-
ciently large n, we have (bai, (a−i)n) %i ((yi)n, (a−i)n)
holding strictly, a contradiction. Thus, the graph of B
is closed.

By KFPT, there exists a∗ ∈ A such that a∗ ∈ B(a∗),
so a∗ is a Nash equilibrium.



Strictly Competitive Games

Definition 21.1: A strategic game, h{1, 2}, (Ai), (%i)i
(two players) is strictly competitive if for any a ∈ A

and b ∈ A, we have a %1 b if and only if b %2 a.

Note: When preferences are represented by utility func-
tions, it is without loss of generality to assume u1(a) +
u2(a) = 0. (Zero Sum)

Definition 21.2: Let h{1, 2}, (Ai), (ui)i be a strictly
competitive strategic game. The action x∗ ∈ A1 is a
maxminimizer for player 1 if

min
y∈A2

u1(x
∗, y) ≥ min

y∈A2
u1(x, y) for all x ∈ A1.

The action y∗ ∈ A2 is a maxminimizer for player 2 if

min
x∈A1

u2(x, y
∗) ≥ min

x∈A1
u2(x, y) for all y ∈ A2.



Intuition: A maxminimizer is an action that maximizes
a player’s guaranteed payoff.

Lemma 22.1: Let h{1, 2}, (Ai), (ui)i be a strictly com-
petitive strategic game. Then

max
y∈A2

min
x∈A1

u2(x, y) = − min
y∈A2

max
x∈A1

u1(x, y).

Also, y∗ ∈ A2 solves maxy∈A2 minx∈A1 u2(x, y) if and
only if it solves miny∈A2 maxx∈A1 u1(x, y).



Proof of Lemma 22.1: For every y ∈ A2, we have

−minx∈A1 u2(x, y) = maxx∈A1(−u2(x, y)) =

maxx∈A1 u1(x, y)

[property of all functions, then def. of str. comp.]

Thus, maxy∈A2 minx∈A1 u2(x, y) =

−miny∈A2[−minx∈A1 u2(x, y)] =

−miny∈A2 maxx∈A1 u1(x, y)

[property of all functions, then above eq.]



Also, y∗ solves maxy∈A2 minx∈A1 u2(x, y) if and only
if it solves

miny∈A2[−minx∈A1 u2(x, y)] =

miny∈A2[maxx∈A1 u1(x, y)].

[property of all functions, then above eq.]



What does Lemma 22.1 tell us about Nash equilibrium?

Proposition 22.2: Let G = h{1, 2}, (Ai), (ui)i be a
strictly competitive strategic game.

(a) If (x∗, y∗) is a NE of G then x∗ is a maxminimizer
for player 1 and y∗ is a maxminimizer for player 2.

(b) If (x∗, y∗) is a NE of G then

maxx∈A1 miny∈A2 u1(x, y) =

miny∈A2 maxx∈A1 u1(x, y) = u1(x
∗, y∗),

so all NE yield the same payoffs.

(c) If we have

maxx∈A1 miny∈A2 u1(x, y) = miny∈A2 maxx∈A1 u1(x, y),

and if x∗ is a maxminimizer for player 1 and y∗ is a
maxminimizer for player 2, then (x∗, y∗) is a NE of G.



Proof of Prop 22.2: If (x∗, y∗) is a NE,

u2(x
∗, y∗) ≥ u2(x

∗, y) for all y, which implies

u1(x
∗, y∗) ≤ u1(x

∗, y) for all y.

Thus,

u1(x
∗, y∗) = min

y∈A2
u1(x

∗, y) ≤ max
x∈A1

min
y∈A2

u1(x, y).

Similarly, u1(x∗, y∗) ≥ u1(x, y
∗) for all x, so

u1(x
∗, y∗) ≥ miny∈A2 u1(x, y) for all x. Thus,

u1(x
∗, y∗) ≥ max

x∈A1
min
y∈A2

u1(x, y).



It follows that

u1(x
∗, y∗) = max

x∈A1
min
y∈A2

u1(x, y)

holds. From u1(x
∗, y∗) = miny∈A2 u1(x

∗, y), we have

min
y∈A2

u1(x
∗, y) = max

x∈A1
min
y∈A2

u1(x, y),

so x∗ is a maxminimizer for player 1. An analogous
argument for player 2 establishes

min
y∈A2

max
x∈A1

u1(x, y) = u1(x
∗, y∗)

and that y∗ is a maxminimizer for player 2. Thus, (a)
and (b) hold.



For part (c), let

v∗ = max
x∈A1

min
y∈A2

u1(x, y) =

min
y∈A2

max
x∈A1

u1(x, y).

By Lemma 22.1, we have

max
y∈A2

min
x∈A1

u2(x, y) = −v∗.

Since x∗ is a maxminimizer, we have

min
y∈A2

u1(x
∗, y) ≥ min

y∈A2
u1(x, y) for all x

min
y∈A2

u1(x
∗, y) ≥ max

x∈A1
min
y∈A2

u1(x, y) = v∗

u1(x
∗, y) ≥ v∗ for all y.

Since y∗ is a maxminimizer, we have

min
x∈A1

u2(x, y
∗) ≥ min

x∈A1
u2(x, y) for all y

min
x∈A1

u2(x, y
∗) ≥ max

y∈A2
min
x∈A1

u2(x, y) = −v∗

u2(x, y
∗) ≥ −v∗ for all x.



Setting x = x∗ and y = y∗ in these inequalities, and
using u1 = −u2, we have u1(x∗, y∗) = v∗. Therefore,
we can rewrite u1(x∗, y) ≥ v∗ for all y as

u1(x
∗, y) ≥ u1(x

∗, y∗) for all y,

which implies

−u2(x∗, y) ≥ −u2(x∗, y∗) for all y, or

u2(x
∗, y) ≤ u2(x

∗, y∗) for all y.

Thus, y∗ is a best response to x∗.

We can rewrite u2(x, y∗) ≥ −v∗ for all x as

−u1(x∗, y) ≥ −u1(x∗, y∗) for all x, or
u1(x

∗, y) ≤ u1(x
∗, y∗) for all x,

so x∗ is a best response to y∗. It follows that (x∗, y∗)
is a NE.



Comments:

For any game, the payoff that player 1 can guarantee
herself is at most the amount that player 2 can guarantee
that she is held to.

max
x∈A1

min
y∈A2

u1(x, y) ≤ min
y∈A2

max
x∈A1

u1(x, y). (1)

[Intuitively, when player 2 is holding player 1 to the lowest
payoff on the right side of (1), player 2 “chooses first.”
The payoff player 1 can guarantee herself on the left side
of (1) requires player 1 to “choose first.”]

A NE exists if and only if (1) holds as an equality and
maxminimizers exist. In that case, we can solve for a
NE.

If (1) holds as an equality, we call

v∗ = maxx∈A1 miny∈A2 u1(x, y) the value of the game.
This is as close to a decision problem as it gets in game
theory.


