Games in Strategic Form

Definition 11.1: A **strategic game** consists of:

- 1. a finite set N (the set of players),
- 2. for each player $i \in N$, a nonempty set A_i (the set of actions available to player i),
- 3. for each player $i \in N$, a preference relation \succsim_i on $A = \times_{j \in N} A_j$.

If the set of actions for every player is finite, then the game is *finite*.

We refer to an action profile, $a=(a_j)_{j\in N}$, as an *out-come*.

Note: Equivalently, we can define preferences, not over outcomes, but over the *consequences* of those outcomes. (Sometimes it is more natural this way. In Cournot competition, firms receive payoffs based on profits rather than quantities.)

$$g:A\to C$$

If \succsim_i^* is the preference relation over consequences, then \succsim_i is defined by $a \succsim_i b$ if and only if $g(a) \succsim_i^* g(b)$.

Note: Sometimes there is randomness in determining the consequences that result from actions. We model this with a probability space, Ω , and a function, $g:A\times\Omega\to C$. Then a profile of actions induces a *lottery* on C, and preferences \succsim_i^* must be defined over the space of lotteries.

We can model random consequences in Definition 11.1 by introducing nature as a player.

Often \succsim_i can be represented by a payoff function (or utility function), $u_i:A\to\mathbb{R}$. Then we denote the game by $\langle N,(A_i),(u_i)\rangle$ rather than $\langle N,(A_i),(\succsim_i)\rangle$. We can describe finite strategic games with two players in a table or matrix.

Example: Prisoner's Dilemma.

Interpretations of the model: (1) The game is only played once, and players choose their actions simultaneously and independently.

- (2) The game or a similar game has been played in the past. We observe the "history," but there are no strategic links between the plays. (Maybe different individuals played the game previously.)
- (3) By simultaneous, it is only important that each player acts in ignorance of the other players' actions.

Nash Equilibrium

Definition 14.1: A Nash equilibrium of a strategic game $\langle N, (A_i), (\succsim_i) \rangle$ is a profile of actions, $a^* \in A$, such that, for every player $i \in N$, we have

$$(a_{-i}^*, a_i^*) \succsim_i (a_{-i}^*, a_i)$$
 for all $a_i \in A_i$.

Given the others' strategies, no player can profitably deviate.

Each player is choosing an action in his/her best response correspondence, $a_i^* \in B_i(a_{-i}^*)$ for all $i \in N$, where

$$B_i(a_{-i}) = \{a_i \in A_i : (a_{-i}, a_i) \succeq_i (a_{-i}, a_i') \text{ for all } a_i' \in A_i\}.$$

Interpretations of Nash equilibrium

- 1. **If** a theory of rational play is to predict a unique outcome, then it must be a Nash equilibrium.
- 2. Self-enforcing **agreement**.
- 3. A **steady state** of a learning or evolutionary process.
- 4. A **stable** profile of strategies. Each player has *rational expectations* about how the others will play, and optimizes accordingly. (Form beliefs, which turn out to be correct.) Thus, N.E. does is not a prediction of how the game will be played, but it is a consistent theory of how the game might be played.

Existence of Nash Equilibrium

Not every game has a Nash equilbrium (in pure strategies): Matching Pennies

Proposition 20.3: The strategic game, $\langle N, (A_i), (\succeq_i) \rangle$, has a Nash equilibrium if for all $i \in N$,

- 1. A_i is a nonempty, compact, convex subset of Euclidean space,
- 2. Preferences are continuous on A, and quasi-concave on A_i .

Lemma 20.1 (Kakutani's fixed point theorem): Let X be a compact, convex subset of \mathbb{R}^n and let $f:X\to X$ be a correspondence such that

- (i) for all $x \in X$, the set f(x) is nonempty and convex, and
- (ii) the graph of f is closed. [For all sequences such that $x_n \to x$, $y_n \to y$, and $y_n \in f(x_n)$, we have $y \in f(x)$.]

Then there exists $x^* \in X$ such that $x^* \in f(x^*)$.

