Department of Economics
The Ohio State University
Econ 817-Advanced Game Theory

Winter 2007
Prof. James Peck

Homework \#2 Answers

1. O-R, exercise 56.4 .

Answer: By the symmetry of the game, the set of rationalizable pure actions is the same for both players. Call it Z. Consider $m \equiv \inf (Z)$ and $M \equiv \sup (Z)$. Any best response of player i to a belief about player j (whose support is a subset of Z) maximizes $E\left(a_{i}\left(1-a_{i}-a_{j}\right)\right)$, or equivalently, it maximizes $a_{i}\left(1-a_{i}-E\left(a_{j}\right)\right)$. Thus, player i 's best response to a belief about player j depends only on $E\left(a_{j}\right)$, which can be written as $B_{i}\left(E\left(a_{j}\right)\right)=(1-$ $\left.E\left(a_{j}\right)\right) / 2$. Because $m \leq E\left(a_{j}\right) \leq M$ must hold, $a_{i} \in B_{i}\left(E\left(a_{j}\right)\right)$ implies $a_{i} \in$ $[(1-M) / 2,(1-m) / 2]$. By the best response property of the rationalizable set, we have $m \in[(1-M) / 2,(1-m) / 2]$ and $M \in[(1-M) / 2,(1-m) / 2]$. Therefore, we have

$$
\begin{align*}
m & \geq \frac{1-M}{2} \text { and } \tag{1}\\
M & \leq \frac{1-m}{2} \tag{2}
\end{align*}
$$

It follows from (1) and (2) that $m \geq M$ holds, which can only occur if $m=M$. From (1) and (2), we have $m=M=1 / 3$. Therefore, the only rationalizable strategy is the unique Nash equilibrium strategy, $a_{i}=1 / 3$.
2. O-R, exercise 76.1.

Answer: The simplest example, in which it is common knowledge that two players have different posteriors about some event A, is the following. There are two states, with prior probability $1 / 2$ for each state. $\Omega=\{1,2\}$ and $p(1)=p(2)=1 / 2$. Player 1 cannot distinguish between the two states, $\wp_{1}=$ $\{\{1,2\}\}$, and player 2 can distinguish between the two states, $\wp_{2}=\{\{1\},\{2\}\}$. Therefore, the meet of the two information structures is $\wp_{1} \wedge \wp_{2}=\{\{1,2\}\}$. Let $A=\{1\}$. At $\omega=1$, player 1's posterior is 1 , and player 2's posterior is $1 / 2$. At $\omega=2$, player 1 's posterior is 0 , and player 2's posterior is $1 / 2$. Because posteriors are different at all states, it is common knowledge that posteriors are different.

Let $E=\left\{\omega^{\prime}: q_{1}\left(\omega^{\prime}\right)>q_{2}\left(\omega^{\prime}\right)\right\}$. Suppose E is common knowledge at ω. Let M be the element of $\wp_{1} \wedge \wp_{2}$ containing ω. Then $M=\bigcup_{j} P_{1}^{j}$, where we
have the union of disjoint elements of \wp_{1}, and $M=\bigcup_{j} P_{2}^{j}$, where we have the union of disjoint elements of \wp_{2}.

Because E is common knowledge at ω, we must have $q_{1}\left(\omega^{\prime}\right)>q_{2}\left(\omega^{\prime}\right)$ for all $\omega^{\prime} \in M$.

Therefore, for all $P_{1}^{j} \subseteq M$, and all $P_{2}^{j} \subseteq M$, we have

$$
\frac{p r\left(A \cap P_{1}^{j}\right)}{p r\left(P_{1}^{j}\right)}>\frac{p r\left(A \cap P_{2}^{j}\right)}{p r\left(P_{2}^{j}\right)}
$$

Cross multiplying, $\operatorname{pr}\left(P_{2}^{j}\right) \operatorname{pr}\left(A \cap P_{1}^{j}\right)>\operatorname{pr}\left(P_{1}^{j}\right) \operatorname{pr}\left(A \cap P_{2}^{j}\right)$.
Summing over (disjoint) $P_{1}^{j} \subseteq M$, we have $\operatorname{pr}\left(P_{2}^{j}\right) \operatorname{pr}(A \cap M)>\operatorname{pr}(M) \operatorname{pr}(A \cap$ P_{2}^{j}).

Summing over (disjoint) $P_{2}^{j} \subseteq M$, we have $\operatorname{pr}(M) \operatorname{pr}(A \cap M)>\operatorname{pr}(M) \operatorname{pr}(A \cap$ $M)$, a contradiction.
3. O-R, exercise 103.2.

Answer: The game is defined by
$N=\{1,2\}, H=\{$ stop, continue $\} \cup\{($ continue,$y): y \in Z \times Z\}$, where Z is the set of nonnegative integers.
$P(\varnothing)=1$ and $P($ continue $)=\{1,2\}$.
To find the subgame perfect equilibria, first consider the subgame following "continue." If one of the players chooses a positive integer, then the other player can increase her payoff by choosing a larger integer, so this is not consistent with equilibrium. However, the subgame is in equilibrium if both players choose zero, $y=(0,0)$. Given that the only equilibrium of the subgame is $(0,0)$, player 1 receives a payoff of 1 by choosing "stop," and a payoff of 0 by choosing "continue." Therefore, the unique subgame perfect equilibrium is given by ((stop, 0), 0).

