

FizZim – an open-source FSM design environment

Paul Zimmer

Zimmer Design Services

Michael Zimmer

Zimmer Design Services

(and University of California, Santa Barbara)

Brian Zimmer

Zimmer Design Services

(and University of California, Davis)

Zimmer Design Services

1375 Sun Tree Drive

Roseville, CA 95661

paulzimmer@zimmerdesignservices.com

website: www.zimmerdesignservices.com

18 February, 2014

mailto:paulzimmer@zimmerdesignservices.com
www.zimmerdesignservices.com

Fizzim Fizzim 2

ABSTRACT

Finite State Machine design is a common task for ASIC designer engineers. Many designers

would prefer to design FSM’s in a gui-based environment, but for various reasons no commercial

tool for this task has really achieved wide-spread acceptance. The authors have written such a

graphical FSM design tool, and offer it to the engineering community for free under the GNU

public license. The gui is written in Java for portability, while the back-end code generation is

written in Perl to allow for easy modification. The paper will describe the basic operation of the

tool and the format of the Verilog it produces, then go on to describe some of the more advanced

features and how they affect the Verilog output.

Fizzim Fizzim 3

Table of contents

1 Introduction - What is fizzim? ... 5

2 Starting fizzim .. 6
2.1 Windows .. 6
2.2 Linux .. 6

3 GUI basics .. 7

4 Attributes .. 8

5 Encodings ... 9
5.1 Highly Encoded with Registered Outputs as Statebits (HEROS) .. 9
5.2 One Hot ... 9

6 Cliff’s Classic ... 10
6.1 Creating the states .. 11
6.2 Creating the transitions .. 13
6.3 Filling in the details ... 16

6.3.1 Global Attributes .. 16
6.3.2 Individual State Attributes ... 23
6.3.3 Individual Transition Attributes ... 25

6.4 Output using heros ... 26
6.5 Output using onehot ... 30

6.5.1 Output using onehot when “implied_loopback” is set. .. 30
6.5.2 Onehot output when “default_state_is_x” is set ... 33

6.6 Ascii state name ... 35
6.7 (Un)Displaying the attributes table .. 36

7 Mealy outputs ... 37
7.1 Mealy outputs assigned in states .. 37
7.2 Mealy outputs assigned on transitions ... 40
7.3 Mixing the styles .. 43

8 Datapath outputs ... 46

9 Flags (new with version 4.0) .. 53
9.1 Basic Example (flag set only on states) ... 53
9.2 Flags set on transitions ... 57
9.3 Capturing incoming data on an arc using flags .. 61

10 Transition priority .. 65
10.1 Basic Example ... 65
10.2 The special case of equation equal to “1” .. 67

11 Adding gray codes .. 72

12 Mapping states to values in heros .. 76

13 Stubs ... 77

14 Bringing out internal signals .. 80
14.1 Renaming internal signals .. 80
14.2 Bringing out internal signals .. 80

15 Using parameters.. 84

16 Inserting random bits of code at strategic places ... 86

17 Inserting comments .. 87

18 Using multiple pages .. 88

19 `include and `define ... 93

20 Forcing the state vector .. 96

Fizzim Fizzim 4

20.1 With registered outputs as datapath bits .. 96
20.2 With registered outputs assigned to state bits .. 97

21 Suppressing outputs in the module portlist .. 101

22 Splitting lines in free text and equations .. 102

23 Unknown states .. 103
23.1 Case 1 – sparse state space and unknowns go to an existing state ... 103
23.2 Case 2 – full state space and unknowns go to an existing state .. 106
23.3 Case 3 – sparse state space and unknowns go to a new state ... 107
23.4 Case 4 – full state space and unknowns go to a new state .. 109

24 Controlling and suppressing warning messages .. 113

25 Printing and exporting the state diagram ... 114

26 Specifying the fizzim.pl options .. 115

27 Requiring a minimum revision of fizzim.pl ... 116

28 Group select and move ... 117

29 –terse (-sunburst) option .. 120

30 SystemVerilog output .. 124

31 Future directions / wishlist ... 128

32 Acknowledgements .. 129

33 References .. 130

Fizzim Fizzim 5

1 Introduction - What is fizzim?

Finite State Machines come up frequently in digital design. Sometimes designers code them

directly in Verilog, but many designers prefer to design their FSMs as a state diagram (“bubbles

and arrows”) and then manually translate this diagram into Verilog.

