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1 Proof of Proposition 4

Proposition 4. Suppose that the regularity condition

2


( )  0

holds for all  and all  ≤  ≤ . Then if there is a single demand parameter,

i.e.  = 2, there is a unique sequential equilibrium.

Proof of Proposition 4.

Since there is only one generation of consumers (in period 1), we suppress

the period subscript whenever no confusion can arise. We prove Proposition 4

through a series of claims.

Claim 1. In any equilibrium, we have max1  0.

Proof. First, we show that in any equilibrium we must have ∗  0. Sup-
pose to the contrary that we had ∗ = 0. Then by posting a price 0 ∈ ( ̄) in
period 1, an inactive firm would be sure to sell, making the deviation profitable,

a contradiction to equilibrium. Hence we must have ∗  0 .
Next, suppose to the contrary to the statement of Claim 1 we had max1 = 0.

We will argue that 2(2; 0) then cannot be constant on [0 
∗]. If 2(2; 0) were

constant on [0 ∗], then in period 2 unit ∗ would sell in state , or else firms
could increase revenues by setting 2(2; 0)−  for sufficiently small . Since ∗

sells in all states, if 2(2; 0)  ̄ held, a firm could increase revenues by raising

its price and continuing to sell in all states   . If 2(2; 0) = ̄ held, a firm

not producing could profitably enter, establishing a contradiction.

Thus a range of prices is offered in period 2, i.e. 2(
∗; 0)  2(0; 0) must

hold. But then a firm posting 2(0; 0) in period 2 would have a profitable

deviation to post 2(0; 0) + (̄)2 in period 1, because a range of consumers

including type ̄ would be willing to purchase at that price. This contradiction

establishes that max1  0.¥

Claim 2. In any equilibrium, there exists e ≤ ̄ and a 1 function ̄1()

defined on [ e] satisfying ̄1


 0 and ̄1(e) = max1 .

Proof. First, we prove the result if 1 is a simple function for every , i.e.

the range of 1 consists of finitely many values. Let  denote a position in the
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period 1 queue, so that 0 ≤  ≤ (0 ). Also let

1() = −
()



(0 )

denote the proportion of type ( 1) customers present in period 1 when the

state is . By the strong law of large numbers, the proportion of type ( 1)

customers in any interval of length ∆ in the queue when the state is  equals

1(). Hence on any interval on which 1(1) is constant in 1, we have

∆1

∆
=

Z ̄



1()

1(1) (1)

for ∆ sufficiently small. Note that because 1  max1 the right side of (1) must

be strictly positive. Upon taking limits as ∆ → 0, and separating the resulting

differential equation by variables, we obtain

 =
1R ̄


1()


1(1)

(2)

For any  that results in ̄1()  max1 , integrating (2) and dividing by (0 ),

yields

1 =

Z ̄1()

0

1R ̄

−()


1(1)

(3)

Totally differentiating this expression w.r.t  yields

1R ̄

−()


1(1)

̄1()


−
Z ̄1()

0

R ̄

−1(1)

2()


hR ̄


−()


1(1)

i2 1 = 0 (4)

By assumption we have
2()


 0 whenever  ≥ . Furthermore, since firm

optimality requires 1(1) ≥ , consumer optimality requires 1(1) = 0 for all

  . It follows that the second term in (4) is strictly positive, and hence that

̄1() is strictly increasing in . Thus we may define 1 = ̄−11 .
Next, for general measurable 1(1), there exist simple functions 


1 (1) ≤

1(1), such that 

1 (1) ↑ 1(1) for every 1. Hence for each , there exists

a strictly increasing function ̄1 () solving the analogue of (4), with inverse

function 1 (1). Furthermore, from (4) we have

1
1

(̄1 ()) =

⎛⎜⎝µZ ̄



−( )




1 (̄1 ())

¶Z ̄1 ()

0

R ̄

−1(1)

2()

hR ̄

−()


1(1)

i2 1
⎞⎟⎠
−1

Upon taking limits as →∞, we therefore obtain

1
1

(̄1()) =

⎛⎜⎝µZ ̄



−( )


1(̄1())

¶Z ̄1()

0

R ̄

−1(1)

2()

hR ̄

−()


1(1)

i2 1
⎞⎟⎠
−1
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so 1 is a strictly increasing function. It follows that for 

1  max1 , the state

 ∈ [ e) is revealed. ¥
Extend ̄1() to equal 

max
1 for  ∈ [e ̄]. Also, let ̄1( ) denote the

measure of period-1 sales to consumers with valuations greater than or equal

to  in state . Then the set of market clearing prices on residual demand,

denoted as  ∗(), is given by:

 ∗() = { ≤ ̄ : ( )− ̄1( ) = ∗ − ̄1()}

if residual supply is positive and the above set is nonempty,  ∗() = {0} if
( ) − ̄1( )  ∗ − ̄1() for all , and we adopt the convention that

 ∗() = {̄} if ̄1() = ∗.

