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Abstract. This paper analyzes a monopoly firm’s profit-maximizing mechanism in the
following context. There is a continuum of consumers with a unit demand for a good.
The distribution of the consumers’ valuations is given by one of two possible demand
distributions/states. The consumers are uncertain about the demand state, and they
update their beliefs after observing their own valuation for the good. The firm is uncertain
about the demand state but infers it from the consumers’ reported valuations. The firm’s
problem is to maximize profits by choosing an optimal mechanism among the class of
anonymous, deterministic, direct revelation mechanisms that satisfy interim incentive
compatibility and ex post individual rationality. We show that, under certain sufficient
conditions, the firm’s optimal mechanism is to set the monopoly price in each demand
state. Under these conditions, Segal’s optimal ex post mechanism is robust to relaxing
ex post incentive compatibility to interim incentive compatibility.

Keywords: monopoly mechanism • correlated valuations • Bayesian incentive compatibility • ex post individual rationality

1. Introduction
Consider a monopoly firm that is trying to maximize profit in the presence of aggregate demand uncertainty.
In each demand state, there is a distribution of consumer valuations, or a demand curve, in which each
consumer is negligible relative to the market and desires at most one unit of the good. It is well known that, in
the absence of demand uncertainty, there is no scope for price discrimination, and the monopolist’s optimal
mechanism is to charge the same optimal monopoly price to all consumers. Myerson [15] solves the optimal
auction problem, and Bulow and Roberts [2] show that the monopoly problem is equivalent to the Myerson
setting when consumer valuations are independent (in which case the demand curve would be known in a
large economy). See also Harris and Raviv [8] and Riley and Zeckhauser [18].

On the other hand, when aggregate demand uncertainty is present and, therefore, consumer valuations
are correlated, Crémer and McLean [4, 5] show that, under certain conditions, the monopolist can extract the
entire consumer surplus using a Bayesian incentive compatible (BIC) and interim individually rational (IIR)
mechanism. These mechanisms involve consumers participating in side bets with the firm, by which con-
sumers must make/receive huge payments depending on the outcome of the bet. In particular, these pay-
ments can be far more than the consumers’ valuation of the good being sold. However, in many monopoly
situations, a consumer cannot be prevented from walking away from a deal when asked to pay more than the
consumer’s valuation of the good. Segal [19] accounts for this by requiring ex post individual rationality (EIR)
along with ex post incentive compatibility. Segal [19] analyzes the model with a finite number of consumers
and several possible distributions from which valuations are independently drawn. He shows that, when the
number of buyers is large, the optimal mechanism converges to state-by-state monopoly pricing (SBSMP).

In the private values setting, Segal’s [19] ex post incentive compatibility is equivalent to dominant strategy
incentive compatibility (DIC). Imposing DIC rules out many forms of price discrimination. For example,
given a profile of reported types, DIC requires any anonymous and deterministic mechanism to charge the
same price to any consumer receiving the good. Therefore, to capture the situation in which consumers cannot
be charged more than their valuation of the good but price discrimination is possible, we impose EIR as does
Segal [19] but relax DIC to BIC.

We assume that there are two distributions, high and low, from which valuations are independently drawn.
Appealing to the law of large numbers, these distributions also correspond to two possible realized demand
curves. We first impose regularity conditions on the demand process. Under these assumptions and three
additional conditions, we show that SBSMP is optimal among all anonymous, deterministic, EIR, and BIC
mechanisms. One of the three additional conditions is similar to a “single crossing” condition for beliefs.
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Peck and Rampal [17] provide a counterexample to SBSMP when this single crossing property does not hold.
The other two conditions are concavity and a restriction over beliefs.

When the conditions of the SBSMP proposition are satisfied, it follows that Segal’s characterization of
SBSMP as the optimal ex post mechanism is robust to relaxing DIC to BIC. Specifically, we are referring to the
case in which the number of consumers approaches infinity, there are two possible demand distributions, and
we consider deterministic mechanisms.

To our knowledge, this is the first BIC–DIC equivalence result for environments with correlated types and
EIR. Crémer and McLean [5] provide such a result under IIR and a spanning condition, which could require
large payments from consumers (also see Kushnir [10]). Mookherjee and Reichelstein (1992), Manelli and
Vincent [14], Gershkov et al. [7], and Kushnir and Liu [11] all consider BIC–DIC equivalence with inde-
pendent types.

The literature considers settings in which the buyer’s valuation depends on the “item type.” The item type
could refer to a characteristic of the good being sold, but in our context, it refers to the distribution of demand.
Krähmer and Strausz [9] and Bergemann et al. [1] consider a sequential screening problem with one buyer,
who first observes the distribution from which the buyer’s valuation is drawn and later observes the buyer’s
valuation. When EIR is imposed, the seller does not engage in screening if a monotonicity condition is
satisfied—instead setting a take-it-or-leave-it price. The no-screening result is similar to SBSMP in the sense
that all consumers are offered the same deal. In the sequential screening literature, the seller does not observe
the item type (i.e., the demand distribution); in the present paper, in contrast, the seller effectively observes the
item type by aggregating the reports of the potential buyers.

In Daskalakis et al. [6], as in the present paper, the item type is observed by the seller and not by the buyer.
They find that it is generally not optimal for the seller to reveal the item type to the buyer as would be the case
for SBSMP. In Daskalakis et al. [6], a buyer of a given “bidder type” does not observe the buyer’s valuation but
rather a function specifying the buyer’s valuation for each item type. Think of a bidder type as a type of firm
bidding for ad space on a website, and think of the item type as the consumer who is visiting the website. The
buyer knows the buyer’s bidder type but not the item type. In the present paper, in contrast, the buyer knows
the buyer’s valuation, so the bidder type and the valuation are one and the same. It turns out that, when the
buyer knows the buyer’s valuation, this eliminates the benefit of hiding the item type from the buyer (under
reasonable assumptions).

This paper is related to the literature on product bundling (see Manelli and Vincent [12, 13]) because
consumption of the same good in different states of nature can be interpreted as different commodities.
The counterexample to SBSMP in Peck and Rampal [17] is similar to an example in Carroll [3]. Daskalakis
et al. [6] show that the optimal mechanism is equivalent to an optimal multi-item mechanism, with which
hiding information about the item type can be interpreted as selling fractional bundles of those items.
The fraction sold corresponds to the probability of the demand state. For this interpretation to be valid, it
is assumed that the bidder type is uncorrelated with the item type. By contrast, in the present paper, the
buyer and item types are correlated; in particular, the buyer observes the buyer’s valuation for the realized
item type, so buyers with different valuations update their beliefs differently and essentially expect differ-
ent bundles.

In Section 2, the model is laid out, and some preliminary analysis is conducted. Section 3 contains the main
result about SBSMP. Section 4 contains some concluding remarks. Proofs are contained in the appendix.

2. Model
A risk-neutral, profit-maximizing monopoly firm faces a continuum of consumers with a unit demand for a
good. The firm has zero marginal cost of production. There are two demand states: low and high. Conditions 1–3
imply that the monopoly price in state 1 is strictly less than the monopoly price in state 2, so we refer to state 1
as the low state and state 2 as the high state.

The probability of the low state is α1, and the probability of the high state is α2 � 1 − α1. For i � 1, 2,
consumers’ valuations in state i are distributed over V � [v, v] according to the demand distribution Di(·).
In particular, Di(v) is the measure of consumers with valuation greater than v in state i. Think of the following
process. First, nature selects the demand state according to the probabilities α1 and α2. Then, out of the
measure of “potential” consumers, C, nature selects a consumer to be active in state i with probability Di(v)/C.
Finally, for the set of selected active consumers, nature independently selects valuations giving rise to the
distribution, Di(v). See Peck [16] for more details and the derivation of (1) according to Bayes’ rule. Consumers
and the firm know the structure of demand but not the realization.
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Because there is aggregate demand uncertainty, a consumer’s valuation provides the consumer with sig-
nificant information about the demand state. For a consumer whose valuation is v, the consumer’s updated
belief about the realized demand state is

Pr Demand state is i|own valuation is v( ) � αi −D′
i v( )( )

α1 −D′
1 v( )( ) + α2 −D′

2 v( )( ) . (1)

In what follows, we assume that demand is twice continuously differentiable. The density of the downward-
sloping demand distribution at valuation v is denoted as (−D′

i (·)) in state i � 1, 2. We assume that (−D′
i (·)) > 0

holds at all v ∈ V for i � 1, 2.
We consider direct revelation mechanisms satisfying BIC and EIR. According to the revelation principle,

consumers report truthfully without loss of generality. We appeal to the law of large numbers to conclude that
the firm is able to infer the demand state perfectly from the profile of reported types. We restrict attention to
deterministic mechanisms that specify, for each state, which valuation types consume and the amount paid by
each type that consumes. Thus, we require anonymous mechanisms and rule out randomized mechanisms
that specify a probability of consuming in state i. We are unable to solve the model without this restriction, but
it may limit the firm’s profit opportunities as shown by Peck and Rampal [17]. We also rule out introducing
randomness indirectly by allowing consumption to depend on features of the profile of reports other than the
inferred state.

The requirement that the payment scheme satisfy ex post individual rationality implies that the firm is not
allowed to charge more than the reported valuation in any demand state and that, if a consumer is not given
the good in some demand state, then the firm cannot elicit any positive payment from that consumer in that
demand state. To summarize, the firm’s problem is to maximize its expected revenue using an anonymous,
deterministic, interim incentive compatible, and ex post individually rational mechanism, when facing a
continuum of consumers who update about the demand state based on their private valuations. We state this
problem formally in the next section.

