1) \(\langle x | l_n \rangle^{(0)} = \begin{cases} \sqrt{\frac{2}{L}} \cos \left(\frac{n \pi x}{L} \right), & n = 1, 3, 5, \ldots \\ \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L} \right), & n = 2, 4, 6, \ldots \end{cases} \)

\(E_n^{(0)} = n^2 \epsilon_1 \), \(\epsilon_1 = \frac{\hbar^2}{2mL^2} \), no degeneracies

\(H' = \mathcal{E} L \delta(x) \)

\[\langle m | H' | n \rangle = \int_0^L dx \, \phi^*_m(x) [\mathcal{E} L \delta(x)] \phi_n(x) \]

\[= \mathcal{E} L \phi^*_m(0) \phi_n(0) = \begin{cases} 2\mathcal{E} \text{ m+n odd} \\ 0 \text{ m+n even} \end{cases} \]

All \(| n \rangle \) with \(n \) even (odd parity) states are eigenstates, with \(E_n = E_n^{(0)} \) of \(H_0 + H' \).

All integers below are odd.

\[E_n^{(-1)} = \langle n | H' | n \rangle = \begin{cases} 2\mathcal{E} \text{ n odd} \\ 0 \text{ n even} \end{cases} \]
(b) \[E_n = \sum_{m>n \mod 2} \frac{(2 \delta)^2}{(m^2 - n^2)^2} \]

This is awkward to evaluate in Mathematica, so rewrite this as:

\[
\lim_{\nu \to \nu} \left(\sum_{k=0}^{\infty} \frac{1}{\nu^2 - (2k+1)^2} \right) - \frac{1}{\nu^2 - n^2}
\]

\[
= \lim_{\nu \to \nu} \left(\frac{\pi \tan \left(\frac{\nu \pi}{2} \right)}{4 \nu} - \frac{1}{\nu^2 - n^2} \right)
\]

\[
= \lim_{\delta \to 0} \left(\frac{\pi \tan \left(\frac{\nu \pi}{2} + \frac{5 \pi}{2} \right)}{4 (\nu + \delta)} - \frac{1}{(2n + 8) \delta} \right)
\]

\[
\frac{\sin \left(\frac{\nu \pi}{2} + \frac{5 \pi}{2} \right)}{\cos \left(\frac{\nu \pi}{2} + \frac{5 \pi}{2} \right)} = \frac{\sin \left(\frac{\nu \pi}{2} \right) \cos \left(\frac{5 \pi}{2} \right)}{-\sin \left(\frac{5 \pi}{2} \right) \sin \left(\frac{\nu \pi}{2} \right) = - \left(1 - \frac{\delta^2}{8} + \cdots \right)}
\]

\[
= - \frac{\pi}{4 \delta} + O(\delta^2)
\]

\[
\lim_{\delta \to 0} \left(\frac{1}{2 (n+\delta) \delta} - \frac{1}{(2n+\delta) \delta} \right) = - \frac{1}{4n^2}
\]
\[E_n = \frac{\varepsilon^2}{n^2 \varepsilon_1} = \frac{E_0}{E_n} \quad \text{for odd } n \]

(c) For odd \(n \), \(E_n = n^2 \varepsilon_1 + 2 \varepsilon_1 + \frac{E_0^2}{n^2 \varepsilon_1} + \ldots \)

This is an expansion in powers of \(\frac{E_0}{n^2 \varepsilon_1} \).

Should work if \(E_0 \ll \varepsilon_1 \).

This is the only type of comment I expected. Restoring some detail, we really need:

\[\varepsilon n \ll n^2 \frac{E_0^2}{2mL} \]

We'll get convergence if \(n \) is sufficiently small (failure as \(n \to \infty \), guaranteed because of S. function bound state), convergence if \(m \) is sufficiently large or \(n \) is sufficiently large... It is much better to discuss dimensionless numbers. For \(h = c = 1 \), \(E_0 L \) and \(mL \) are dimensionless.
2) \(H_0 = \frac{p^2}{2m} - \frac{1}{r} \); \(|\Psi^{(0)} \rangle = |nlm_e; m_e, m_p \rangle \).

\(H' = \frac{3}{2} \mathbf{s} \cdot \mathbf{s} \delta^3 (\mathbf{r}) \)

Compute \(E_n^{(1)} \) for \(n = 1, 2 \).

We need to diagonalize \(H' \) in each degenerate subspace (for each \(n \)), which is accomplished by \((\mathbf{s} = \mathbf{s}_e + \mathbf{s}_p) \) switching to the coupled spin basis.