Proof of Prop. 20.3: Let $B(a) = \times_{i \in N} B_i(a_{-i})$. Then $B: A \to A$. Since preferences are continuous and defined over a compact set, B(a) is nonempty. By quasiconcavity, $B_i(a_{-i})$ is a convex set.

Suppose we have sequences $(a)_n \to \overline{a}$ and $y_n \to \overline{y}$, such that $(y_i)_n \in B_i((a_{-i})_n)$, but $\overline{y}_i \notin B_i(\overline{a}_{-i})$. Then there exists $\widehat{a}_i \in A_i$ such that $(\widehat{a}_i, \overline{a}_{-i}) \succsim_i (\overline{y}_i, \overline{a}_{-i})$ holds strictly. By continuity of preferences, for sufficiently large n, we have $(\widehat{a}_i, (a_{-i})_n) \succsim_i ((y_i)_n, (a_{-i})_n)$ holding strictly, a contradiction. Thus, the graph of B is closed.

By KFPT, there exists $a^* \in A$ such that $a^* \in B(a^*)$, so a^* is a Nash equilibrium.

Strictly Competitive Games

Definition 21.1: A strategic game, $\langle \{1,2\}, (A_i), (\succsim_i) \rangle$ (two players) is **strictly competitive** if for any $a \in A$ and $b \in A$, we have $a \succsim_1 b$ if and only if $b \succsim_2 a$.

Note: When preferences are represented by utility functions, it is without loss of generality to assume $u_1(a) + u_2(a) = 0$. (Zero Sum)

Definition 21.2: Let $\langle \{1,2\}, (A_i), (u_i) \rangle$ be a strictly competitive strategic game. The action $x^* \in A_1$ is a **maxminimizer** for player 1 if

$$\min_{y \in A_2} u_1(x^*, y) \ge \min_{y \in A_2} u_1(x, y)$$
 for all $x \in A_1$.

The action $y^* \in A_2$ is a **maxminimizer** for player 2 if

$$\min_{x \in A_1} u_2(x, y^*) \ge \min_{x \in A_1} u_2(x, y)$$
 for all $y \in A_2$.

Intuition: A maxminimizer is an action that maximizes a player's guaranteed payoff.

Lemma 22.1: Let $\langle \{1,2\}, (A_i), (u_i) \rangle$ be a strictly competitive strategic game. Then

$$\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -\min_{y \in A_2} \max_{x \in A_1} u_1(x, y).$$

Also, $y^* \in A_2$ solves $\max_{y \in A_2} \min_{x \in A_1} u_2(x,y)$ if and only if it solves $\min_{y \in A_2} \max_{x \in A_1} u_1(x,y)$.

Proof of Lemma 22.1: For every $y \in A_2$, we have

$$-\min_{x\in A_1} u_2(x,y) = \max_{x\in A_1} (-u_2(x,y)) =$$

$$\max_{x \in A_1} u_1(x,y)$$

[property of all functions, then def. of str. comp.]

Thus, $\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) =$

$$-\min_{y \in A_2} [-\min_{x \in A_1} u_2(x, y)] =$$

$$-\min_{y\in A_2}\max_{x\in A_1}u_1(x,y)$$

[property of all functions, then above eq.]

Also, y^* solves $\max_{y \in A_2} \min_{x \in A_1} u_2(x,y)$ if and only if it solves

$$\min_{y \in A_2} [-\min_{x \in A_1} u_2(x,y)] =$$

$$\min_{y \in A_2} [\max_{x \in A_1} u_1(x, y)].$$

[property of all functions, then above eq.]

What does Lemma 22.1 tell us about Nash equilibrium?

Proposition 22.2: Let $G = \langle \{1,2\}, (A_i), (u_i) \rangle$ be a strictly competitive strategic game.

- (a) If (x^*, y^*) is a NE of G then x^* is a maxminimizer for player 1 and y^* is a maxminimizer for player 2.
- (b) If (x^*, y^*) is a NE of G then

$$\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) =$$

$$\min_{y \in A_2} \max_{x \in A_1} u_1(x,y) = u_1(x^*,y^*)$$
,

so all NE yield the same payoffs.