Claim 3. We either have (i) e = ̄ or (ii) there exists ∗ such that  ∗() =
{∗} for almost all  ∈ [e ̄].
Proof. First we argue that for all   e, with the possible exception of

a single state,  ∗() is single-valued. From Claim 2, it follows that there are

consumers of all valuations who have not yet been released from the queue when

max1 units have been sold. Therefore, the residual demand curve is downward

sloping and never vertical for prices between  and ̄. For prices below , residual

demand is vertical at the quantity (0 )−max1 . Thus,  ∗() is single-valued,
with the only exception being states in which we have (0 ) = ∗, which
occurs for at most one state.

Suppose that the claim is false, so that we have e  ̄ and  ∗() is not
almost-everywhere constant on the interval [e ̄]. Consider the event  in

which we have ̄1() = max1 . Note that  has probability 1− (e)  0. Also,
let 0 denote the set of states in  for which  ∗() is single-valued.
If max1 = ∗, then following event  no output remains to be sold in period

2. By convention we then have  ∗() = ̄ for all  ∈ , contradicting the

supposition that  ∗() is not almost-everywhere constant.
If max1  ∗, then we claim that the period 2 equilibrium price function fol-

lowing the event  must be nondegenerate: a positive measure of the remaining

output is priced higher than 2(0; 
max
1 ). This is because if 2(2; 

max
1 ) was a

constant function, taking on the value b for all 2 ∈ [0 ∗−max1 ], then all of the

output must sell in period 2 with probability one. Otherwise a firm that postedb could gain by posting a marginally lower price, as this would guarantee a sale
with probability one. Note that the period 2 quantity demanded at the priceb is greater than or equal to ∗ − max1 in states where  ∗() is single-valued
if and only if b ≤  ∗(), so that we must have b ≤ min∈0  ∗(). However,
since  ∗() is not almost-everywhere constant, there then is a positive proba-
bility of excess demand at the price b. But then a firm that never sells in period
1 can profitably deviate to posting a period 1 price marginally above b, as it
would be sure to sell at this price in event . To see why this is true, consider
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any consumer with   b. If this consumer arrives at the market in period 1
and faces b +  as the lowest remaining price, she will surely purchase when 

is sufficiently small, since her expected payoff from waiting is strictly less than

− b, due to the positive probability of being rationed. The profitable deviation
contradicts equilibrium, so we have established that that whenever max1  ∗

the period-2 pricing function must be non-degenerate.

Suppose that the firm posting the price 2(0; 
max
1 ) in period 2 (who must

never be selling in period 1) deviates to posting the price 2(0; 
max
1 )+ in period

1, for some for some   0. Consider any consumer with   2(0; 
max
1 ). If this

consumer arrives at the market in period 1 and faces 2(0; 
max
1 )+ as the lowest

remaining price, she will surely purchase when  is sufficiently small, since her

expected payoff from waiting is strictly less than  − 2(0; 
max
1 ), because the

period-2 pricing function is non-degenerate. Consequently, the deviating firm

would be sure to sell in period 1 in event , thereby securing a net expected

revenue strictly greater than 2(0; 
max
1 ), which contradicts equilibrium when

we have max1  ∗.
We have shown that the supposition that Claim 3 is false leads to a contra-

diction, establishing the desired result. ¥

Claim 4. In period 2, all remaining output is allocated efficiently. For

  e, all firms set the same market clearing price, 2() ∈  ∗(). For  ≥ e,
all firms post the same price, ∗.