\(H' = \frac{3}{2} (s^2 - \frac{3}{2}) \delta^3 (\mathbf{r}) \)

\(|\Psi^{(0)} \rangle = |nlm_e; s, m_s \rangle \); \(s = 0, 1 \)

There will be off-diagonal matrix elements between states with different \(n \) (which we don't need for \(E_n^{(1)} \)) but

\[
\langle nlm_e; s, m_s | H' | n'l'm'_e; s', m'_s \rangle
\]

\[
= \text{constant} \times \delta_{nl} \delta_{lm_e} \delta_{s s'_e} \delta_{m_s m'_s}
\]
\[\langle \text{nlm}_x, s, m_s | H | \text{nlm}_x, s, m_s \rangle \]

\[= \frac{\hbar}{2} \left(s(s+1) - \frac{1}{2} \right) \int d^3r \, \psi_{\text{nlm}_x}(\vec{r}) \, \delta^3(\vec{r}) \cdot \psi_{\text{nlm}_x}(\vec{r}) \]

\[= \frac{\hbar}{2} \left(s(s+1) - \frac{1}{2} \right) / \psi_{\text{nlm}_x}(0) \]

All wave functions vanish at the origin except for \(l = 0 \), so:

\[E^{(1)}_{2s} = 0 \]

12 - states

\[| \psi_{1s}(0) |^2 = \frac{1}{4\pi} \cdot 4 \left(\frac{1}{a_0} \right)^3 = \frac{1}{\pi a_0^3} \]

\[| \psi_{2s}(0) |^2 = \frac{1}{4\pi} \cdot 4 \left(\frac{1}{2a_0} \right)^3 = \frac{1}{8\pi a_0^3} \]

\[E^{(1)}_{1s} = \begin{cases} \frac{3}{4\pi a_0^3} & s = 1 - 3 \text{ states} \\ -\frac{3\hbar}{4\pi a_0^3} & s = 0 - 1 \text{ state} \end{cases} \]

\[E^{(1)}_{2s} = \begin{cases} \frac{5}{32\pi a_0^3} & s = 1 - 3 \text{ states} \\ -\frac{3\hbar}{32\pi a_0^3} & s = 0 - 1 \text{ state} \end{cases} \]
3) Spin-1 bosons on a sphere

To characterize any state, we will need 6 quantum numbers (not counting $s = s_1 - s_2$).
A basis is $| l_1, m_1, l_2, m_2, s, m_s \rangle$

but we will need to couple angular momenta.

$$H = \frac{1}{2I} (l_1^2 + l_2^2 + l_1 \cdot l_2 + s_1 \cdot s_2)$$

$$\vec{L} = \vec{l}_1 + \vec{l}_2, \quad \vec{S} = \vec{s}_1 \cdot \vec{s}_2$$

$$l_1 \cdot l_2 = \frac{1}{2} (l_1^2 - l_1 \cdot l_2)$$

$$s_1 \cdot s_2 = \frac{1}{2} (s_1^2 - s_1 \cdot s_2) = \frac{1}{2} (s^2 - 4)$$

$$\Rightarrow \quad H = \frac{1}{4I} (l_1^2 + l_2^2 + l_1 \cdot l_2 + s^2 - 4)$$

Eigenstates (before symmetrization)

$$| l_1, l_2, l, m, s, m_s \rangle$$

6 labels.

$$E = \frac{1}{4I} (l_1(l_1 + 1) + l_2(l_2 + 1) + l(l+1) + s(s+1) - 4)$$

$$l_1, l_2 = 0, 1, 2, \ldots; \quad l = | l_1 - l_2 |, | l_1 - l_2 |+1, \ldots, l_1 + l_2$$

$$m_s = -l, l+1, \ldots; \quad s = 0, 1, 2; \quad m_s = -s, -s+1, \ldots, s$$
Only symmetric states are allowed, so:

\[|4\rangle = \begin{cases} \\
|4_{\text{sym.}}\rangle \otimes |4_{\text{spin}}\rangle \\
|4_{\text{A}}\rangle \otimes |4_{\text{spin}}\rangle \\
\end{cases} \]

The \(s=0,2 \) states are symmetric.

The \(s=1 \) states are anti-symmetric.