2.1. The Monopoly Firm’s Problem
Let xi(v) denote the probability with which the monopoly firm gives the good to valuation v in state i. As noted
before, we restrict ourselves to the case in which the firm sells the good to v with probability one or zero. So
xi(v) ∈ {0, 1} for all v, and i � 1, 2. Let ti(v) denote the payment required from v given that the demand state is i,
conditional on v purchasing the good in state i. Thus, a mechanism offered by the monopoly firm is as follows:

xi v( ) ∈ 0, 1{ }, ∀v ∈ V, i � 1, 2,
0 ≤ ti v( ) ≤ v, ∀v ∈ V, i � 1, 2. (2)

For a given mechanism offered by the monopoly firm, let Vi denote the subset of valuations of V who consume
only in state i. That is, for i � 1, 2 and j �� i, v ∈ Vi if and only if xi(v) � 1 and xj(v) � 0 hold. So, by the EIR
condition, for valuations in Vi, ti(v) can be positive but must be less than v, and tj(v) must be zero. Let V12
denote the subset of valuations of V that consume in both states, in which case x1(v) � 1 and x2(v) � 1 hold. So,
by the EIR condition, for valuations in V12, both t1(v) and t2(v) can be positive but must be less than v. Let VØ

denote the subset of valuations ofV that do not consume the good in either state. That is, VØ � V − [V1 ∪ V2 ∪ V12].
We can state the simplified firm’s problem as follows. The firm chooses the sets V1, V2, and V12 and the

functions ti : V → [0, v] for i � 1, 2 to solve

max
∫
V12

t1 v( )α1 −D′
1 v( )( ) + t2 v( )α2 −D′

2 v( )( )[ ]
dv +

∫
V1

t1 v( )α1 −D′
1 v( )( )

dv +
∫
V2

t2 v( )α2 −D′
2 v( )( )

dv. (3)

Subject to (i) EIR (given by (2)) and (ii) BIC (as follows).

v − t1 v( )( )x1 v( )α1 −D′
1 v( )( ) + v − t2 v( )( )x2 v( )α2 −D′

2 v( )( )
≥ v − t1 v̂( )( )x1 v̂( )α1 −D′

1 v( )( ) + v − t2 v̂( )( )x2 v̂( )α2 −D′
2 v( )( )

; ∀v, v̂ ∈ V. (4)
The BIC condition is stated after canceling [α1(−D′

1(v)) + α2(−D′
2(v))] from the denominator on both sides of

the inequality.
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2.2. Conditions and Preliminary Results
In this section, we specify conditions on the demand process and establish preliminary results. We start with
regularity conditions for the two demand states, that is, the “maintained assumptions” about demand. Then
Fact 1 follows from BIC.

Condition 1 (Regularity).
i. D1(v) and D2(v) are twice continuously differentiable.
ii. Demand is strictly downward sloping everywhere; that is, D′

i (v) < 0 holds for all v ∈ V and i ∈ {1, 2}.
2.2.1. Fact 1. If the firm’s mechanism satisfies BIC, then ti(v) � ti( v̂ ) must hold for all v, v̂ in Vi, where i � 1, 2.

2.2.2. Proof of Fact 1. For i � 1, 2 and j �� i, if v, v̂ ∈ Vi, then xi(v) � xi( v̂ ) � 1 and xj(v) � xj( v̂ ) � 0 hold. Thus, the
BIC condition (4) implies

v − ti v( )( )αi −D′
i v( )( ) ≥ v − ti v̂( )( )αi −D′

i v( )( )
,

which implies ti(v) ≤ ti(̂v). Similarly, the BIC condition for v̂ with respect to v implies ti( v̂ ) ≤ ti(v). So
Fact 1 holds. ∎

Lemma 1 provides a first step toward characterizing the firm’s optimal mechanism. Let v∗1, v∗2, and v∗12
denote the infimum valuations of the sets V1, V2, and V12, respectively. The infima of these sets are well
defined because they are bounded subsets of R.

Lemma 1. At the monopoly firm’s optimal EIR and BIC mechanism, V12 is nonempty.

The proof of Lemma 1 is given in the appendix.

Condition 2 (Information Effect). The ratio Z(v) ≡ (−D′
1(v))(−D′
2(v)) is strictly decreasing in v for all v ∈ V. That is, Z′(v) < 0 holds

for all v ∈ V.

Condition 2 specifies the information effect. Note that α1
α2
Z(v) is the ratio of the probability type v assigns

to state 1 to the probability assigned to state 2. Thus, Condition 2 says that the greater the valuation of a
consumer, the greater the probability the consumer assigns to the high demand state. The next step is to
characterize the sets V1, V2, and V12. In particular, the question is, given Conditions 1 and 2, whether the
requirement that the firm’s mechanism satisfy the BIC and EIR constraints implies that the firm’s mechanism
must order and structure the sets V1, V2, and V12 in a particular manner. Lemma 2 addresses this question.

Lemma 2. Let vi denote the arbitrary valuation of the set Vi for i ∈ {1, 2, 12}. Given Conditions 1 and 2, if the firm’s
mechanism satisfies the BIC and EIR constraints and the appropriate sets are nonempty, then we must have (i) v1 < v12,
and (ii) at the firm’s optimal mechanism, v∗2 < v∗12 must hold.

The proof of Lemma 2 is given in the appendix.
Given Lemma 1, it follows that the monopoly firm chooses a mechanism from among the following possible

types of mechanisms: (1) with only V12 nonempty; (2) with V1 and V12 nonempty and V2 empty; (3) with V2
and V12 nonempty and V1 empty; (4) with V1, V2, and V12 all nonempty. In general, when the profit-
maximizing monopoly price in the two demand states is different, it can be shown that the firm can improve
upon a mechanism with just V12 nonempty (we show this in the proof of Proposition 1). Thus, the main
question is going to be: which among (2)–(4) is optimal for the firm?

Note that, if the firm’s mechanism gives the good to valuation v in state i or state j or both, then BIC implies
that valuations greater than v are also given the good in some state because, otherwise, valuations greater than
v can report their valuation as v, get the good in whichever state v gets the good, make a payment less than v
(because, by EIR, the firm cannot charge more than the reported valuation to v), and earn a strictly positive
surplus. Fact 1 implies ti(vi) � ti(v∗i ) for i � 1, 2, and all vi ∈ Vi. Lemma 3 further specifies the payment scheme.

Lemma 3. If V1 and V2 are both nonempty and v∗i < v∗j holds, or if only Vi and V12 are nonempty with v∗i < v∗12, then BIC,
EIR, and Conditions 1 and 2 imply that ti(v∗i ) � v∗i � ti(vi) holds for all vi ∈ Vi.

Proof of Lemma 3. First, note that, under the conditions of Lemma 3, valuations less than v∗i are not given the good
in either state; that is, valuations less than v∗i belong to VØ. This holds by assumption if only Vi and V12 are
nonempty with v∗i < v∗12 or if onlyV1 andV2 are nonemptywith v∗i < v∗j . For the case in whichV1,V2, andV12 are all
nonempty and v∗i < v∗j holds, this follows from Lemma 2(i). Next, recall that, by Fact 1, ti(vi)must be constant for all
vi ∈ Vi. To see why ti(v∗i ) � v∗i holds, note that, for any v such that v < v∗i holds, ti(v∗i ) ≥ v must hold to satisfy BIC
of v. So ti(v∗i ) ≥ v∗i must hold. The EIR constraint of v∗i implies ti(v∗i ) ≤ v∗i . Putting these two statements together,
we have ti(v∗i ) � v∗i . ∎
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3. The Optimal Mechanism
Lemma 4 shows that, in the firm’s optimal mechanism, it cannot be the case that V1, V2, and V12 are all
nonempty. However, to prove Lemma 4, we require that demand be concave in both states.

Condition 3 (Concave Demand). Demand is strictly concave; that is, D′′
i (v) < 0 holds for all v ∈ V and i ∈ {1, 2}.

Concavity is used in Lemma 4 to establish that the revenue function pDi(p) is concave for i � 1, 2, for which
concavity is a sufficient condition but not necessary. For i � 1, 2, let pmi be the profit-maximizing monopoly
price in demand state i. Concavity is also used as a sufficient condition (along with Conditions 1 and 2) to
establish that pm1 is lower than pm2 (in Fact 2).

3.1. Fact 2
Conditions 1–3 imply

D2 v∗( )
−D′

2 v∗( )( ) > D1 v∗( )
−D′

1 v∗( )( ) (5)

for all v∗ ∈ V. And (5) implies pm1 , which solves pm1 � − D1(pm1 )
D′

1(pm1 ) , is strictly lower than pm2 , which solves

pm2 � − D2(pm2 )
D′

2(pm2 ).
The proof of Fact 2 is given in the appendix.
To show Lemma 4, we also require that, after observing their respective valuations, all types agree (as per

their beliefs) about which state is more likely.

Condition 4 (Agreement over the More Likely State). Either (i) α1
α2
Z(v) < 1 holds for all v ∈ V or (ii) α1

α2
Z(v) > 1 holds

for all v ∈ V.

Lemma 4. Suppose Conditions 1–4 hold; then, the optimal mechanism cannot have V1, V2, and V12 all nonempty.

The proof of Lemma 4 is given in the appendix.
Condition 4 is needed in the proof of Lemma 4 to show that the profit from any mechanism with V1, V2,

and V12 nonempty is bounded above by a mechanism that may not satisfy BIC but where V1, V2, and V12
are adjacent connected intervals; that is, the bounding mechanism has either V1 � [v∗1 , v∗2), V2 � [v∗2 , v∗12),
and V12 � [v∗12, v], or V2 � [v∗2 , v∗1), V1 � [v∗1 , v∗12), and V12 � [v∗12, v]. In particular, even with Conditions 1–4,
there is no guarantee that all BIC and EIR mechanisms with V1, V2, and V12 nonempty have the interval
property. However, the bounding mechanism satisfies the interval property, which allows us to express the
upper bound profit in terms of the infima v∗1, v∗2, and v∗12. We then show that the upper bound profit can be
strictly increased by switching to a mechanism with only V1 and V12 nonempty, which also satisfies BIC
and EIR.

Lemma 4 yields that, under its conditions, in the optimal mechanism, either only V12 is nonempty or only V1
and V12 are nonempty or only V2 and V12 are nonempty. The SBSMP proposition establishes that, under
Conditions 1–4, only V1 and V12 are nonempty in the optimal mechanism. This, in turn, yields that the firm’s
optimal mechanism is to set the monopoly price in each demand state; that is, the firm’s optimal mechanism
is SBSMP.