For these designers, it would certainly be handy to design the FSM directly in a graphical tool

and allow the software to generate the Verilog code. There have been several attempts by

various EDA companies, large and small, to provide such a tool, but nothing has really gotten

much traction.

This may be because the tool is in a strange niche. It is really too small to support business on an

EDA scale, but it is too large for a “G-job”. Also, the graphical part of the G-job is outside the

usual experience of hardware designers.

So, it seems a good candidate for an open source project, provided someone is willing to tackle

that nasty graphical part.

Someone has! Paul Zimmer and his young interns at Zimmer Design Services, Mike Zimmer

and Brian Zimmer, are proud to present fizzim – an open-source, graphical FSM design

environment.

Throughout this tutorial, it is assumed that the reader is familiar with FSM’s and common FSM-

related terms (such as Moore and Mealy). If the reader is unfamiliar with some of this material,

just read through some of the papers in the “references” section.

Note on the current state of the documentation:

The format of the pages changed a little bit with version 4.0. Older sections of the document

have not been update yet. Usage is unchanged.

Fizzim Fizzim 6

2 Starting fizzim

The fizzim gui is written in java. It is distributed as a “.jar” (java archive) file. We run it using

Sun Java Runtime Environment. Odds are that you already have this loaded for your browser,

but if not you can download it from java.sun.com.

2.1 Windows

On most Windows machine, Java Runtime Environment will already be registered as the correct

app for “.jar” files, so just double-clicking on the file should start it. If that doesn’t work, you

can start a terminal window and use the command-line approach as in Linux below.

2.2 Linux

On linux, try right-clicking the file and select “open using”. If java runtime is listed, you’re in

business. You can also run from the command line using:

java –jar fizzim_v10.02.26.jar

Starting with version 4.0, you can also add the fizzim file on the command line:

java -jar fizzim_v11.03.02.jar myfsm.fzm

Fizzim Fizzim 7

3 GUI basics

The gui is pretty intuitive. Right-click in open space gives you a menu to create new states and

transitions. Right-click on an object gives you a menu to edit the object. Double (left) click on

an object will bring up the properties menu for that object.

Edit>undo or ctl-Z will undo, Edit>redo or ctl-Y will redo. Undo/redo is unlimited.

Fizzim Fizzim 8

4 Attributes

It is our belief that few hardware engineers will want to touch the gui, but many will want to

modify the Verilog output. In recognition of this, every attempt has been made to try to keep the

gui as independent of the Verilog generation as possible.

To accomplish this, virtually everything is implemented as “attributes”. This should allow new

backend (Verilog-generation) features to be added without touching the gui. Also, while the gui

is written in Java, the backend is in the lingu-franca of EDA – perl.

There are only 3 types of objects to the gui – the state machine itself, states, and transitions.

Each of these can have attributes assigned to it. But state and transition object attributes have to

be defined first in the global “states” and “transitions” attribute menus before they will be

available in individual states and transitions. The gui knows about a few special attributes, but

only those that require that the display be modified. Examples include transition equations (drop

the “equation =” on the visible text) and output types (use “=” for combinational and “<=” for

registered).

Inputs and outputs are just attributes. The name field is the name of the input or output signal.

Each attribute has 5 fields:

 Attribute Name – this is the name of the input or output, or the name of the special

attribute.

 Default Value – Default value of the attribute. Will be used if no value is assigned in a

state/transition.

 Visibility – Turns on/off visibility on the display. “Only non-default” means to only

show the attribute if its value doesn’t match “Default Value”.

 Type – Information about the attribute. Inputs currently have no defined type, outputs can

be “reg”, “regdp”, or “comb”. Others are attribute-specific.

 Comment – An optional comment that will show up on the diagram, in the Verilog, both,

or neither (see the section on comments).

 Color – Text color.

 (new with version 4.0) UserAtts - a per-item list of attributes for use by the backend

processor.

Fizzim Fizzim 9

5 Encodings

There are two primary types of state encodings used for FSM design. Highly encoded FSM’s use

a dense binary code and few flops but can sometimes have very complex combinational logic.

One-hot FSM encodings, on the other hand, use a sparse code and many flops, but usually have

much simpler combinational logic. There are many papers on the advantages and disadvantages

of each (reference [2] is one example).

The backend perl script (fizzim.pl) supports both of these encodings.