Proof. First consider the case in which   e holds. We have ̄1() 
max1 , so period-1 activity reveals the state and therefore,  ∗(). Consider

the lowest period-2 posted price, 2(0; ̄1()). We must have 2(0; ̄1()) ≥
min[ :  ∈  ∗()], because a firm posting a price of min[ :  ∈  ∗()] is
guaranteed to sell, no matter what prices are posted by the other firms in period

2. Consider the highest period-2 posted price in state , which we can write as

2(
∗− ̄1(); ̄1()). If the measure of output posted at this price is zero, then

the firm posting 2(
∗− ̄1(); ̄1()) does not sell in state , since the measure

of consumers with valuation at least min[ :  ∈  ∗()] is ∗ − ̄1(), so all

of the residual demand has been exhausted, a contradiction.1 If the measure

of output posted at the price 2(
∗ − ̄1(); ̄1()) is positive, then either none

of the output posted at this price sells, a contradiction, or a positive measure

of the output posted at this price sells in state . If a positive measure sells,

then the firm posting 2(0; ̄1()) has a profitable deviation to slightly undercut

2(
∗ − ̄1(); ̄1()), unless the latter price equals the former. Therefore, we

have shown that all firms post the same price in period 2, which we denote as

2(). We cannot have 2()  max[ :  ∈  ∗()], because not all the output

1The contradiction occurs if 2(0; ̄1())  0, since positive revenues are possible. If

2(0; ̄1()) = 0 occurs, then residual supply must exceed residual demand, and all transac-

tions must occur at a price of 0. Posted prices on the excess supply are irrelevant, and we

identify all equilibria that differ only on this irrelevant dimension.
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would sell, and a firm could increase expected revenues by slightly undercutting

the price. Thus, we have 2() ∈  ∗().
Next consider the case in which  ≥ e holds (event  occurs). From Claim

3, we know that for almost all  ∈ , there exists a unique market clearing price,

∗. Also, ∗ cannot be zero, because the argument in Claim 3 would allow us

to conclude that (0 )  ∗ holds for all   ̄; sequential rationality on the

part of firms requires all period-2 transactions to take place at a price of zero for

all   ̄, but then no consumer would pay a positive price in period 1 either,

contradicting the requirement that firms receive an expected revenue of at least

. Thus, we conclude that ∗   holds, and residual demand at ∗ equals
residual supply for almost all  ∈ . We must have 2(0; 

max
1 ) ≥ ∗, because

a firm posting this price sells with probability one, no matter what prices are

posted by the other firms in period 2. Consider the highest period-2 posted price

in event , which we can write as 2(
∗− max1 ; max1 ). If 2(

∗− max1 ; max1 ) 

2(0; 
max
1 ) holds and the measure of output posted at the higher price is zero,

then the firm posting 2(
∗ − max1 ; max1 ) does not sell for almost all  ∈ .

This is because residual demand at ∗ equals residual supply for almost all
 ∈ , and is exhausted at that price, a contradiction. If, on the other hand,

2(
∗ − max1 ; max1 )  2(0; 

max
1 ) holds and the measure of output posted at

2(
∗− max1 ; max1 ) is positive, then either (i) none of the output posted at this

price sells for almost all  ∈ , in which case a firm posting this price has a

profitable deviation to post ∗ instead, a contradiction, or (ii) a positive measure
of the output posted at 2(

∗−max1 ; max1 ) sells for a positive-measure subset of

. In the latter case, a firm posting 2(
∗−max1 ; max1 ) has a profitable deviation

to undercut its price slightly, increasing its probability of selling from less than

one to one for all states in this positive-measure subset of . Therefore, we must

have 2(
∗ − max1 ; max1 ) = 2(0; 

max
1 ), so all firms charge the same price. To

see that this price equals ∗, we must rule out all firms posting the same price,
0, that exceeds ∗. Since ∗ is the unique market clearing price for almost all
 ∈ , it follows that a firm posting 0 sells with probability strictly less than
one, due to rationing of excess supply. By slightly undercutting the price 0,
this firm increases its probability of selling in event  to one, a contradiction.

¥

Henceforth we will let ∗() denote the price that all firms post in period 2
in state , where ∗() can be an arbitrary selection from  ∗() for   e and
∗() = ∗ for  ≥ e.
Claim 5. (Martingale Property) For every 1 ≤ max1 , we have

1(1) =

R ̄
1(1)

∗()()R ̄
1(1)

()
 (5)

Proof. Consider a firm that sets the price, 1(1). This firm sells in period
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1 if and only if ̄1() ≥ 1. Hence, its probability of selling in period 1 is

1(1) =

Z ̄

1(1)

()

When ̄1()  1, this firm sells in period 2 at the market clearing price, ∗().
Hence, expected revenue (as of the beginning of period 1) equals

1(1)1(1) +

Z 1(1)



∗()()

Meanwhile, consider the firm that posts 1(
max
1 ) in period 1, and consider

two cases. If max1  ∗ holds, then this firm sells in period 1 with probability

zero, so its expected revenue isZ ̄



∗()() (6)

Since expected revenue must be equated across firms in equilibrium, we have

1(1)1(1) +

Z 1(1)



∗()()

=

Z 1(1)



∗()()+
Z ̄

1(1)

∗()()

which implies

1(1)

Z ̄

1(1)

() =

Z ̄

1(1)

∗()()

Thus, the martingale condition (5) holds.