Proposition 1 (SBSMP). If Conditions 1–4 hold, then, within the class of deterministic BIC and EIR mechanisms, the
monopoly firm’s optimal mechanism is state-by-state monopoly pricing (SBSMP). The SBSMP mechanism is as follows:

t1 v( ) � pm1 , ∀ v ≥ pm1
t2 v( ) � pm2 , ∀ v ≥ pm2
x1 v( ) � 1 ∀v ≥ pm1 , x1 v( ) � 0 ∀v < pm1 ,

x2 v( ) � 1 ∀v ≥ pm2 , x2 v( ) � 0 ∀v < pm2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (6)

Proof (Summary). By Lemma 4, mechanisms withV1,V2, andV12 all nonempty are suboptimal. The proof proceeds
by ruling out the possibility that the optimal mechanism can be one with only V12 nonempty or one with only V2
and V12 nonempty. This proves that the optimal mechanism must have only V1 and V12 nonempty. Finally, we
show that the optimal mechanism among mechanisms with only V1 and V12 nonempty is SBSMP. The detailed
proof is provided in the appendix.
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4. Concluding Remarks
Under certain regularity conditions, we show that SBSMP is optimal among all anonymous, deterministic,
EIR, and BIC mechanisms. The result is far from obvious as illustrated by the counterexample in Peck and
Rampal [17], in which the regularity conditions are not satisfied. It would be nice to allow for randomized
mechanisms, but much of the Myerson machinery is unavailable and very few results are available in the
literature when types are correlated.
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Appendix. Proofs
A.1. Proof of Lemma 1.
We prove Lemma 1 by contradiction. Suppose, at the firm’s optimal EIR and BIC mechanism, V12 is empty. We argue that
each of the alternatives yields strictly lower profit than the profit from an EIR and BIC mechanism with V12 nonempty. The
alternatives are as follows:

i. Only Vi nonempty for i ∈ {1, 2}. By Fact 1 and EIR, the firm’s profit in this case is bounded above by αiv∗i Di(v∗i ).
If, instead, all vi ∈ Vi are given the good in both states (i.e., V12 � Vi) at price v∗i , the profit would be αiv∗i Di(v∗i ) + αjv∗i Dj(v∗i )
for i, j � 1, 2 and i �� j, which is strictly greater than αiv∗i Di(v∗i ), and all EIR and BIC constraints would still be satisfied.

ii. Only Vi and Vj nonempty for i, j � 1, 2 and i �� j. Without loss of generality, let v∗i ≤ v∗j hold. By BIC and EIR, using Fact 1,
the firm’s profit in this case is strictly lower than αiv∗i Di(v∗i ) + αjv∗j Dj(v∗j ) because Vi and Vj are disjoint sets by definition.
However, αiv∗i Di(v∗i ) + αjv∗j Dj(v∗j ) is exactly the profit if, instead of only Vi and Vj nonempty, a different mechanism is used: one
in which only Vi and V12 are nonempty, and (i) Vi equals [v∗i , v∗j ), which is empty if v∗j � v∗i holds, and ti(vi) � v∗i holds for all
vi ∈ Vi; (ii) V12 equals [v∗12, v] with v∗12 � v∗j , and ti(v12) � v∗i , tj(v12) � v∗12 hold for all v12 ∈ V12. Further, it is straightforward to
verify that such a mechanism satisfies all EIR and BIC constraints. ∎

A.2. Proof of Lemma 2.
A.2.1. Proof of Part (i). First, we show that v1 < v12 must hold. Suppose not; that is, let v1 > v12 hold (note that we cannot
have v1 equal to v12 because a valuation cannot belong to both V1 and V12). Consider the BIC constraints of v12 with respect
to v1 and of v1 with respect to v12:

v12 − t1 v12( )( )α1 −D′
1 v12( )( ) + v12 − t2 v12( )( )α2 −D′

2 v12( )( ) ≥ v12 − t1 v1( )( )α1 −D′
1 v12( )( )

;

v1 − t1 v1( )( )α1 −D′
1 v1( )( ) ≥ v1 − t1 v12( )( )α1 −D′

1 v1( )( ) + v1 − t2 v12( )( )α2 −D′
2 v1( )( )

.

These can be rewritten as

v12 − t2 v12( )( ) α2

α1Z v12( ) ≥ t1 v12( ) − t1 v1( ), (A.1)

and

t1 v12( ) − t1 v1( ) ≥ v1 − t2 v12( )( ) α2

α1Z v1( ) . (A.2)

Together, (A.1) and (A.2) imply

v12 − t2 v12( )( ) α2

α1Z v12( ) ≥ v1 − t2 v12( )( ) α2

α1Z v1( ) . (A.3)

Next, note that v1 > t2(v12) must hold. This is because, by EIR, v12 ≥ t2(v12) must hold; further, v1 > v12 holds by as-
sumption. Thus, v1 > v12 ≥ t2(v12) holds. Note that v1 > v12 implies (v1 − t2(v12)) > (v12 − t2(v12)). Further, by Condition 2,
1/Z(v) is increasing for all v. Thus, α2/α1Z(v1) > α2/α1Z(v12) holds, which implies

v12 − t2 v12( )( ) α2

α1Z v12( ) < v1 − t2 v12( )( ) α2

α1Z v1( ) ,

which is a contradiction of (A.3). Thus, it must be the case that v12 > v1 holds.

A.2.2. Proof of Part (ii). The aim is to show that v∗2 < v∗12 must hold in the firm’s optimal mechanism. The proof is by
contradiction; that is, suppose v∗12 ≤ v∗2 holds. Given Lemmas 1 and 2(i), if v∗12 ≤ v∗2 holds, then either (a) v∗1 < v∗12 ≤ v∗2 holds
and V1, V2, and V12 are all nonempty or (b) only V2 and V12 are nonempty with v∗12 ≤ v∗2 . We rule out both cases.

A.2.3. Ruling out (a). Suppose mechanism A is an arbitrary mechanism with v∗1 < v∗12 ≤ v∗2 and V1, V2, and V12

all nonempty. In mechanism A, by the BIC of v < v∗1 with respect to v∗1 (which implies t1(v∗1) ≥ v∗1) and by the EIR of v∗1
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(which implies t1(v∗1) ≤ v∗1), we must have t1(v∗1) � v∗1. Second, by Fact 1, all v1 ∈ V1 and v2 ∈ V2 must be charged v∗1 and
t2(v∗2), respectively. Third, by the BIC of v ∈ V12 with respect to v∗12, we have

v − t1 v( )( )α1 −D′
1 v( )( ) + v − t2 v( )( )α2 −D′

2 v( )( ) ≥ v − t1 v∗12
( )( )

α1 −D′
1 v( )( ) + v − t2 v∗12

( )( )
α2 −D′

2 v( )( )
,

which can be rearranged to

t1 v( )α1 −D′
1 v( )( ) + t2 v( )α2 −D′

2 v( )( ) ≤ t1 v∗12
( )

α1 −D′
1 v( )( ) + t2 v∗12

( )
α2 −D′

2 v( )( )
. (A.4)

The implication of (A.4) is that the profit from v ∈ V12, given on the left side of (A.4) (see (3)), is bounded above by
charging v the same payment scheme as offered to v∗12 (this follows from (A.4)). Fourth, by Lemma 2(i), V1 � [v∗1 , v∗12) holds
because no type with valuation above v∗12 can be in V1. Given these four features of mechanism A, the profit from
mechanism A is bounded above by

πA � α1 D1 v∗1
( ) −D1 v∗12

( )[ ]
v∗1 + α1 D1 v∗12

( ) −D1 v∗2
( )[ ]

t1 v∗12
( ) + α2 D2 v∗12

( ) −D2 v∗2
( )[ ]

t2 v∗12
( ) + α1t1 v∗12

( ) ∫
[v∗2 ,v]−V2

−D′
1 v( )( )

dv

+ α2t2 v∗12
( ) ∫

[v∗2 ,v]−V2

−D′
2 v( )( )

dv + α2t2 v∗2
( ) ∫

V2

−D′
2 v( )( )

dv. (A.5)

In (A.5), we must have t2(v∗2) ≤ t2(v∗12). To see this, note that the BIC of v∗2 with respect to v∗12 yields

v∗2 − t2 v∗2
( )( )

α2 −D′
2 v∗2
( )( ) ≥ v∗2 − t1 v∗12

( )( )
α1 −D′

2 v∗2
( )( ) + v∗2 − t2 v∗12

( )( )
α2 −D′

2 v∗2
( )( )

, (A.6)
and because t1(v∗12) ≤ v∗12 ≤ v∗2 holds (first inequality holds by EIR and second holds by assumption of mechanism A), (A.6)
implies t2(v∗2) ≤ t2(v∗12).

Now, consider an alternative mechanism, labeled mechanism B, in which only the following changes are made to
mechanism A: V2 is set to be empty, all valuations in V2 are allocated to V12, and all valuations in V12 are charged ti(v∗12) in
state i for i � 1, 2 (the payment scheme offered to v∗12 in mechanism A). In mechanism B, the profit is

πB � α1 D1 v∗1
( ) −D1 v∗12

( )[ ]
v∗1 + α1D1 v∗12

( )
t1 v∗1
( ) + α2D2 v∗12

( )
t2 v∗12
( )

, (A.7)
which is clearly greater than πA because valuations in V2, which are in V12 for mechanism B, are charged a weakly greater
amount in state 2, and the firm gets strictly positive revenue from them in state 1 as well. To complete the argument, note
that, if BIC and EIR are satisfied in mechanism A, then they continue to hold in mechanism B. We first check that the BIC of
all types in V12 with respect to types in V1 is satisfied. Because the BIC of v∗12 with respect to v∗1 is satisfied in mechanism A,
we have

v∗12 − t1 v∗12
( )( )

α1 −D′
1 v∗12
( )( ) + v∗12 − t2 v∗12

( )( )
α2 −D′

2 v∗12
( )( ) ≥ v∗12 − v∗1

( )
α1 −D′

1 v∗12
( )( )

, or

v∗12 ≥ t1 v∗12
( ) − v∗1

( )α1

α2
Z v∗12
( ) + t2 v∗12

( ) (A.8)

holds. Replacing v∗12 with any v > v∗12 in (A.8) yields

v > t1 v( ) − v∗1
( )α1

α2
Z v( ) + t2 v( ), (A.9)

because t1(v) and t2(v) are identical to t1(v∗12) and t2(v∗12) in mechanism B and because Z(v) < Z(v∗12) holds because of v > v∗12
and Condition 2. Equation (A.9) can be rearranged to show that the BIC of v with respect to v∗1 , and thereby all types in V1,
is satisfied. The BIC of all v1 ∈ V1 with respect to V12 continues to hold in mechanism B because all valuations in V12 are
offered the same payment scheme.