5.1 Highly Encoded with Registered Outputs as Statebits (HEROS)

Heros is an encoding that uses a dense binary code. As the name implies, registered outputs will

be encoded into the states to minimize flop count. There are mechanisms (discussed below) to

allow particular outputs to be excluded from the state vector. The actual Verilog format is based

on recommendations from Cliff Cummings’ paper (reference [3]).

5.2 One Hot

One-hot encoding is also supported. The Verilog format is based on Steve Golson’s paper

(reference [2]). Some features, such as gray coded transitions, are not available with one-hot

encoding.

Fizzim Fizzim 10

6 Cliff’s Classic

Let’s jump right in with an example. In [3], Cliff Cummings introduced the following basic state

machine:

Here’s how we would create this in fizzim (Example: cliff_classic.fzm).

Fizzim Fizzim 11

6.1 Creating the states

Right-clicking in open space gives the following menu:

We select “New State” and get this:

Fizzim Fizzim 12

Change the state name to “IDLE” and hit “OK”.

Repeat this to add the other three states. Left-click and drag to move the states around.

Fizzim Fizzim 13

6.2 Creating the transitions

To create the state transitions, we can either right-click in open space and select “New State

Transition” and get the full menu:

Fizzim Fizzim 14

Or we can right-click on the start state and select “Add State Transition to”:

We repeat this to add all the transitions. Don’t forget to add the loopback transition. We’ll see

why this matters in a moment.

Notice that when we add the transition from DLY back to READ, we get something like this:

Fizzim Fizzim 15

That doesn’t look so great, so we need to move one of the transitions. To do this, left-click to

select it. Endpoints and anchorpoints appear:

Fizzim Fizzim 16

Drag the endpoints to a new location, then drag the anchorpoints to reshape the curve. The

anchorpoints on the ends of the arc control where the arc intersects the state bubble. The other

two control the shape of the curve.

If you move a state bubble, the attached arcs will move with it. As long as the move isn’t too

drastic, the anchorpoint modifications you made will be retained. If you move the state a lot, the

anchorpoints may get reset. This works better than it sounds. Mostly your anchorpoints are

retained when it makes sense.

All text, including the transition equation (the “1” above), output values in states, state names,

and free text, can be moved by just selecting it and moving it.

Don’t forget to add the loopback transition. We’ll see why this matters in a moment.

6.3 Filling in the details

6.3.1 Global Attributes

Recall that everything is stored as attributes – either attributes on the FSM itself or attributes on

individual states and transitions. So, adding inputs, outputs, transition equations, etc is a matter

of editing attributes.

Let’s start with the global FSM attributes. It is necessary to start here, because the individual

state and transition attributes won’t appear until they are entered as global attributes.

Fizzim Fizzim 17

Select “Global Attributes > State Machine” from the top menu:

Fizzim Fizzim 18

And you get this:

Edit the fields to fill in the module name “cliff”, the clock name “clk”, and make it a posedge clk.

Click the “Reset” button, and two more attributes appear. One is “reset_signal”. Change this to

“rst_n”, negedge. Set “reset_state” to IDLE via the pull-down menu and set its type to

“anyvalue” (“allzeros” and “allones” will force the reset state to be all zeros or all ones, but this

isn’t compatible with onehot encoding, so we won’t use it on this example).

Fizzim Fizzim 19

Hit OK. Notice that IDLE now has a double ring to indicate it is the reset state.

Now select “Global Attributes > Inputs” from the top menu.

Fizzim Fizzim 20

Use the “Input” button to add the inputs:

Note that “type” doesn’t matter for inputs. We could click OK, then reselect “Global Attributes

> Outputs” from the top menu, or we can just switch to the “Outputs” tab without exiting the

menu.

Click “Output” twice to add the two outputs, “rd” and “ds”. Their type field should be “reg”.

Set “Default Value” to 0, and visibility “Yes”.

Fizzim Fizzim 21

This will become clearer later, but type “reg” means that they are registered outputs (Moore) and

that they should be encoded as state bits.

Now flip over to the “States” tab. “rd” and “ds” now appear as state attributes. This means you

will be able to assign particular values to them in particular states.

Fizzim Fizzim 22

Flip over to the “Transitions” tab. “rd” and “ds” do NOT appear here, because it makes no sense

to define registered outputs on a transition. The standard attribute “equation” DOES appear here,

with the default value of “1”. Leave it alone. But you can change the “Visibility” field to “Only

non-default” to make the “1” equations not show up on the diagram.