For the case, max1 = ∗, the firm posting 1(
max
1 ) = ̄ in period 1 will sell

in period 1 whenever  ≥ e. Expected revenues are
̄

Z ̄

 ()+

Z 


∗()()

Under our convention that  ∗() = {̄} if ̄1() = ∗, we have ∗() = ̄ for

 ≥ e. Expected revenues are given by (6), so the martingale condition (5)
follows. ¥

Claim 6. We have ∗() =  (∗ ) for all .

Proof. Since 1(1) is non-decreasing, the right side of (5) must also be

non-decreasing in 1. Therefore, we must have max 
∗() = ∗. Let e denote

the lowest valuation type that purchases in period 1. That is,

e = inf{ : 1(1)  0 for some 1 ≤ max1 }
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Consider the following two cases:

Case 1: e ≥ ∗.
In Case 1, all consumers who purchase in period 1 have valuation greater

than or equal to ∗(), so rationing is efficient and we have ∗() =  (∗ )
for all   e and almost all  ∈ .2 Since we have ∗() = ∗ for all  ∈ 

and  (∗ ) is strictly increasing in , it follows that under Case 1 the interval
 must be degenerate, i.e., e = ̄ holds. From the argument of Claim 4,

∗(̄) =  (∗ ̄) must hold as well.

Case 2: e  ∗.
We start by calculating ̄1( ). Let (  ) denote the measure of period

1 sales made to consumers with valuations 0 ≥  in state  when position  in

the queue has been reached. Analogously to the derivation of (1) we have




(  ) =

Z ̄



(0; )
0
1 ()

0 (7)

Let ( ) denote the measure of period 1 sales made in state  when position

 in the queue has been reached. It follows from (1) that




( ) =

Z ̄



(0; )
0
1 ()

0 (8)

Combining (7) and (8) yields

(  )

( )
=

R ̄

(0; ) 


(0 )0R ̄


(0; ) 


(0 )0

and hence that

̄1( ) =

Z ̄1()

0

R ̄

(0; ) 


(0 )0R ̄


(0; ) 


(0 )0

 (9)

It follows from (3) and (9) that for all  and all  ≤ e
̄1()− ̄1( ) =

Z ̄1()

0

⎛⎝R  
0
1 ()

−


(0 )0R ̄



0
1 ()

−


(0 )0

⎞⎠  = 0 (10)

The final equality follows because 
0
1 (1) = 0 for all 

0  e and all 1.
Define e+(1) ≡ { ≥ 1(1) : 

∗()  e}. Notice that we must also have
 (∗ )  e for almost all  ∈ e+(1). With  (∗ ) ≤ e, we would have
(e ) ≤ ∗, and from (10), (e )− ̄1(e ) ≤ ∗ − ̄1 (), implying a price

2There is at most one state for which  (∗ ) is the entire interval [0 ], leading to a
trivial sort of multiple equilibria, based on the period-2 price in this state. We identify all

equilibria that differ only on which market-clearing price is posted in period 2 in this state.
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clearing the residual market in period 2 that is weakly below e. This cannot
occur because ∗() is the market clearing price for almost all , and ∗()  e
holds for all  ∈ e+(1). Therefore, we have

∗() ≥  (∗ )  e for almost all  ∈ e+(1) (11)

Similarly, define e−(1) ≡ { ≥ 1(1) : 
∗() ≤ e}. Therefore, for almost all

 ∈ e−(1), output is rationed efficiently,
∗() =  (∗ ) ≤ e for almost all  ∈ e−(1) (12)

Denote the utility of purchasing in period 1, net of the utility of waiting,

by ∆( 1). Consider now a sequence ( 1 ) such that 


1 (

1 )  0, and

such that  ↓ e. Since [0 max1 ] is compact, the sequence 1 has a convergent

subsequence, whose limit we shall denote by e1. Renumbering the subsequence,
if necessary, we may assume that 1 → e1. Since 



1 (

1 )  0, we must

have ∆( 1 ) ≥ 0. Because ∆ is a continuous function, it then follows that

∆(ee1) ≥ 0.
Let the beliefs of type e, conditional on arriving at the queue in period 1

when the measure of transactions is 1, be denoted by (|e 1). Then we have
∆(ee1) = (e)− R ̄1(1) ∗()()R ̄