A.2.4. Ruling out (b). Suppose only V2 and V12 are nonempty with v∗12 ≤ v∗2 . We first rule out v∗12 � v∗2 � v∗ being compatible
with an optimal mechanism. By EIR, t2(v∗2) ≤ v∗2 must hold, and by Fact 1, t2(v2) � t2(v∗2) holds for all v2 ∈ V2. Further,
valuations in V2 pay zero in state 1. Following the arguments around (A.4), under BIC, the firm cannot extract more profit
from V12 than by charging the same payment scheme to all v12 ∈ V12. Further, by EIR, ti(v∗12) ≤ v∗12 holds for i � 1, 2. Thus,
profit from a mechanism with V2 and V12 nonempty and v∗12 � v∗2 � v∗ is bounded above by∫

[v∗ ,v]−V2

v∗ α1 −D′
1 v( )( ) + α2 −D′

2 v( )( ){ }
dv +

∫
V2

v∗α2 −D′
2 v( )( )

dv, (A.10)

where V2 is a subset of [v∗, v]. On the other hand, the BIC and EIR mechanism with only V12 � [v∗12, v] nonempty, ti(v) �
v∗12 � v∗ for i � 1, 2 and all v ∈ V12, yields profit equal to∫

[v∗ ,v]
v∗ α1 −D′

1 v( )( ) + α2 −D′
2 v( )( ){ }

dv,

which is clearly greater than (A.10). Thus, mechanisms with only V2 and V12 nonempty with v∗12 � v∗2 are ruled out.
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Now, suppose only V2 and V12 are nonempty with v∗12 < v∗2. Given t2(v∗12) ≤ v∗12 (by EIR), the BIC of v∗2 with respect to v∗12,
that is, (A.6), yields t2(v∗2) < v∗12. This is because the first term on the right side of (A.6) is strictly positive because (v∗2 −
v∗12) > 0 holds by assumption, α1(−D′

1(v∗2)) > 0 holds by Condition 1, and t1(v∗12) ≤ v∗12 holds by EIR. But t2(v∗2) < v∗12
contradicts the BIC of types with valuation slightly lower than v∗12 with respect to v∗2 . These types receive zero surplus
because they don’t consume in either state, but if they misreport their valuation as v∗2 , then they get the good in state 2 at a
price lower than their valuation, which yields a positive surplus. ∎

A.3. Proof of Fact 2.
To see why Conditions 1–3 imply (5), first rewrite (5) as∫ v̄

v∗ −D′
2 v( )( )

dv∫ v̄
v∗ −D′

1 v( )( )
dv

>
−D′

2 v∗( )( )
−D′

1 v∗( )( ) . (A.11)

Note that the left side of (A.11) is equal to ∫ v
v∗

−D′
1 v( )( )

Z v( ) dv∫ v
v∗ −D′

1 v( )( )
dv

.

Z(v) and (−D′
1(v)) are nonnegative and strictly decreasing because of Conditions 1–3. Thus, it follows from Wang [20,

lemma 2] (in Wang’s notation, x(φ) � 1, y(φ) � (−D′
1(v)), and z(φ) � 1/Z(v)) that we have∫ v

v∗
−D′

1 v( )( )
Z v( ) dv∫ v

v∗ −D′
1 v( )( )

dv
>

∫ v
v∗

1
Z v( ) dv∫ v
v∗ dv

. (A.12)

Because Z(v) is strictly decreasing and we are considering v ≥ v∗, it follows that the right side of (A.12) exceeds 1/Z(v∗).
Therefore, we have ∫ v

v∗
−D′

1 v( )( )
Z v( ) dv∫ v

v∗ −D′
1 v( )( )

dv
>

1
Z v∗( ) ,

which implies (A.11) and its equivalent, (5). ∎

A.4. Proof of Lemma 4: Ruling out V1, V2, and V12 All Nonempty
The proof of Lemma 4 relies on Lemmas A.1–A.4 detailed herein. First, we show Claim 1.

A.4.1. Claim 1. Suppose V1 and V2 are nonempty and BIC, EIR, and Conditions 1–3 hold. Then,
a. Condition 4(i), that is, α1

α2
Z(v) < 1 for all v, implies v∗1 < v∗2.

b. Condition 4(ii), that is, α1
α2
Z(v) > 1 for all v, implies v∗2 < v∗1 .

A.4.2. Proof. To begin, we argue that v∗1 � v∗2 is impossible under Condition 4. This is because, first, v∗1 � v∗2 � v∗, for some
v∗ ∈ V implies (by Fact 1, EIR of v∗, and the BIC of valuations less than v∗ with respect to v∗) that the price for consumption
must be v∗ for all types in V1 and V2, that is, t1(v1) � t2(v2) � v∗ holds for all v1 ∈ V1 and v2 ∈ V2, and second, Condition 4
implies that, given their updated beliefs, either all types consider state 2 more likely (Condition 4(i)) or all types consider
state 1 more likely (Condition 4(ii)). Thus, under Condition 4(i), all types prefer reporting a valuation in V2 (so V1 has to be
empty), and similarly under Condition 4(ii) V2 must be empty.
Now, we consider strict contradictions of Claim 1a and b.

a. By contradiction, suppose v∗2 < v∗1 and Condition 4(i) hold. By Lemmas 2(i) and 3, t2(v∗2) � v∗2 holds. The BIC of v∗1 with
respect to v∗2 yields

v∗1 − t1 v∗1
( ) ≥ v∗1 − v∗2

( ) α2

α1Z v∗1
( ) , or

t1 v∗1
( ) ≤ v∗1 − v∗1 − v∗2

( ) α2

α1Z v∗1
( ) < v∗2 , (A.13)

where the last inequality holds because α1
α2
Z(v∗1) < 1 holds by Condition 4(i). But having t2(v∗2) � v∗2 and t1(v∗1) < v∗2 violates

the BIC of v∗2 with respect to v∗1 .
b. By contradiction, suppose v∗1 < v∗2 and Condition 4(ii) hold. By Lemmas 2(i) and 3, t1(v∗1) � v∗1 holds. The BIC of v∗2 with

respect to v∗1 yields

v∗2 − t2 v∗2
( ) ≥ v∗2 − v∗1

( )α1

α2
Z v∗2
( )

, or

t2 v∗2
( ) ≤ v∗2 − v∗2 − v∗1

( )α1

α2
Z v∗2
( )

< v∗1 , (A.14)
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where the last inequality holds because α1
α2
Z(v∗2) > 1 holds by Condition 4(ii). But having t1(v∗1) � v∗1 and t2(v∗2) < v∗1 violates

the BIC of v∗1 with respect to v∗2 . ∎
The sketch of the proof of Lemma 4 is as follows. By Lemma 2 and Claim 1a (respectively, b), under Condition 4(i) (4(ii)), if
V1, V2, and V12 are all nonempty in the optimal mechanism, then v∗1 < v∗2 < v∗12 (v∗2 < v∗1 < v∗12) holds. For any such choice of
v∗1 , v∗2 , v∗12, Lemma A.1 (Lemma A.3) specifies a mechanism that provides an upper bound for profits when v∗1 < v∗2 < v∗12
(v∗2 < v∗1 < v∗12) holds. Lemma A.2 (Lemma A.4) then demonstrates that this upper bound profit strictly increases as V2 is
“shrunk” until V2 is empty, at which point the upper bound is also achievable using a mechanism that satisfies all BIC and
EIR conditions. So it follows that the optimal mechanism cannot have V1, V2, and V12 all nonempty.

Lemma A.1. Consider the class of BIC and EIR mechanisms in which V1, V2, and V12 are all nonempty, and v∗1 , v∗2 , and v∗12 are given. If
Conditions 1–3 and 4(i) hold, then the profit under a mechanism in this class can be no greater than the profit that would result if all
consumers report truthfully in the following mechanism:

V1 � v∗1 , v∗2
[ )

V2 � v∗2 , v∗12
[ )

V12 � v∗12, v
[ ]

t1 v1( ) � v∗1 ∀v1 ∈ V1

t2 v2( ) � v∗2 − v∗2 − v∗1
( )

α1
α2
Z v∗2
( ) ∀v2 ∈ V2

t1 v12( ) � v∗1 ∀v12 ∈ V12

t2 v12( ) � t2 v∗2
( ) + v∗12 − v∗1

( )
α1
α2
Z v∗12
( ) ∀v12 ∈ V12

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A.15)

Proof of Lemma A.1. By Claim 1a, v∗1 < v∗2 holds. Further, for the optimal mechanism with V1, V2, and V12 nonempty, by
Lemma 2(ii), v∗2 < v∗12 must also hold. So consider an arbitrary BIC and EIRmechanismwithV1,V2, andV12 all nonempty andv∗1 , v∗2 ,
and v∗12 given such that v∗1 < v∗2 < v∗12 holds. Label thismechanismasmechanismC.We argue that the profit frommechanismC isweakly
lower than the profit fromMechanism (A.15) with v∗1, v∗2 , and v∗12 the same as in mechanism C. Note that we do not require Mechanism
(A.15) to satisfy BIC and EIR at this point in the argument.

Mechanism C must have the following features: By assumption v∗1 < v∗2 < v∗12 holds. By Lemma 3, t1(v1) � v∗1 must hold
for all v1 ∈ V1. By Fact 1, t2(v2) � t2(v∗2) holds for all v2 ∈ V2. By BIC, v∗2 must be indifferent with respect to reporting v∗1
because, if instead type v∗2 strictly prefers reporting v∗2 over reporting v∗1 , then, by continuity, for a valuation v1 ∈ V1 less
than v∗2 but close enough to v∗2 , we have that v1 also strictly prefers reporting v∗2 rather than v1, which contradicts either the
BIC of v1 or the definition of v∗2 as the infimum of V2. Thus, the following holds:

v∗2 − t2 v∗2
( )( )

α2 −D′
2 v∗2
( )( ) � v∗2 − v∗1

( )
α1 −D′

1 v∗2
( )( )

, or (A.16)
t2 v∗2
( ) � v∗2 − v∗2 − v∗1

( )α1

α2
Z v∗2
( )

. (A.17)
Next, we argue that mechanism C must have V1 � [v∗1 , v∗2); to show this, we need Claim 2.

A.4.3. Claim 2. For mechanism C, all types with valuation greater than v∗2 strictly prefer reporting v∗2 over reporting v∗1 .
A.4.4. Proof. By Lemma 3, t1(v1) � v∗1 holds for all v1 ∈ V1. By Fact 1, t2(v2) � t2(v∗2) holds for all v2 ∈ V2. By previous
arguments, t2(v∗2) is such that v∗2 is indifferent between reporting truthfully and reporting v∗1 . To prove Claim 2, we show
that, for all types v such that v > v∗2 holds, v strictly prefers reporting v∗2 over reporting v∗1 . Rewriting (A.16), the binding
BIC of v∗2 with respect to v∗1 , yields

v∗2 − t2 v∗2
( )( )

v∗2 − v∗1
( ) � α1

α2
Z v∗2
( )

. (A.18)

Replacing v∗2 with v strictly greater than v∗2 in (A.18) yields

v − t2 v∗2
( )( )

v − v∗1
( ) ≥ v∗2 − t2 v∗2

( )( )
v∗2 − v∗1
( ) � α1

α2
Z v∗2
( )

>
α1

α2
Z v( ),

where the first inequality follows because t2(v∗2) ≥ v∗1 holds (by BIC), the last inequality follows because Z(v) is strictly
decreasing (by Condition 2), and v > v∗2 holds by assumption. Thus,

v − t2 v∗2
( )( )

v − v∗1
( ) >

α1

α2
Z v( ) holds.