Fizzim Fizzim 23

6.3.2 Individual State Attributes

Now we can enter the output values into the states. Notice that the outputs now appear on the

states with a “<=” after them. This indicates registered outputs (“=” means combinational).

Fizzim Fizzim 24

Now we need to enter the non-default values for rd and ds. Right-click on the READ state and

select “Edit State Properties” to bring up the menu. Or just double-click the READ state bubble.

Change the value of rd to “1”.

Fizzim Fizzim 25

Do this for the other states to add appropriate output values (rd = 1 in DLY, ds = 1 in DONE).

6.3.3 Individual Transition Attributes

Double-click on the IDLE to READ transition to bring up the transition menu. Change the

equation to “go”.

Hit “OK”. Now click on the “go” text and move it:

Repeat this for the state transition from DLY back to READ that has an equation of “ws”.

Our final state diagram looks like this.

Fizzim Fizzim 26

You might have noticed that I did not put an explicit “!go” on the IDLE loopback transition, nor

an explicit “!ws” on the DLY to DONE transition. That is because fizzim understands that a

transition with an equation of “1” is the default, lowest priority, transition. This will be

explained in the section on transition priorities. You can add the explicit equations, but you

don’t have to.

6.4 Output using heros

Now we can run the backend and generate code:

fizzim.pl < cliff.fzm > cliff.v

The default encoding is heros. Take a look at the output.

It is structured as two “always” blocks per [2]. The first one is combinational and does the next

state determination, and the second is sequential and just infers the flops. See [2] for an

explanation of why this is the preferred implementation.

Let’s look at the output code in detail.

Fizzim Fizzim 27

First, the module statement:

module cliff (

 output wire ds,

 output wire rd,

 input wire clk,

 input wire go,

 input wire rst_n,

 input wire ws);

Nothing special there, except that it uses the Verilog 2001 format.

Now look at the state encoding:

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110; // extra=1 rd=1 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

Recall that the heros format uses registered outputs as state bits. Fizzim.pl has assigned state bit

0 to “ds”, and state bit 1 to ‘rd”. There are only four states, but DLY and READ both have

state[1:0] equal to 01, because they have identical values of “ds” and “rd”. fizzim.pl recognizes

this, and adds an “extra” bit to distinguish these states. Thus, we end up with 3 state bits to cover

4 states, but since the registered outputs are encoded in the states, we still have fewer flops

overall. It is possible to force fizzim.pl to pull the output bits out of the state vector by changing

their type to “regdp”. See the section on datapath outputs below.

Also note that the IDLE state ended up as all zeros. In the absence of a requirement that would

prevent this, fizzim.pl heros encoding will favor the reset state as all zeros.

Fizzim Fizzim 28

Next comes the combinational always block:

 // comb always block

 always @* begin

 // Warning I2: Neither implied_loopback nor default_state_is_x attribute

is set on state machine - defaulting to implied_loopback to avoid latches

being inferred

 nextstate = state; // default to hold value because implied_loopback is

set

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

Pretty straightforward, and just what you would probably write if you were coding this by hand.

There’s a big case statement on “state”, and the inputs (go and ws) determine “nextstate”. But

notice the warning message.

// Warning I2: Neither implied_loopback nor default_state_is_x attribute is

set on state machine - defaulting to implied_loopback to avoid latches being

inferred

We have come to a philosophical fork in the road.

Some people, including Cliff Cummings, like to make the default value of the nextstate vector

equal to “X” before executing the “case” statement. This ensures that bad things will happen in

simulation if the case statement is wrong, but it also means that all loopback conditions need to

be entered explicitly.

Fizzim Fizzim 29

Other people prefer to make nextstate equal to current state before executing the case statement.

This means that the default action is loopback, so no explicit loopbacks are required.

Fizzim.pl is philosophically neutral on this (and most other such issues), so you can choose

which way you want it. This is done by setting an attribute on the FSM – either

“default_state_is_x” or “implied_loopback”. But to avoid problems for new users (who don’t

read the documentation first…), as of version 3.6 fizzim.pl will default to implied_loopback if

neither attribute is set.