1(1) ()
+

R ̄
1(1)min {∗() e} (|ee1)R ̄

1(1) (|ee1)
≤ (e)− R ̄1(1)  (∗ )()R ̄

1(1) ()
+

R ̄
1(1)min {∗() e} (|ee1)R ̄

1(1) (|ee1)
= (e)− R ̄1(1)  (∗ )()R ̄

1(1) ()
+R −(1)min {∗() e} (|ee1)+ R +(1)min {∗() e} (|ee1)R ̄

1(1) (|ee1)
Using (11) and (12), we have

∆(ee1) ≤ (e)− R ̄1(1)  (∗ )()R ̄
1(1) ()

+R −(1)  (∗ )(|ee1)+ R +(1) e(|ee1)R ̄
1(1) (|ee1)

 (e)− R ̄1(1)  (∗ )()R ̄
1(1) ()

+

R ̄
1(1)  (∗ )(|ee1)R ̄

1(1) (|ee1) 
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Because type e is the lowest valuation that buys in period 1, () dominates
(|ee1) in the monotone likelihood ratio order, and hence in the order of first
order stochastic dominance. Since  (∗ ) is increasing in , we have

∆(ee1)  (e)
We have shown above that ∆(ee1) ≥ 0, which implies (e)  0. Therefore,e  b. Since ̄ ∈ e+(e1), it follows from (11) that  (∗ ̄)  e. Thus, we have

 (∗ ̄)  e  b ≥  (∗ ̄),

a contradiction. Therefore, Case 2 cannot arise. ¥

Claim 7. The equilibrium quantity is the efficient quantity, ∗ = .

Proof. From Claims 5 and 6, we have

1(0) =

Z ̄



 (∗ )() (13)

If ∗   holds, then we have 1(0)  , and the firm posting 1(0) has a

profitable deviation not to produce. If ∗   holds, then we have 1(0)  . If

a firm not producing deviates and produces, this has a negligible effect on ∗, so
sequential rationality and the previous claims implies that the pricing function

following a unilateral deviation satisfies (13). Thus, a firm not producing could

produce, post the price 1(0), and receive positive profits. ¥

Lemmas 11-13 establish the existence of a unique cutoff equilibrium satisfy-

ing ∗(1) ≥ ̂, for the subgame following the output choice, . This completes

the proof of Proposition 4.

2 Proof of Proposition 5

Proposition 5. For the model with multiplicative uncertainty, there is an

equilibrium that is Pareto optimal, characterized as follows:

(i) ∗ = 

(ii) If the state equals (1  −1), then  = ̄(; 

1  


−1) for all

 = 1   − 1, where

̄(; 

1  


−1) = −1(


1  


−1) + (̄(


1  


−1))

(iii) For all , all 0 ≤ , and all equilibrium private histories 

 we have


0
 (; 


1  


−1 


 ) = 1 if and only if  ≥ ̄(


1  


−1);

(iv) For all  = 1   , and all histories (1  

−1) we have

(; 

1  


−1) = [ ( 1  −1)|1 = 1  −1 = −1  ≥ (; 


1  


−1)]
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where

(; 

1  


−1) =

(
, if  ≤ −1(


1  


−1) + (̄(


1  


−1))

−−1(1−1)
(̄(


1


−1))

, if  ≥ −1(

1  


−1) + (̄(


1  


−1))

(v) For all  = 1   , and all histories (1  

−1) we have

−1(

1  


−1) =

−1X
=1

 [ (̄(

1  


−1))− (̄−1(1  


−2))]

Proof of Proposition 5. First, note that, if consumers behave according to

(iii) and firms behave according to (iv), then (; 

1  


−1) and 


−1(


1  


−1)

are well defined. The reason is that purchases by newly active consumers in pe-

riod  in state  are

( (
 1  


−1 ̄  ̄−1)) (14)

and purchases by consumers who became active in previous periods, −1, are by
those with valuations between  ( 1  


−2 ̄−1  ̄−1) and  (

 1  

−1 ̄  ̄−1),

−1X
=1


£
( (

 1  

−1 ̄  ̄−1))−( (

 1  

−2 ̄−1  ̄−1))

¤


(15)

Equating the sum of (14) and (15) to , and solving for , yields the formula

for (; 

1  


−1). If the solution is less than , then for every demand

state  purchases will necessarily continue beyond , and the lowest possible

value of  is .