Cross-multiplying yields

v − t2 v∗2
( )( )

α2 −D′
2 v( )( )

> v − v∗1
( )

α1 −D′
1 v( )( )

.
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Thus, for any type v such that v > v∗2 holds, v strictly prefers reporting v∗2 over reporting v∗1 .
Given Claim 2, we have that mechanism C must have V1 � [v∗1 , v∗2), V2 ⊂ [v∗2 , v], t1(v1) � v∗1 for all v1 ∈ V1, and t2(v2) �

t2(v∗2) for all v2 ∈ V2, where t2(v∗2) is given by (A.17). Note that Mechanism (A.15) also has these same properties.
In addition, Mechanism (A.15) specifies (a) that V2 � [v∗2 , v∗12) and V12 � [v∗12, v] hold and (b) the payment scheme over V12.
To finish the proof of Lemma A.1, we must argue that the features (a) and (b) of Mechanism (A.15) don’t reduce its profit
relative to the profit from mechanism C.

Note that the BIC of v∗i with respect to v12 ∈ V12 implies ti(v12) ≥ ti(v∗i ) for i � 1, 2 and all v12 ∈ V12, which means assigning
any type with valuation greater than v∗12 to V2 instead of V12 only reduces profit. Thus, setting V1 � [v∗1 , v∗2), V2 � [v∗2 , v∗12),
and V12 � [v∗12, v] as in Mechanism (A.15) yields greater profit than from mechanism C if the payment scheme of
Mechanism (A.15) also yields greater profit from V12 than the payment scheme of mechanism C.

So consider the payment scheme over the set V12 � [v∗12, v]. To finish the proof of Lemma A.1, Claim 3 demonstrates that
the payment scheme in Mechanism (A.15) maximizes the firm’s expected profit from V12 subject to a subset of BIC and EIR
constraints. This means adding all the missing BIC and EIR constraints, as must be done for mechanism C, can only reduce
profit from V12.

A.4.5. Claim 3. Suppose Conditions 1–3 and 4(i) and v∗1 < v∗2 < v∗12 hold with V12 � [v∗12, v]. Given t1(v∗1) � v∗1 and t2(v∗2)
according to (A.17), the payment scheme

t1 v12( ) � v∗1 ∀v12 ∈ V12,

t2 v12( ) � t2 v∗2
( ) + v∗12 − v∗1

( )α1

α2
Z v∗12
( ) ∀v12 ∈ V12,

maximizes profits from V12, subject to (i) the BIC constraint of v∗12 with respect to v∗2 ; (ii) the BIC constraint of types
v ∈ [V12 − {v∗12}] with respect to v∗12; (iii) the EIR constraint of v∗12; (iv) the BIC constraint of v∗1 with respect to v∗12, that is,
t1(v∗12) ≥ v∗1 ; and (v) the BIC constraint of v∗2 with respect to v∗12, that is, t2(v∗12) ≥ t2(v∗2).
A.4.6. Proof of Claim 3. The BIC of types v ∈ [V12 − {v∗12}] with respect to v∗12 can be rewritten as

t1 v( )α1 −D′
1 v( )( ) + t2 v( )α2 −D′

2 v( )( ) ≤ t1 v∗12
( )

α1 −D′
1 v( )( ) + t2 v∗12

( )
α2 −D′

2 v( )( )
. (A.19)

The term on the left side of (A.19) is the contribution of v toward the firm’s profit in (3). Thus, (A.19) shows that, for any
given V12, the firm cannot increase profits by charging different payment schemes to different types in V12. Further, if the
payment and good-allocation scheme is the same for all types within V12, the BIC constraints of types v ∈ [V12 − {v∗12}] with
respect to v∗12 are satisfied. So the maximization problem detailed in Claim 3 can be stated as follows:

max
t1 v∗12( ),t2 v∗12( ) t1 v∗12

( )
α1

∫ v̄

v∗12
−D′

1 v( )( )
dv + t2 v∗12

( )
α2

∫ v̄

v∗12
−D′

2 v( )( )
dv. (A.20)

This is subject to the BIC constraint of v∗12 with respect to v∗2 :
v∗12 − t1 v∗12

( )( )
α1 −D′

1 v∗12
( )( ) + v∗12 − t2 v∗12

( )( )
α2 −D′

2 v∗12
( )( ) ≥ v∗12 − t2 v∗2

( )( )
α2 −D′

2 v∗12
( )( )

. (A.21)
The EIR constraints of v∗12 and the BIC constraints of v∗1 and v∗2 with respect to v∗12

t1 v∗12
( ) ≤ v∗12; t2 v∗12

( ) ≤ v∗12; t1 v∗12
( ) ≥ v∗1 ; t2 v∗12

( ) ≥ t2 v∗2
( )

. (A.22)
Rearranging (A.21) yields

t1 v∗12
( )

α1 −D′
1 v∗12
( )( ) + t2 v∗12

( )
α2 −D′

2 v∗12
( )( ) ≤ v∗12α1 −D′

1 v∗12
( )( ) + t2 v∗2

( )
α2 −D′

2 v∗12
( )( )

. (A.23)
At the optimum, (A.23) binds. Further, by Fact 2, we have D2(v∗12)(−D′

2(v∗12)) >
D1(v∗12)(−D′

1(v∗12)), or∫ v̄
v∗12

−D′
2 v( )( )

dv

−D′
2 v∗12
( )( ) >

∫ v̄
v∗12

−D′
1 v( )( )

dv

−D′
1 v∗12
( )( ) . (A.24)

Because of the linearity of the maximand (A.20) and the constraint (A.23) in t1(v∗12) and t2(v∗12), it follows from (A.24) that
the solution is to set t1(v∗12) as low as possible and t2(v∗12) as high as possible subject to (A.23), t1(v∗12) ≥ v∗1 and t2(v∗12) ≤ v∗12.
We claim that t1(v12) � v∗1 and t2(v12) � t2(v∗2) + (v∗12 − v∗1)α1/α2Z(v∗12) for all v12 ∈ V12 is optimal (where t2(v12) is derived
using t1(v∗12) � v∗1 in (A.23)).

To verify this claim, we show that setting t2(v∗12) � t2(v∗2) + (v∗12 − v∗1) α1
α2
Z(v∗12) satisfies t2(v∗12) ≤ v∗12. Using (A.17), we can

express (v∗12 − t2(v∗12)) as

v∗12 − v∗2
( ) + v∗2 − v∗1

( )α1

α2
Z v∗2
( ) − v∗12 − v∗1

( )α1

α2
Z v∗12
( )

. (A.25)
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Evaluated at v∗12 � v∗2, expression (A.25) is zero, so we are done with this claim if we show that the expression is
nondecreasing in v∗12. Differentiating with respect to v∗12 yields

1 − v∗12 − v∗1
( )α1

α2
Z′ v∗12
( ) − α1

α2
Z v∗12
( )

. (A.26)

Because Z′(v∗12) < 0 and (1 − α1/α2Z(v∗12)) ≥ 0 (Condition 4(i)) hold, the expression (A.26) is nondecreasing. This completes
the proof of Claim 3 and Lemma A.1. ∎

Lemma A.2. If Conditions 1–3 and 4(i) hold, then at the firm’s optimal mechanism within the class of BIC and EIR mechanisms, it cannot
be the case that the sets V1, V2, and V12 are all nonempty.

A.4.7. Proof of Lemma A.2. By Lemma 2 and Claim 1a, under Conditions 1–3 and 4(i), if the firm’s optimal BIC and EIR
mechanism has V1, V2, and V12 all nonempty, then v∗1 < v∗2 < v∗12 must hold, which means (by Lemma A.1) that Mechanism
(A.15) with the same v∗1 , v∗2 , v∗12 yields weakly greater profit than the optimal BIC and EIR mechanism under Conditions 1–3
and 4(i). However, Mechanism (A.15) may not satisfy BIC. To prove Lemma A.2, we consider the profit from an arbitrary
mechanism (A.15) with v∗1 < v∗2 < v∗12 and show that this profit strictly increases by appropriately reducing the gap between
v∗2 and v∗12, thereby making V2 � [v∗2 , v∗12) smaller. Ultimately, when V2 is empty and V1 � [v∗1 , v∗12), V12 � [v∗12, v], the
resulting (A.15) mechanism also satisfies all BIC and EIR conditions. This rules out the possibility that, under Conditions 1–3
and 4(i), the firm’s optimal BIC and EIR mechanism has V1, V2, and V12 all nonempty.

The profit from the mechanism given in (A.15) is

π v∗1 , v∗2 , v∗12
( ) � α1v∗1 D1 v∗1

( ) −D1 v∗2
( ) +D1 v∗12

( )[ ] + α2 v∗12 − v∗1
( )α1

α2
Z v∗12
( )[ ]

D2 v∗12
( ) + α2D2 v∗2

( )
v∗2 − v∗2 − v∗1

( )α1

α2
Z v∗2
( )( )

.

It is convenient to write the last term in this expression, that is, α2D2(v∗2)(v∗2 − (v∗2 − v∗1) α1
α2
Z(v∗2)), as

α2v∗2D2 v∗2
( )

1 − α1

α2
Z v∗2
( )( )

+ α1v∗1Z v∗2
( )

D2 v∗2
( )

.

Thus, we have

π v∗1 , v∗2 , v∗12
( ) � α1v∗1 D1 v∗1

( ) −D1 v∗2
( ) +D1 v∗12

( )[ ] + α2 v∗12 − v∗1
( )α1

α2
Z v∗12
( )[ ]

D2 v∗12
( ) + α2v∗2D2 v∗2

( )
1 − α1

α2
Z v∗2
( )( )

+ α1v∗1Z v∗2
( )

D2 v∗2
( )

.

(A.27)
Taking the derivative of the profit expression in (A.27) with respect to v∗2 yields

∂π

∂v∗2
� −α1v∗1D′

1 v∗2
( ) + α2

∂ v∗2D2 v∗2
( )( )

∂v∗2
1 − α1

α2
Z v∗2
( )( )

− α1 v∗2 − v∗1
( )

D2 v∗2
( )

Z′ v∗2
( ) + α1v∗1Z v∗2

( )
D′

2 v∗2
( )

.

Now, consider the case in which v∗2 is strictly less than the monopoly price in state 2 (henceforth pm2 ), that is, v
∗
2 < pm2 holds.