Since this is Cliff’s state machine, we’ll do it Cliff’s way. Select “Global Attributes > State

Machine” and click the “User” button. Enter the attribute name “default_state_is_x” and give it

a value of “1”:

Save the file and re-run fizzim.pl. The warning message goes away and the combinational block

starts like this:

 // comb always block

 always @* begin

 nextstate = 3'bxxx; // default to x because default_state_is_x is set

 case (state)

 IDLE: begin

By the way, if we had used “implied_loopback” (create attribute “implied_loopback” and set it to

1), the output would have looked like this:

Fizzim Fizzim 30

 // comb always block

 always @* begin

 nextstate = state; // default to hold value because implied_loopback is

set

 case (state)

 IDLE: begin

Continuing with our tour of the heros output, we next have the code that assigns the outputs to

state bits:

 // Assign reg'd outputs to state bits

 assign ds = state[0];

 assign rd = state[1];

Then the sequential always block. Recall that we set the “reset_signal” attribute to “rst_n” and

it’s type as “negedge”. The “reset_state” was set to “IDLE”:

 // sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n)

 state <= IDLE;

 else

 state <= nextstate;

 end

If we had instead chosen the type as “negative”, we would have gotten an active-low

synchronous reset:

 // sequential always block

 always @(posedge clk) begin

 if (!rst_n)

 state <= IDLE;

 else

 state <= nextstate;

 end

The final bit of code is for simulation purposes and will be explained in “Ascii state name”

below.

6.5 Output using onehot

6.5.1 Output using onehot when “implied_loopback” is set.

The default onehot encoding is based on Steve Golson’s paper [2]. This technique doesn’t really

allow for the “default_state_is_x” behavior, so the output looks rather different when this

attribute is set (see below). The following discussion assumes implied_loopback is set (setting

neither flag is not recommended as it can result in inferred latches)

Fizzim Fizzim 31

fizzim.pl –enc onehot < cliff.fzm > cliff.v

Skipping over the module statement, here’s what our “state encoding” looks like:

 // state bits

 parameter

 IDLE = 0,

 DLY = 2,

 DONE = 1,

 READ = 3;

 reg [3:0] state;

 reg [3:0] nextstate;

Recall that onehot encoding uses one bit for each state. So, 4 states means 4 bits. The parameter

refers to the bit position in the vector. So, when the FSM is in state DONE, for example, only bit

1 will be set (the state vector will be 0010).

The combinational always block looks equally bizarre:

 // comb always block

 always @* begin

 nextstate = 4'b0000;

 case (1'b1) // synopsys parallel_case full_case

 state[IDLE]: begin

 if (go) begin

 nextstate[READ] = 1'b1;

 end

 else begin

 nextstate[IDLE] = 1'b1; // Added because implied_loopback is true

 end

 end

 state[DLY] : begin

 if (ws) begin

 nextstate[READ] = 1'b1;

 end

 else begin

 nextstate[DONE] = 1'b1;

 end

 end

 state[DONE]: begin

 begin

 nextstate[IDLE] = 1'b1;

 end

 end

 state[READ]: begin

 begin

 nextstate[DLY] = 1'b1;

 end

 end

 endcase

 end

Fizzim Fizzim 32

The “case (1)… state[IDLE]” gets translated to mean “when the IDLE bit of the state vector (0)

is a 1”. The nextstate is calculated by first setting it to all zeros, then turning on the bit that

represents the next state.

Note that, because of the way it is coded (set to all zeros, then set the bit), the issue of defaulting

the value doesn’t not arise for onehot. If something goes wrong, you get an illegal all-zeros state

which you never get out of. Since implied_loopback was set on this example, fizzim.pl added

the “hold state” path (where the comment about implied_loopback is in the code above).

Note the use of “//synopsys parallel_case full_case”. This tells DesignCompiler that it doesn’t

have to build logic to cover the illegal states (full_case), and it doesn’t have to build priority into

the case (parallel_case). This results in dramatically better synthesis results, but may require

special handling in formal verification.

The use of “//synopsys parallel_case full_case” on this case statement (onehot combinational

block) and in the regdp block described below is controlled by the state machine attribute

“onehot_pragma”. If this attribute is NOT set, you’ll get the code shown. If it IS set, fizzim.pl

will use the value string of this attribute in place of “synopsys parallel_case full_case”. This can

be used to add a pragma, delete one, or override this behavior entirely (by setting the attribute to

a null string). If you set it to a null string, expect significantly worse synthesis results!

The use of onehot_pragma causes fizzim.pl to issue warning O12 (this can be suppressed as

discussed later).