For \(l = l_1 = l_2 \) :
\[|l, l, l, M_e\rangle \]
includes both symmetric and antisymmetric states:
\[l = 2l_2 \text{ in } S, \ l = 2l_2 - 1 \text{ in } A, \]
\[l = 2l_2 - 2 \text{ in } S, \text{ and so on}. \]

For \((l_1, l_2) = (l, l) \) , we must use:
\[\frac{1}{\sqrt{2}} (|l_1, l_2, l, M_e\rangle + |l_2, l_1, l, M_e\rangle) \]
to form symmetric (+) or antisymmetric (-) states.
6) Ground state: \[l_1 = l_2 = l = s = 0 \]
\[E = -\frac{1}{4I}, \text{ degeneracy } = 1 \]

1st excited state:
\[(l_1, l_2) = (0, 1), l = 1, s = 0 \quad E = 0, d = 3 \]
\[(l_1, l_2) = (1, 1), l = 0, s = 0 \quad E = 0, d = 1 \]

If we try \(s = 1 \), we have to also increase \(l \)'s to make a symmetric state.

c) \[H' = \frac{\mathbf{L} \cdot \mathbf{S}}{I} \quad \mathbf{J} = \mathbf{L} + \mathbf{S} \Rightarrow H' = \frac{1}{2I}(J^2 - L^2 - S^2) \]
\[H + H' = \frac{1}{4I} \left(L_1^2 + L_2^2 - L^2 - S^2 + 2J^2 - 4 \right) \]

To keep our symmetries, we must build these coupled states only from the symmetric states above (e.g., still can't have \(l_1 = l_2 = l = 0, \ s = 1 \)).
Define:

\[(l_a, l_b)^s \cdot l_s \cdot s \cdot j \cdot m_j \equiv \frac{1}{2} (l_a, b, l, s, j, m_j) = |l_a, l_b, l, s, j, m_j \rangle \]

\((l_a, l_b)^s\) goes with \(s = 0, 2\)

\((l_a, l_b)^p\) goes with \(s = 1\)

If \(l_a = l_b\), \(l^2 = 2l_a + s\) (goes with \(s = 0, 2\)), \(l = \frac{l_a - 1}{2}\) is \(A\) (goes with \(s = 1\)), etc.

For any \(l_a, l_b\), \(l = l_a - l_b, \ldots, l_a + l_b\), \(s = 1, 2, \ldots\), \(m_j = -j, -j + 1, \ldots, j\).

To find the ground state and first excited state energies, we must consider all possible set of \(l_a, l_b, l, s, j\), where:

\[E = \frac{1}{4l} \left[l(l+1) + b(b+1) - l(l+1) - s(s+1) + 2j(j+1) - 4 \right] \]

I will start by simply taking some low-lying levels, then turn to an analysis. This part graded liberally.
<table>
<thead>
<tr>
<th>(l_1, l_2)</th>
<th>l</th>
<th>s</th>
<th>j</th>
<th>$AI \times F$</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>(0, 1)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>want large s + small j (ignore $j = 3$) need small j</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-6</td>
<td>balance of $s \times j$</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(1, 1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-4</td>
<td>$l = l_1 + l_2$ $s = 2$ $j =</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-12</td>
<td></td>
</tr>
<tr>
<td>(0, 2)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-10</td>
<td>$= 5 + 4$ for $j = 1$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>(1, 2)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>balance of $l + j$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>(2, 2)</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>-6</td>
<td></td>
</tr>
</tbody>
</table>

Searching a large table makes it clear that finding the 1st excited state requires looking at several possible excitations, but for ground state we want:

\[l = l_1 + l_2 \] , because of \(-l(l+1)\)

\[s = 2 \] , because of \(-s(s+1)\)

\[j = |l-s| \] , because of \(2j(j+1)\)
Minimizing:

\[E = \frac{1}{7} \left[l_1(l_1+1) + l_2(l_2+1) - (l_1+l_2)(l_1+l_2+1) \right. \\
+ 2 l_1 l_2 - 21 (l_1^2 + l_2^2 - 2l_1 l_2 + 1) - 10 \left. \right] \]

leads to \(l_1 = l_2 = 1 \).

Ground state \(l_1 = l_2 = 1 \); \(L = 2 \); \(S = 2 \); \(J = 0 \)

\[E = -\frac{3}{2} \]

\(\text{degeneracy} = 1 \)

It is very difficult to find the 1st excited state without simply searching this vicinity.

1st excited states \(E = -\frac{5}{21} \)

\(\begin{align*}
(l_1,l_2) &= (0,2) \quad l = 2, S = 2, J = 0 \quad d = 1 \\
(l_1,l_2) &= (1,2) \quad l = 3, S = 2, J = 1 \quad d = 3 \\
\end{align*} \)

\(d_{tot} = 4 \)