By simplifying the derivative, for the case in which v∗2 < pm2 holds, we can see that

∂π

∂v∗2
� α2

∂ v∗2D2 v∗2
( )( )

∂v∗2
1 − α1

α2
Z v∗2
( )( )

− α1 v∗2 − v∗1
( )

D2 v∗2
( )

Z′ v∗2
( )

> 0

holds. The last inequality follows because ∂(v∗2D2(v∗2))/∂v∗2 > 0 holds because of Condition 3 and because we are con-
sidering the case in which v∗2 < pm2 holds; further, α1/α2Z(v∗2) ≤ 1 holds by Condition 4(i), Z′(v∗2) < 0 holds by Condition 2,
and v∗2 > v∗1 holds by Claim 1a. The implication of ∂π/∂v∗2 > 0 is that, whenever v∗1 < v∗2 < v∗12 and v∗2 < pm2 hold, the firm can
strictly increase profits from Mechanism (A.15) by increasing v∗2 toward v∗12 so that V2 � [v∗2 , v∗12) shrinks.

Next, consider the case in which pm2 ≤ v∗2 holds. So, by definition of Mechanism (A.15), pm2 ≤ v∗2 < v∗12 must hold. Consider
the derivative of profit (A.27) with respect to v∗12:

∂π

∂v∗12
� α1v∗1D′

1 v∗12
( ) + α1

∂ v∗12D2 v∗12
( )( )

∂v∗12
Z v∗12
( ) + α1 v∗12 − v∗1

( )
Z′ v∗12
( )

D2 v∗12
( ) − α1v∗1Z v∗12

( )
D′

2 v∗12
( )

� α1
∂ v∗12D2 v∗12

( )( )
∂v∗12

Z v∗12
( ) + α1 v∗12 − v∗1

( )
Z′ v∗12
( )

D2 v∗12
( )

< 0.

The last inequality holds because Z′(v∗12) < 0 and ∂(v∗12D2(v∗12))/∂v∗12 < 0 hold; the former holds by Condition 2, and the
latter follows from concavity (Condition 3) and v∗12 > pm2 . The implication of ∂π/∂v∗12 < 0 is that, whenever v∗1 < v∗2 < v∗12 and
v∗2 ≥ pm2 hold, the firm can strictly increase profits from Mechanism (A.15) by decreasing v∗12 toward v∗2 so that V2 � [v∗2 , v∗12)
becomes smaller.
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To summarize, in either case, v∗2 < p2m or v∗2 ≥ p2m, the firm strictly increases profit from Mechanism (A.15) by either
increasing v∗2 or decreasing v∗12, thereby making the interval V2 � [v∗2 , v∗12) smaller by reducing (v∗12 − v∗2). Therefore, for
appropriately chosen values of v∗1 and v∗12, Mechanism (A.15) with (v∗12 − v∗2) � 0 and V2 empty, that is, the mechanism
given as follows

V1 � v∗1 , v∗12
[ )

V12 � v∗12, v
[ ]

V2 � ∅
t1 v( ) � v∗1 ∀v ≥ v∗1
t2 v( ) � v∗12 ∀v ≥ v∗12

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A.28)
yields higher profits than any mechanism (A.15) with v∗1 < v∗2 < v∗12 and V1, V2, and V12 all nonempty.

To finish the proof, it is straightforward to verify that Mechanism (A.28) satisfies all BIC and EIR constraints. Therefore,
under Conditions 1–3 and 4(i), it cannot be the case that, in the firm’s optimal mechanism, V1, V2, and V12 are
all nonempty. ∎

Lemma A.3. Consider the class of BIC and EIR mechanisms in which V1, V2, and V12 are all nonempty, and v∗1 , v∗2 , and v∗12 are given. If
Conditions 1–3 and 4(ii) hold, then the profit of a mechanism in this class can be no greater than the profit that would result if all consumers
report truthfully in the following mechanism:

V2 � v∗2 , v∗1
[ )

V1 � v∗1 , v∗12
[ )

V12 � v∗12, v
[ ]

t2 v2( ) � v∗2 ∀v2 ∈ V2

t1 v1( ) � v∗1 − v∗1 − v∗2
( )

α2

α1Z v∗1( ) ∀v1 ∈ V1

t1 v12( ) � v∗1 − v∗1 − v∗2
( )

α2

α1Z v∗1( ) ∀v12 ∈ V12

t2 v12( ) � v∗12 ∀v12 ∈ V12.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A.29)

A.4.8. Proof of LemmaA.3. Suppose Conditions 1–3 and 4(ii) hold. Consider an arbitrary BIC and EIR mechanism with V1, V2,
and V12 all nonempty and v∗1 , v∗2 , and v∗12 given; label this mechanism as mechanism D. We argue that the profit from
mechanism D is weakly lower than the profit from the mechanism (A.29) in which v∗1, v∗2 , and v∗12 are the same as in
mechanism D. Note that mechanism D must satisfy BIC and EIR; however, Mechanism (A.29) is not required to satisfy
either at this point in the argument.

Mechanism D must have the following features: By Claim 1b and Lemma 2(i) v∗2 < v∗1 < v∗12 must hold. By Lemma 3,
t2(v2) � v∗2 must hold for all v2 ∈ V2. By Fact 1, t1(v1) � t1(v∗1) must hold for all v1 ∈ V1. By BIC, v∗1 must be indifferent
between reporting v∗2 and reporting v∗1 because, if instead type v∗1 strictly prefers reporting v∗1 over reporting v∗2, then, by
continuity, for a valuation v2 less than v∗1 but close enough to v∗1 , we have that v2 also strictly prefers reporting v∗1 rather
than v∗2 , which contradicts either the BIC of v2 or the definition of v∗1 as the infimum of V1. Thus, we have

v∗1 − t1 v∗1
( )( )

α1 −D′
1 v∗1
( )( ) � v∗1 − v∗2

( )
α2 −D′

2 v∗1
( )( )

, or t1 v∗1
( ) � v∗1 − v∗1 − v∗2

( ) α2

α1Z v∗1
( ) . (A.30)

Therefore, mechanism D’s payment scheme over V1 and V2 is determined by BIC. Note that Mechanism (A.29) has the
same payment scheme over V1 and V2.

Now, we argue that setting V2, V1, and V12 as in Mechanism (A.29) indeed yields greater profit than from mechanism D.
From (A.30), notice that t1(v∗1) > v∗2 holds by Condition 4(ii). Because Condition 4(ii) and t1(v∗1) > v∗2 hold, we have

α1

α2
Z v( )t1 v∗1

( )
> v∗2 ∀v, or

α1t1 v∗1
( ) −D′

1 v( )( )
> α2v∗2 −D′

2 v( )( ) ∀v. (A.31)
Inequality (A.31) implies that, for any type with valuation greater than v∗1 , the firm earns more profit from that type if it is
in V1 rather than in V2. Further, by BIC (Lemma 2(i)), no valuation greater than v∗12 can be in V1. Thus, the profit received
from types below v∗12 is weakly higher in Mechanism (A.29) with V2 � [v∗2 , v∗1), V1 � [v∗1 , v∗12), and V12 � [v∗12, v], than in
mechanism D.

To show that Mechanism (A.29) yields higher overall profits than mechanism D, we must show that Mechanism (A.29)
elicits weakly higher profit from types with valuation greater than v∗12. To see this, first note that BIC implies ti(v12) ≥ ti(v∗i )
for i � 1, 2 and all v12 ∈ V12, which means assigning any type with valuation greater than v∗12 to V2 rather than V12 only
reduces profit. To complete the proof, Claim 4 demonstrates that the payment scheme of Mechanism (A.29) maximizes the
firm’s expected profit from V12 subject to a subset of BIC and EIR constraints. Thus, adding the missing BIC and EIR
constraints, as must be done in mechanism D, can only reduce profit from V12 relative to Mechanism (A.29).
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A.4.9. Claim 4. Suppose Conditions 1–3 and v∗2 < v∗1 < v∗12 hold with V12 � [v∗12, v]. Given t2(v∗2) � v∗2 and t1(v∗1) according
to (A.30), the payment scheme

t1 v12( ) � t1 v∗1
( ) � v∗1 − v∗1 − v∗2

( ) α2

α1Z v∗1
( ) ∀v12 ∈ V12,

t2 v12( ) � v∗12 ∀v12 ∈ V12,

maximizes profits from V12 subject to (i) the BIC constraint of v∗12 with respect to v∗1 ; (ii) the BIC constraint of types
v ∈ [V12 − {v∗12}] with respect to v∗12; (iii) the EIR constraint of v∗12; (iv) the BIC constraint of v∗2 with respect to v∗12, that is,
t2(v∗12) ≥ v∗2 ; and (v) the BIC constraint of v∗1 with respect to v∗12, that is, t1(v∗12) ≥ t1(v∗1).
A.4.10. Proof of Claim 4. Repeating the arguments in Claim 3, (A.19) shows that, given V1, V2, and V12, the firm cannot
increase profits from V12 by charging different payment schemes to different types in V12. Further, if the payment and
good-allocation scheme is the same for all types within V12, the BIC constraints of types v ∈ [V12 − {v∗12}] with respect to v∗12
are satisfied. So, the maximization problem detailed in Claim 4 can be stated as follows:

max
t1 v∗12( ),t2 v∗12( ) t1 v∗12

( )
α1

∫ v̄

v∗12
−D′

1 v( )( )
dv + t2 v∗12

( )
α2

∫ v̄

v∗12
−D′

2 v( )( )
dv. (A.32)

This is subject to the BIC constraint of v∗12 with respect to v∗1 :
v∗12 − t1 v∗12

( )( )
α1 −D′

1 v∗12
( )( ) + v∗12 − t2 v∗12

( )( )
α2 −D′

2 v∗12
( )( ) ≥ v∗12 − t1 v∗1

( )( )
α1 −D′

1 v∗12
( )( )

. (A.33)
The EIR constraints of v∗12 and the BIC constraints of v∗1 and v∗2 with respect to v∗12 are

t1 v∗12
( ) ≤ v∗12; t2 v∗12

( ) ≤ v∗12; t1 v∗12
( ) ≥ t1 v∗1

( )
; t2 v∗12

( ) ≥ v∗2 . (A.34)
Rearranging (A.33) yields

t1 v∗12
( )

α1 −D′
1 v∗12
( )( ) + t2 v∗12

( )
α2 −D′

2 v∗12
( )( ) ≤ t1 v∗1

( )
α1 −D′

1 v∗12
( )( ) + v∗12α2 −D′

2 v∗12
( )( )

. (A.35)
At the optimum, (A.35) binds. Fact 2 yields ∫ v̄

v∗12
−D′

2 v( )( )
dv

−D′
2 v∗12
( )( ) >

∫ v̄
v∗12

−D′
1 v( )( )

dv

−D′
1 v∗12
( )( ) . (A.36)

Because of the linearity of the maximand (A.32) and the constraint (A.35) in the choice variable t1(v∗12) and t2(v∗12), it follows
from (A.36) that the solution is to set t1(v∗12) as low as possible and t2(v∗12) as high as possible subject to (A.35),
t1(v∗12) ≥ t1(v∗1), and t2(v∗12) ≤ v∗12. Thus, t1(v12) � t1(v∗1) and t2(v12) � v∗12 for all v12 ∈ V12 is optimal. It is straightforward to
check that all constraints imposed in Claim 4 are satisfied.