The sequential always block looks like this:

 // sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n)

 state <= 4'b0001 << IDLE;

 else

 state <= nextstate;

 end

It seems simpler to just set state to zero, then set state[IDLE] to one, but this format was used to

stay as close as possible to Steve Golson’s code in [3]. His “1 << IDLE” got changed to have the

full vector size to work around a bug in one of the Verilog simulators.

Note that there is now a third always block. It is a sequential always block, and creates the

registered outputs. This is necessary because, unlike heros encoding, there is no way to use the

state bits for registered outputs. The block looks at the value of “nextstate” and sets ds and rd

accordingly:

 // datapath sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n) begin

 ds <= 0;

 rd <= 0;

 end

Fizzim Fizzim 33

 else begin

 ds <= 0; // default

 rd <= 0; // default

 case (1'b1) // synopsys parallel_case full_case

 nextstate[IDLE_BIT]: begin

 ; // case must be complete for onehot

 end

 nextstate[DLY_BIT]: begin

 rd <= 1;

 end

 nextstate[DONE_BIT]: begin

 ds <= 1;

 end

 nextstate[READ_BIT]: begin

 rd <= 1;

 end

 endcase

 end

 end

Note that this structure changed with fizzim.pl version 2.0. Older versions will look different

from code show above.

This structure is also used for registered datapath (“regdp”) outputs (coming soon).

6.5.2 Onehot output when “default_state_is_x” is set

Golson’s code structure used above sets the nextstate vector to all zeros, then sets the single bit

according to the nextstate logic. This technique cannot be used when the default_state_is_x

behavior is required.

The handling of this case has changed with fizzim.pl revision 3.0. It now uses a format similar to

that used for SystemVerilog (see the section on SystemVerilog output). The state bits block

looks like this:

 // state bits

 parameter

 IDLE_BIT = 0,

 DLY_BIT = 1,

 DONE_BIT = 2,

 READ_BIT = 3;

 parameter

 IDLE = 4'b1<<IDLE_BIT,

 DLY = 4'b1<<DLY_BIT,

 DONE = 4'b1<<DONE_BIT,

 READ = 4'b1<<READ_BIT,

 XXX = 4'bx;

 reg [3:0] state;

 reg [3:0] nextstate;

Fizzim Fizzim 34

What’s new here is the creation of parameter values for the various states, and for the all-ex state.

These new parameter values are still based on the bit position parameters, but give a handy

shorthand that makes the nextstate code a little cleaner:

 // comb always block

 always @* begin

 nextstate = XXX; // default to x because default_state_is_x is set

 case (1'b1) // synopsys parallel_case full_case

 state[IDLE_BIT]: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 state[DLY_BIT]: begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 state[DONE_BIT]: begin

 begin

 nextstate = IDLE;

 end

 end

 state[READ_BIT]: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

The sequential always block and the datapath sequential always block are unchanged from the

implied_loopback case described above.

Fizzim Fizzim 35

6.6 Ascii state name

Notice that both heros and onehot had some extra simulation code at the end. The code for

onehot looks like this:

 // This code allows you to see state names in simulation

 `ifndef SYNTHESIS

 reg [31:0] statename;

 always @* begin

 case (1)

 state[IDLE]:

 statename = "IDLE";

 state[DLY]:

 statename = "DLY";

 state[DONE]:

 statename = "DONE";

 state[READ]:

 statename = "READ";

 default:

 statename = "XXXX";

 endcase

 end

 `endif

This code allows the designer to see the ascii state name in simulation (set the data type to ascii

in your waveform viewer), but does not affect synthesis. The “`ifndef SYNTHESIS/`endif”

replaces the old “//synopsys translate on/off” syntax for making this simulation-specific (thanks

to Cliff Cummings for pointing this out).

Equivalent code is generated for heros.

 // This code allows you to see state names in simulation

 `ifndef SYNTHESIS

 reg [31:0] statename;

 always @* begin

 case (state)

 IDLE:

 statename = "IDLE";

 DLY:

 statename = "DLY";

 DONE:

 statename = "DONE";

 READ:

 statename = "READ";

 default:

 statename = "XXXX";

 endcase

 end

 `endif

Here’s an example of what this looks like:

Fizzim Fizzim 36

This can be turned off by specifying the “-nosimcode” option on fizzim.pl.