(c) If we have

$$\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y),$$

and if x^* is a maxminimizer for player 1 and y^* is a maxminimizer for player 2, then (x^*, y^*) is a NE of G.

Proof of Prop 22.2: If (x^*, y^*) is a NE,

$$u_2(x^*, y^*) \ge u_2(x^*, y)$$
 for all y , which implies

$$u_1(x^*, y^*) \le u_1(x^*, y)$$
 for all y .

Thus,

$$u_1(x^*, y^*) = \min_{y \in A_2} u_1(x^*, y) \le \max_{x \in A_1} \min_{y \in A_2} u_1(x, y).$$

Similarly, $u_1(x^*, y^*) \ge u_1(x, y^*)$ for all x, so

$$u_1(x^*, y^*) \ge \min_{y \in A_2} u_1(x, y)$$
 for all x . Thus,
$$u_1(x^*, y^*) \ge \max_{x \in A_1} \min_{y \in A_2} u_1(x, y).$$

It follows that

$$u_1(x^*, y^*) = \max_{x \in A_1} \min_{y \in A_2} u_1(x, y)$$

holds. From $u_1(x^*, y^*) = \min_{y \in A_2} u_1(x^*, y)$, we have

$$\min_{y \in A_2} u_1(x^*, y) = \max_{x \in A_1} \min_{y \in A_2} u_1(x, y),$$

so x^* is a maxminimizer for player 1. An analogous argument for player 2 establishes

$$\min_{y \in A_2} \max_{x \in A_1} u_1(x, y) = u_1(x^*, y^*)$$

and that y^* is a maxminimizer for player 2. Thus, (a) and (b) hold.

For part (c), let

$$v^* = \max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y).$$

By Lemma 22.1, we have

$$\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -v^*.$$

Since x^* is a maxminimizer, we have

$$\min_{y \in A_2} u_1(x^*, y) \geq \min_{y \in A_2} u_1(x, y) \text{ for all } x$$
 $\min_{y \in A_2} u_1(x^*, y) \geq \max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = v^*$
 $u_1(x^*, y) \geq v^* \text{ for all } y.$

Since y^* is a maxminimizer, we have

$$\min_{x \in A_1} u_2(x, y^*) \geq \min_{x \in A_1} u_2(x, y) \text{ for all } y$$

$$\min_{x \in A_1} u_2(x, y^*) \geq \max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -v^*$$

$$u_2(x, y^*) \geq -v^* \text{ for all } x.$$

Setting $x=x^*$ and $y=y^*$ in these inequalities, and using $u_1=-u_2$, we have $u_1(x^*,y^*)=v^*$. Therefore, we can rewrite $u_1(x^*,y)\geq v^*$ for all y as

$$u_1(x^*, y) \ge u_1(x^*, y^*)$$
 for all y ,

which implies

$$-u_2(x^*,y) \ge -u_2(x^*,y^*)$$
 for all y , or $u_2(x^*,y) \le u_2(x^*,y^*)$ for all y .

Thus, y^* is a best response to x^* .

We can rewrite $u_2(x, y^*) \ge -v^*$ for all x as

$$-u_1(x^*,y) \ge -u_1(x^*,y^*)$$
 for all x , or $u_1(x^*,y) \le u_1(x^*,y^*)$ for all x ,

so x^* is a best response to y^* . It follows that (x^*, y^*) is a NE.

Comments:

For any game, the payoff that player 1 can guarantee herself is at most the amount that player 2 can guarantee that she is held to.

$$\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) \le \min_{y \in A_2} \max_{x \in A_1} u_1(x, y). \tag{1}$$

[Intuitively, when player 2 is holding player 1 to the lowest payoff on the right side of (1), player 2 "chooses first." The payoff player 1 can guarantee herself on the left side of (1) requires player 1 to "choose first."]

A NE exists if and only if (1) holds as an equality and maxminimizers exist. In that case, we can solve for a NE.

If (1) holds as an equality, we call

 $v^* = \max_{x \in A_1} \min_{y \in A_2} u_1(x, y)$ the **value** of the game. This is as close to a decision problem as it gets in game theory.