Therefore, under Conditions 1–3 and 4(ii), mechanism (A.29) yields greater profit than any BIC and EIR mechanism with
V1, V2, and V12 all nonempty (represented by the arbitrary mechanism D in this proof). ∎

LemmaA.4. If Conditions 1–3 and 4(ii) hold, then at the firm’s optimal mechanism within the class of BIC and EIR mechanisms, it cannot
be the case that the sets V1, V2, and V12 are all nonempty.

A.4.11. Proof of Lemma A.4. Suppose Conditions 1–3 and 4(ii) hold and the firm’s optimal BIC and EIR mechanism has
V1, V2, and V12 all nonempty. By Lemma 2 and Claim 1b, BIC implies v∗2 < v∗1 < v∗12. By Lemma A.3, the Mechanism (A.29)
with the same v∗2 , v∗1 , v∗12 yields weakly greater profit than the optimal BIC and EIR mechanism with V1, V2, and V12 all
nonempty. However, Mechanism (A.29) may not satisfy BIC. To prove Lemma A.4, we consider the profit from an
arbitrary Mechanism (A.29) with v∗2 < v∗1 < v∗12, and show that this profit strictly increases by appropriately reducing the
gap between v∗2 and v∗1 , thereby making V2 � [v∗2 , v∗1) smaller. Ultimately, when V2 is empty and V1 � [v∗1 , v∗12), V12 � [v∗12, v],
the resulting (A.29) mechanism also satisfies all BIC and EIR conditions. This rules out the possibility that, under
Conditions 1–3 and 4(ii), the firm’s optimal BIC and EIR mechanism has V1, V2, and V12 all nonempty.

The profit from Mechanism (A.29) is

π v∗2 , v∗1 , v∗12
( ) � α1D1 v∗1

( )
t1 v∗1
( ) + α2 D2 v∗2

( ) −D2 v∗1
( )[ ]

v∗2 + α2D2 v∗12
( )

v∗12
� α1D1 v∗1

( )
v∗1 − v∗1 − v∗2

( ) α2

α1Z v∗1
( )[ ]

+ α2 D2 v∗2
( ) −D2 v∗1

( )[ ]
v∗2 + α2D2 v∗12

( )
v∗12. (A.37)

Consider the derivative of the profit in (A.37) with respect to v∗1 . We have

∂π v∗2, v∗1, v∗12
( )
∂v∗1

� α1D1 v∗1
( )

1 − α2

α1

Z v∗1
( ) − v∗1 − v∗2

( )
Z′ v∗1
( )

Z v∗1
( )2

( )[ ]
+ α1v∗1D′

1 v∗1
( ) − α2D′

1 v∗1
( ) v∗1 − v∗2

( )
Z v∗1
( ) − α2v∗2D′

2 v∗1
( )

. (A.38)
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Substituting D′
1(v∗1)

Z(v∗1) � D′
2(v∗1) into (A.38) and simplifying yields

∂π v∗2, v∗1, v∗12
( )
∂v∗1

� α1D1 v∗1
( )

1 − α2

α1

Z v∗1
( ) − v∗1 − v∗2

( )
Z′ v∗1
( )

Z v∗1
( )2

( )[ ]
+ α1v∗1D′

1 v∗1
( ) − α2v∗1D′

2 v∗1
( )

.

Rearranging terms, we have

∂π v∗2, v∗1, v∗12
( )
∂v∗1

� α1 D1 v∗1
( ) +D′

1 v∗1
( )

v∗1
[ ] − α2 D′

2 v∗1
( )

v∗1 +
D1 v∗1

( )
Z v∗1
( )[ ]

+ α2D1 v∗1
( )

v∗1 − v∗2
( )

Z′ v∗1
( )

Z v∗1
( )2 . (A.39)

Substituting D′
1(v∗1)

Z(v∗1) � D′
2(v∗1) into (A.39) and combining/rearranging terms, we have

∂π v∗2, v∗1, v∗12
( )
∂v∗1

� α1 D1 v∗1
( ) +D′

1 v∗1
( )

v∗1
[ ]

1 − α2

α1Z v∗1
( )[ ]

+ α2D1 v∗1
( )

v∗1 − v∗2
( )

Z′ v∗1
( )

Z v∗1
( )2 . (A.40)

Because v∗1 > v∗2 and Z′(v∗1) < 0 hold, the last term in (A.40) is negative. By Condition 4(ii), [1 − α2/α1Z(v∗1)] > 0 holds. Thus,
if v∗1 ≥ pm1 holds, then the right side of (A.40) is negative, which implies that the firm can strictly increase profit from
Mechanism (A.29) (given in (A.37)) by decreasing v∗1 , thereby reducing (v∗1 − v∗2) and shrinking V2.

Next, suppose v∗1 < pm1 holds. Now, let us compute

∂π v∗2 ,v
∗
1 ,v

∗
12( )

∂v∗2
α2

� D1 v∗1
( )

Z v∗1
( ) −D2 v∗1

( ) +D2 v∗2
( ) + v∗2D′

2 v∗2
( )

. (A.41)

When ∂π(v∗2 ,v∗1 ,v∗12)
∂v∗2

is evaluated at v∗2 � v∗1, the right side of (A.41) becomes

D1 v∗1
( )

Z v∗1
( ) −D2 v∗1

( ) +D2 v∗1
( ) + v∗1D′

2 v∗1
( )

, or (A.42)

D′
2 v∗1
( ) D1 v∗1

( )
D′

1 v∗1
( ) + v∗1

[ ]
, or

Z v∗1
( )

D1 v∗1
( ) +D′

1 v∗1
( )

v∗1
[ ]

. (A.43)
Note that (A.43) is strictly positive because Z(v∗1) > 0 holds and because [D1(v∗1) +D′

1(v∗1)v∗1], the marginal revenue in
state 1, is strictly greater than zero because of Condition 3 and our supposition: v∗1 < pm1 . From Condition 3, marginal
revenue in state 2 is decreasing in v, so from (A.41), ∂π(v∗2, v∗1, v∗12)/∂v∗2 is decreasing in v∗2. Because we have shown that
∂π(v∗2, v∗1, v∗12)/∂v∗2 is strictly positive when evaluated at v∗2 � v∗1 , it follows that ∂π(v∗2, v∗1, v∗12)/∂v∗2 is strictly positive for all v∗2
strictly lower than v∗1 . In other words, when v∗1 < pm1 holds, the profit from Mechanism (A.29) (given in (A.37)) strictly
increases as v∗2 is increased, and thereby (v∗1 − v∗2) is reduced and V2 is shrunk.

To summarize, in either case, v∗1 < p1m or v∗1 ≥ p1m, the profit from Mechanism (A.29) can be strictly increased by either
increasing v∗2 or decreasing v∗1, thereby making the interval V2 � [v∗2 , v∗1) smaller by reducing (v∗1 − v∗2). Therefore, for
appropriately chosen values of v∗1 and v∗12, the Mechanism (A.29) with (v∗12 − v∗2) � 0 and V2 empty, that is, the mechanism
given as follows

V1 � v∗1 , v∗12
[ )

V12 � v∗12, v
[ ]

V2 � ∅
t1 v( ) � v∗1 ∀v ≥ v∗1
t2 v( ) � v∗12 ∀v ≥ v∗12,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A.44)
yields higher profits than any Mechanism (A.29) with v∗2 < v∗1 < v∗12 and V1, V2, and V12 all nonempty.

To finish the proof, it is straightforward to verify that Mechanism (A.44) satisfies all BIC and EIR constraints. Therefore,
under Conditions 1–3 and 4(ii), it cannot be the case that, in the firm’s optimal BIC and EIR mechanism, V1, V2, and V12 are
all nonempty. ∎

Thus, Lemmas A.1–A.4 demonstrate that, given Conditions 1–4, BIC, and EIR, it is not optimal for the firm to choose a
mechanism in which V1, V2, and V12 are all nonempty because even mechanisms that yield an upper bound over profit
from BIC and EIR mechanisms with V1, V2, and V12 all nonempty can be improved upon by a mechanism in which V2 is
empty, and this mechanism also satisfies all BIC and EIR conditions. This concludes the proof of Lemma 4. ∎
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A.5. Proof of the SBSMP Proposition
To prove the SBSMP proposition, we first show that the optimal mechanism cannot have only V12 nonempty or only V2

and V12 nonempty. We finish by showing that the optimal mechanism with only V1 and V12 nonempty is the SBSMP
mechanism, which satisfies all BIC and EIR constraints.

A.5.1. Ruling out Mechanisms with Only V12 Nonempty. Suppose the firm chooses a mechanism such that only the set
V12 � [v∗12, v] is nonempty. The EIR constraint of v∗12 and the BIC constraint of valuations less than v∗12 imply
t1(v∗12) � t2(v∗12) � v∗12. From (3), it follows that the firm’s profit from any valuation v ∈ V12 is

α1t1 v( ) −D′
1 v( )( ) + α2t2 v( ) −D′

2 v( )( )
.

But rearranging the BIC of v with respect to v∗12 yields

α1t1 v( ) −D′
1 v( )( ) + α2t2 v( ) −D′

2 v( )( ) ≤ α1t1 v∗12
( ) −D′

1 v( )( ) + α2t2 v∗12
( ) −D′

2 v( )( )
.

So setting t1(v) � t2(v) � v∗12 for all v ∈ V12 achieves the maximum profit the firm can make from V12 under BIC and EIR.
Thus, the profit for the case of only V12 nonempty is α1v∗12D1(v∗12) + α2v∗12D2(v∗12), which, for all v∗12 ∈ V, is strictly less than
the profit from the SBSMP mechanism, α1pm1 D1(pm1 ) + α2pm2 D2(pm2 ), because pm1 �� pm2 holds by Fact 2.