Second, note that for all  ≤  − 1 we have  ( 1  −1) ≤ ̄ ≤ ̄  b.
This implies that any generation  consumer for which ()  0 purchases in

period , and that no consumer with valuation  ≤  ( 1  −1) pur-
chases before period  . Given that for each realization of demand we have

(1  

−1) = (1  −1), it then follows that

 ( ; 

1  


−1) =  ( 1  −1)

i.e. all firms with output remaining in period  set the market clearing price

for the realized demand state. It follows from (iii) that all consumers with

valuation above  ( 1  −1) purchase in period  if they have not already
done so, that consumers with a lower valuation do not purchase, and that all

output is sold. Because output is allocated efficiently, and because no consumer

experiences positive delay costs in equilibrium, it follows that the allocation is

Pareto optimal. We now show that sequential rationality is satisfied.

We have already shown in our general existence argument that prices are

martingales and that sequential rationality by firms is satisfied. To show se-

quential rationality on the part of consumers, multiplicative uncertainty implies
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that when arriving at the market in period  all consumers from generations 

or earlier share the same beliefs about (1  −1) as firms. Consider a con-
sumer with valuation , who has not purchased before period  and observes

the price, (; 

1  


−1). By the martingale property associated with (iv),

all continuation strategies in which she purchases with probability one in some

period yield the same expected payment.

Case 1. Suppose  ≥  ( 1  

−1 ̄  ̄−1) and () = 0 hold.

Sequential rationality requires her to purchase eventually since her valuation

exceeds the highest price she could face in period  , and from the martingale

property, she is indifferent between purchasing in period  and delaying purchase.

In particular, purchasing in period  is optimal.

Case 2. Suppose  ≥  ( 1  

−1 ̄  ̄−1) and ()  0 hold. Pur-

chasing in period  yields the same utility as deviations in which she eventually

purchases with probability one, if we were to ignore the delay costs incurred.

Deviations in which she does not always purchase yield strictly lower utility than

purchasing in period , so all such deviations yield strictly lower utility when

the delay cost is taken into account. Thus, purchasing in period  is strictly

preferred to the best alternative.

Case 3. Suppose    ( 1  

−1 ̄  ̄−1) holds. Because we have

 ( 1  

−1 ̄  ̄−1) ≤ ̄, our assumptions imply () = 0. Therefore,

she is indifferent between purchasing in period  and always purchasing in period

 . Since there is a positive probability that  ( 1  −1)   holds,

waiting until period  and only purchasing when her valuation exceeds the

price yields strictly higher utility. Thus, a deviation to purchasing in period 

strictly lowers utility.3 ¥

3 Sales Bound underMultiplicative Uncertainty

We assume that demand is multiplicative, i.e. that ( ) = () for all

 = 1   − 1. We make two additional assumptions:

Assumption A.1 : There exists 0      ∞ such that for all  and

 ∈ [0 ̄] we have:
 ≤ |


| ≤ 

Assumption A.2 : There exists 0    ̄ ∞ such that for all  we have:

 ≤   ̄ ≤ ̄

Note that A.1 implies that  = 0. Furthermore, it follows from A.1 and A.2

that ( )  0 for all   ̄.

3Following a unilateral deviation by a firm to post a price greater than

(
max
 ; 1  


−1), the continuation strategy given in (iii) remains sequentially rational.

After a deviation by a firm to post a price less than (0; 

1  


−1), then purchasing is

sequentially rational if  ≥  (∗ 1  

−1   −1). For lower valuations, it may be-

come optimal for a consumer to purchase, and one could compute the new cutoff for each firm

deviation. We skip this detail because the firm’s deviation cannot be optimal.
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Consider the number of people who purchase in some period    . Old con-

sumers entering period  who purchase in that period have valuations between

̄−1 and ̄. Thus the number of such people equals

−1X
=1

 [ (̄)− (̄−1)]

Next, consider the generation  consumers who purchase in period , i.e. those

whose valuation exceeds ̄. The number of such consumers equals

(̄)

The number of consumers purchasing in period , expressed as a fraction of total

sales over the demand season, therefore equals:

(1  −1) =
P−1

=1  [ (̄)− (̄−1)] + (̄)P−1
=1  ( (∗ 1  −1))

The same expression is also valid in period  , provided we use the convention

that ̄ =  (∗ 1  −2 −1) and  ≡ 0.
Let ∗ denote the equilibrium output when the number of periods is  . We

may then prove:

Lemma 1 Suppose that there exists   0 such that for all  we have  (∗  ̄1  ̄−2 ̄−1) ≤
̄−. Suppose also that Assumptions A.1-A.2 hold. Then (1  −1)→ 0

as  →∞.
Proof. Let us first bound ̄−1−̄. Note that by definition  (∗  1  −2 −1)

solves
−1X
=1

 ( (
∗
  1  −2 −1)) = ∗

Applying the implicit function theorem, we have

 (∗  1  −2 −1)


=
 ( (

∗
  1  −2 −1))P−1

=1  |


( (∗  1  −2 −1))|

Using Assumption A.1 it follows that

 ( (
∗
  1  −2 −1)) ≤ (0) ≤ ̄

Furthermore, it follows from Assumptions A.1 and A.2 that

−1X
=1

 |


( (∗  1  −2 −1))| ≥ ( − 1)

and so
 (∗  1  −2 −1)


≤ ̄

( − 1)
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Hence for any  such that 2 ≤  ≤  holds we have

̄−1−̄ =
Z ̄



 (∗  

1  


−1  ̄+1  ̄−1)


 ≤ ̄

( − 1)(̄−) ≤
̄− 



̄

( − 1)
(16)

It follows from the mean value theorem that

 (̄)− (̄−1) = |


(e)| (̄−1 − ̄) ≤  (̄−1 − ̄) (17)

for some e ∈ (̄ ̄−1). Using (17) and (16) we therefore have
−1X
=1

 [ (̄)− (̄−1)] ≤ ̄



2


(̄− )̄ (18)

Next, let us bound period  sales to newly arriving customers. Using the

mean value theorem, we have

(̄) = (̄)−(̄) = |


(̂)| (̄ − ̄)

for some ̂ ∈ (̄ ̄). Using A.1 and A.2, we therefore have

(̄) ≤ ̄(̄ − ̄) ≤ ̄̄ (19)

Finally, let us derive a lower bound to sales over the demand season. Again,

using the mean value theorem and A.1, we have

 ( (
∗
  1  −1)) =  ( (

∗
  1  −1))− (̄) ≥ (̄− (∗  1  −1)) ≥ 

and so
−1X
=1

 ( (
∗
  1  −1)) ≥ ( − 1) (20)

Combining (18), (19) and (20) we finally obtain:

(1  −1) ≤ 1

 − 1
̄







̄



∙




̄− 


+ 1

¸
(21)

The result then follows because the right side of (21) converges to zero as  →
∞.

4 Examples

4.1 Verifying the Assumptions for the  = 2 Example

Here we verify that the  = 2 example with information effects in Section 4.1

satisfies Assumptions 1-5.
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The demand specification ( ) = 1− , implies that  = 0, ̄ = 1, and

that Assumption 1 is satisfied. Assumption 2 holds vacuously, since there is only

one batch of demand. Assumption 3 is satisfied whenever   1 holds. Since

̂ = ̄ =
√
3
2
, Assumption 4 is satisfied. To verify Assumption 5, we compute

−
()



( )
=

−1

1− 


Therefore,





"
ln(−

()



( )
)

#
=
[ln() + 1− ]

(1− )
 (22)

Since the term in brackets is increasing in  for all  ∈ [1 2] and all  ∈ (0 1)
and is zero at  = 1, then the term in brackets must be negative and the entire

expression must be negative. This establishes that Assumption 5(i) is satisfied.

From (22), we have

2



"
ln(−

()



( )
)

#
=
[ ln() + 1− ]

(1− )2


The term in brackets is decreasing in  for all  ∈ [1 2] and all  ∈ (0 1)
and is zero at  = 1, so the term in brackets must be positive and the entire

expression must be positive. This establishes that Assumption 5(ii) is satisfied.

Finally, we consider the additional assumption required in our uniqueness

proof, Proposition 4, that we have

2


( )  0 (23)

for all  ∈ [1 2] and all  ∈ ( 1). We have
2


[1− ] = −−1(ln() + 1) (24)

From (24), we see that (23) holds whenever we have   −1 ' 036787944.

Since  ' 0819875713, and since we have
min
≥

∈[12]
 = 2

(23) must hold.