A.5.2. Ruling out Mechanisms with Only V2 and V12 Nonempty.
By Lemma 2(ii), v∗2 < v∗12 must hold. By Lemma 3, t2(v2) � v∗2 holds for all v2 ∈ V2. We first argue that mechanisms with only
V2 and V12 nonempty are suboptimal when Conditions 1–3 and 4(i) hold. So let Conditions 1–3 and 4(i) hold and consider
the optimal BIC and EIR mechanism with only V2 and V12 nonempty. Suppose the optimal v∗2 and v∗12 in this mechanism
are v∗2 � vo2 and v∗12 � vo12. We first argue that the profit from such a mechanism has to be weakly lower than

πu � α1D1 vo12
( )

vo2 + α2D2 vo12
( )

vo2 + vo12 − vo2
( )α1

α2
Z vo12
( )[ ]

+ α2 D2 vo2
( ) −D2 vo12

( )[ ]
vo2.

To see why, note that (i) in πu, as per Lemma 3, we have set t2(v2) � t2(vo2) � vo2 for all v2 ∈ V2; (ii) by rearranging the BIC of
valuations in V12 with respect to vo12, we obtain (A.19), from which it is clear that the firm cannot improve upon profits from
V12 by charging different payment schemes to different valuations in V12; (iii) by the arguments in the proof of Claim 3,
because of Fact 2, the firm maximizes profits from V12 � [vo12, v] subject to a subset of BIC and EIR constraints by charging
the highest price possible in state 2 and the lowest price possible in state 1; (iv) by EIR and BIC, t2(vo12) ≤ vo12 and
t1(vo12) ≥ vo2, respectively, must hold, and we have set t1(vo12) � vo2, and consequently, the binding BIC of vo12 with respect to
vo2 yields

t2 vo12
( ) � vo2 + vo12 − vo2

( )α1

α2
Z vo12
( )

;

and (v) finally, we have set V12 � [vo12, v], in particular, we have not allowed any type with valuation greater than vo12 to
belong to V2, which supports πu being the upper bound because, by BIC, t1(v12) ≥ vo2 and t2(v12) ≥ vo2 hold for all v12 in V12.

When Conditions 1–3 and 4(i) hold, the proof of Lemma A.2 shows that the profits from an arbitrary Mechanism (A.15)
can be strictly increased by either increasing v∗2 or decreasing v∗12, thereby shrinking V2 and making (v∗12 − v∗2) smaller. If we
set v∗2 � vo2, v

∗
12 � vo12, and v∗1 � vo2 − ε in Mechanism (A.15), then for any δ > 0, we can find ε > 0 small enough such that the

difference between πu and the profit from the resulting Mechanism (A.15) is no more than δ. Notice that the gap between
v∗12 and v∗2 does not depend on δ.

The proof of Lemma A.2 shows that, relative to Mechanism (A.15), there is a profit advantage of shrinking the gap
between v∗12 and v∗2 to zero. For the v∗2 < pm2 case, the profit advantage of increasing v∗2 is

∂π

∂v∗2
� α2

∂ v∗2D2 v∗2
( )( )

∂v∗2
1 − α1

α2
Z v∗2
( )( )

− α1 v∗2 − v∗1
( )

D2 v∗2
( )

Z′ v∗2
( )

> 0,

which is strictly positive even if ε � 0. On the other hand, for the v∗2 ≥ pm2 case, the profit advantage of decreasing v∗12 is

∂π

∂v∗12
� α1

∂ v∗12D2 v∗12
( )( )

∂v∗12
Z v∗12
( ) + α1 v∗12 − v∗1

( )
Z′ v∗12
( )

D2 v∗12
( )

< 0.

That is, in both cases, the profit advantage is proportional to v∗12 − v∗2 , but this profit advantage is bounded above zero and
does not depend on δ. Thus, the profit from Mechanism (A.29) with V2 empty, v∗1 � vo2 − ε, and v∗12 appropriately chosen, is
strictly greater than the profit πu. Furthermore, it is straightforward to check that this mechanism satisfies all EIR and
BIC conditions.
Next, Claim 5 deals with case in which Conditions 1–3 and 4(ii) hold.
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A.5.3. Claim 5. Under Conditions 1–3 and 4(ii), the profit from the optimal BIC and EIR mechanism with only V2 and V12

nonempty (and V1 empty) is lower than the profit from the optimal BIC and EIR mechanism with only V1 and V12

nonempty (and V2 empty).

A.5.4. Proof of Claim 5. The mechanism with only V1 and V12 nonempty that we consider is given by (A.44). It is
straightforward to verify that Mechanism (A.44) satisfies all BIC and EIR conditions. To prove Claim 5, we show that,
under Conditions 1–3 and 4(ii), for appropriately chosen v∗1 and v∗12, Mechanism (A.44) also yields greater profit than the
optimal BIC and EIR mechanism with only V2 and V12 nonempty (and V1 empty), which we denote by mechanism E.
Mechanism E must have the following features. First, we must have v∗2 < v∗12 (by Lemma 2(ii)) and t2(v2) � v∗2 for all v2 ∈ V2

(by Lemma 3). Second, the profit from mechanism E is bounded above by the profit from an alternate mechanism,
described as follows and denoted by mechanism F, that is only required to satisfy all the BIC and EIR constraints listed in
Claim 3. Mechanism F is identical to mechanism E except (a) all types with valuation strictly greater than v∗12 that were in
V2 in mechanism E are instead allocated to V12, and (b) these types are charged v∗2 in state 2 (as they were in mechanism E),
and they are charged t1(v∗12) in state 1. It is straightforward to verify that mechanism F satisfies all the constraints listed in
Claim 3. Mechanism F has V12 � [v∗12, v], and it yields greater profit than mechanism E because, if any type with valuation
strictly greater than v∗12 belongs to V2 in mechanism E, then such a type only yields v∗2 in state 2, and mechanism F assigns
this type to V12, elicits the same amount in state 2, and also elicits t1(v∗12) from this type in state 1. Thus, the profit from
mechanism E is less than the profit from mechanism F, given as follows

V2 � v∗2 , v∗12
[ )

V12 � v∗12, v
[ ]

V1 � ∅
t2 v2( ) � v∗2 ∀v2 ∈ V2

t1 v12( ), t2 v12( ) for v12 ∈ V12,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A.45)
where v∗2 , v∗12 are identical to mechanism E, and the payment scheme over V12 is chosen as described earlier. To prove
Claim 5, we show that, for appropriately chosen v∗1 and v∗12, the mechanism given in (A.44) yields strictly greater profit
than mechanism F, given in (A.45). The profit from mechanism F can be no more than

π2 � α1D1 v∗12
( )

v∗2 + α2D2 v∗12
( )

v∗12 + α2 D2 v∗2
( ) −D2 v∗12

( )[ ]
v∗2 . (A.46)

To see why, note that (i) in π2, by (A.45), t2(v2) � v∗2 holds for all v2 ∈ V2; (ii) by the BIC of valuations in V12 − {v∗12} with
respect to v∗12, rearranged to (A.19), it is clear that the firm cannot improve upon profits from V12 � [v∗12, v] by charging
different payment schemes to different valuations in V12; (iii) by the arguments in the proof of Claim 3, because of Fact 2,
the firm maximizes profits from V12 subject to the constraints in Claim 3 (which are satisfied by mechanism F) by charging
the highest price possible in state 2 and the lowest price possible in state 1; and (iv) finally, by the third and fifth
constraints of Claim 3, t2(v∗12) ≤ v∗12 (EIR of v∗12) and t1(v∗12) ≥ v∗2 (BIC of v∗2 with respect to v∗12), respectively, must hold, and
we have set t2(v∗12) � v∗12 and t1(v∗12) � v∗2 to calculate π2.
Now consider the mechanism (A.44) in which (a) we set v∗1 equal to v∗2 from mechanism F and (b) we set the value of v∗12 in
Mechanism (A.44) equal to the value of v∗12 in mechanism F. The profit from Mechanism (A.44) with these values of v∗1 and
v∗12 is given by

π1 � α1D1 v∗12
( )

v∗2 + α2D2 v∗12
( )

v∗12 + α1 D1 v∗2
( ) −D1 v∗12

( )[ ]
v∗2 . (A.47)

Note that π1 is strictly greater than π2 because we have

α1 D1 v∗2
( ) −D1 v∗12

( )[ ]
> α2 D2 v∗2

( ) −D2 v∗12
( )[ ]

, or∫ v∗12

v∗2
α1 −D′

1 v( )( )
dv >

∫ v∗12

v∗2
α2 −D′

2 v( )( )
dv,

because, by Condition 4(ii), α1(−D′
1(v)) > α2(−D′

2(v)) or α1
α2
Z(v) > 1 holds for all v. ∎

A.5.5. Mechanism with Only V1 and V12 Nonempty. Consider the firm’s optimal mechanism in which only V1 and V12 are
nonempty. By Lemma 2, it follows that v∗1 < v∗12, and V1 � [v∗1 , v∗12), V12 � [v∗12, v] hold. By Lemma 3, t1(v∗1) � v∗1 must hold.
The question is what payment scheme should be charged from V12. This is answered in Claim P.

A.5.6. Claim P. Suppose only V1 and V12 are nonempty with V1 � [v∗1 , v∗12) and V12 � [v∗12, v]. Given Conditions 1–3 and
t1(v∗1) � v∗1 , the payment scheme

t1 v12( ) � v∗1 ∀v12 ∈ V12,

t2 v12( ) � v∗12 ∀v12 ∈ V12,

maximizes profits from V12, subject to all EIR and BIC constraints.
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A.5.7. Proof of Claim P. Note that t1(v1) � v∗1 for all v1 ∈ V1 is implied by Lemma 3. To see why the payment scheme in
Claim P maximizes profits from V12, note that Claim 4 also solves the same maximization problem except with a different
value for t1(v∗1) and with an additional constraint, the BIC of v∗2 with respect to v∗12, which doesn’t bind there. Thus, it
suffices to replace t1(v∗1) � v∗1 in Claim 4 and to verify that the mechanism in Claim P satisfies all BIC and EIR constraints,
which is straightforward. ∎

Claim P implies that the optimal profit in the case of only V1 and V12 nonempty is

π � α1D1 v∗1
( )

v∗1 + α2D2 v∗12
( )

v∗12,
where v∗1 and v∗12 should be chosen to maximize π. By Conditions 1 and 3, the first-order conditions with respect to v∗1 and
v∗12 yield the unique profit-maximizing values: v∗1 � pm1 and v∗12 � pm2 . Note that this mechanism satisfies all BIC and EIR
constraints and yields the maximized profit equal to

π∗ � α1D1 pm1
( )

pm1 + α2D2 pm2
( )

pm2 .

This completes the proof of the SBSMP proposition. ∎
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