4.2 An Example with Multiplicative Uncertainty and  =

3

Demand in period  ∈ {1 2} is given by
( ) = (1− )
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Therefore, the aggregate demand and inverse demand are given by

( 1 2) = (1 + 2)(1− )

 ( 1 2) = 1− 

1 + 2


It follows that  = 0 and ̄ = 1. Any specification of () satisfying our

maintained assumptions will work, since all consumers with a positive () will

purchase in the period in which they first arrive. Let us set

() = 0 for  ≤ 3
4

() =
1

100
( − 3

4
) for  ≥ 3

4


It will be convenient to set the marginal production cost as follows

 = 6 ln 3− 10 ln 2 + 1 ' 06602
We assume that 1 and 2 are independent and identically distributed ac-

cording to the uniform density on [1 2]. We have

(1 2) = 1 for all (1 2) ∈ [1 2]× [1 2]
Then the equilibrium quantity ∗ =  solvesZ 2

1=1

Z 2

2=1

(1− 

1 + 2
)21 =  = 6 ln(3)− 10 ln(2) + 1

yielding ∗ =  = 1. Since ̄1 = ̄2 = 2 , we have

̄ = 1− 1

2 + 2
=
3

4


In period 1, all consumers with  ≥ ̄ purchase,4 so total purchases in period

1 will be 1(1 − ̄). This allows us to infer the minimum possible period-1

demand state, as a function of period-1 transactions 1, as follows:

1(1) = 1 for 1 ≤ 1(1− ̄) =
1

4

1(1) = 41 for
1

4
 1 ≤ ̄1(1− ̄) =

1

2


Prices in period 1 are given by

1(1) =  = 6 ln(3)− 10 ln(2) + 1 for 1 ≤ 1
4

1(1) =

R 2
41

R 2
1
(1− 1

1+2
)21R 2

41

R 2
1
21

for
1

4
 1 ≤ 1

2
 (25)

4By setting  = 3
4
, this means that all consumers with a higher valuation strictly prefer to

purchase in period 1, and all consumers with a lower valuation strictly prefer to wait.
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Equation (25) yields the closed-form expression

1(1) = 1−(1 + 41) ln(1 + 41)− 2(1 + 21) ln(1 + 21) + (6− 41) ln(2)− 3 ln(3)
2− 41 

Here is a plot of 1(1):

We now proceed to period 2. Based on Proposition 5 and the relations,

1 = 4

1 and ̄2(


1) = 1− 1

1+2
= 1− 1

41+2
, we can compute the measure of

consumers who are born in period 1 but purchase at the beginning of period 2,

1 (

1). These are the consumers with valuations between ̄2(


1) and ̄.

1 (

1) = 1[(1− ̄2(


1))− (1− ̄)]

=
1(1− 21)
1 + 21



The minimum possible period-2 demand state, as a function of the period-1

history 1 and the period-2 transactions 2, is given by

2(2; 

1) = 1 for 2 ≤ min2 (1)

2(2; 

1) = 2(4


1 + 2)− 21(1− 21) for min2 (1)  2 ≤ 1− 1(26)
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where

min2 (1) = 1 (

1) + 1− ̄2(


1) =

21 − 4(1)2 + 1
2(1 + 21)



Prices in period 2 are given by

2(2; 

1) =

R 2
2(2;


1)
(1− 1

41+2
)2

2− 2(2; 

1)



which yields the closed-form expression

2(2; 

1) = 1 +

ln(2 + 1)

2− 2(4

1 + 2) + 2


1(1− 21)



Moving on to period 3, all transactions occur at the market clearing price

for the realized demand state,

 (1 1 

2) = 1−

1

1 + 2
 (27)

We can compute the measure of consumers who are born in period 1 or period

2, but who purchase in period 3, 2 (

1 


2). These are the consumers with

valuations between  (1 1 

2) and ̄2(


1), or in terms of the revealed demand

states,

2 = 1−
1 + 2
1 + 2

 (28)

Using 1 = 41 and using (26) to derive 2 = 2(4

1 + 2) − 21(1 − 21),

substituting into (27), and simplifying, we have

3(3; 

1 


2) = 1− 1

2(1 + 2)(1 + 2

1)

2 (

1 


2) = 1− 1 − 2

It is interesting to note that even though all consumers with an option value

of waiting delay their purchases, most of the sales occur before period 3. From

(28), the maximum possible quantity sold in period 3 occurs when 1 = 1 and

2 = 1, where one third of the output is sold in period 3.
5

5Sales across the 3 periods are then ( 1
4
 5
12
 1
3
). If instead the realized demand states are

at their mean values, 1 =
3
2
and 2 =

3
2
, sales are ( 3

8
 27
56
 1
7
). Finally, if the realized demand

states are at their maximum values, 1 = 2 and 2 = 2, sales are (
1
2
 1
2
 0).
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