This is automatically suppressed when SystemVerilog is selected, since the use of enumerated

types in SystemVerilog output makes special code unnecessary. You can force it back on by

using the “-simcode” option to fizzim.pl.

6.7 (Un)Displaying the attributes table

Notice that most of the examples so far have had the attributes table to the left of the state

machine. This is a handy feature, but you don’t have to use it. To turn it off, do “File >

Preferences” and uncheck the “Table Visible” box.

Alternatively, you can move the table to another (or its own) page. See the section on multiple

pages.

Fizzim Fizzim 37

7 Mealy outputs

Combinational outputs (Mealy outputs) are also supported. They are distinguished from

sequential outputs by setting the type field to “comb”.

A Mealy output is defined as an output which is dependent on both the state and the inputs.

There are two ways to describe a Mealy output. One way, which derives directly from the

definition, is to specify the combinational equation that describes the output for each state. The

other way is to specify the combinational equation that describes the output on each transition.

Fizzim supports either style.

Let’s add a Mealy output to Cliff’s state machine using the on-states method.

7.1 Mealy outputs assigned in states

Supposed we wanted to create an output that would toggle if “go” was asserted during state

“DLY”? This is just a comb output whose equation is “go” during the DLY state, and 0 at all

other times.

Back to Cliff Classic. Start by creating the new output “go_missed”. Go to the Global Attributes

> Outputs tab and add “go_missed” . Set the type to “comb” and the default value to 0.

(Example: cliff_mealy_onstates.fzm)

Fizzim Fizzim 38

Now edit the DLY state to change the equation to “go”.

The result looks like this:

Notice the go_missed output shows up on each state bubble with an “=” instead of a “<=”,

because it is of type “comb”.

Fizzim Fizzim 39

Re-run the backend, and the new output is added as type “reg”:

module cliff_classic (

 output wire ds,

 output reg go_missed,

 output wire rd,

 input wire clk,

 input wire go,

 input wire rst_n,

 input wire ws

);

That seems a bit counter-intuitive for a comb output, but recall that “reg” in Verilog doesn’t

necessarily imply a physical register. It’s type reg because it will be assigned in the

combinational always block, which now looks like this:

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 go_missed = 0; // default

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 go_missed = go;

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

Note that this structure changed with fizzim.pl version 2.0. Older versions will look different

from code show above.

Fizzim Fizzim 40

Notice the new lines have been added to each state’s case entry that assign values to go_missed.

Note the default value line (circled). To make the code easier to read, and to prevent latches,

fizzim.pl will output the default value, then suppress any non-default values for the output in the

case (state) block. If no default value is given, fizzim.pl will use “0”. This is to provide better

synthesis results out-of-the-box.

One side-effect of this may be zero-length transitions in some simulators. An alternative (used

by fizzim.pl pre-version 2.0) is to set the default to the variable itself. This could be done in the

example by setting the default for “go_missed” to “go_missed”. This would reproduce the

version 1.x behavior.

Note that output equations for comb outputs (in this case, just “go”) are NOT parsed by fizzim.

They are just strings to fizzim.

7.2 Mealy outputs assigned on transitions

Although this behavior could also be described by putting the equation “go” on the transition

from READ to DLY, and creating a loopback transition and putting the same equation on it, it is

probably most naturally described using the “on states” method above.

But there is a case where assigning the Mealy output on transitions might make more sense than

assigning it on states – when the Mealy output equation matches the transition equation.

Suppose we wanted to send out an early copy of the “rd” output on the transition from IDLE to

READ?

This is the same as saying that the new pre_rd output is equal to “go” in state IDLE. So, one way

to implement this is by setting the pre_rd output to “go” in the IDLE state, similar to the example

above.

But since the equation is the same as for the transition from IDLE to READ, another way is to

make the pre_rd output equal to 1 on the transition from IDLE to READ.

Let’s take a closer look at this approach. First, we’ll go back to cliff_classic and add the (comb)

pre_rd output:

(Example: cliff_mealy_ontransition.fzm)

Fizzim Fizzim 41

Fizzim will automatically transfer your new comb output to the states attributes list (as in the

previous example), as it does for registered outputs. If you want to specify a comb output

changing on a transition, you have to add it to the Transitions attribute list yourself:

Go to the Global Attributes > Transitions tab, and use the “Output” button to add “pre_rd”. Set

visibility to “Only non-default”.

Now double-click the IDLE to READ transition. It now has “pre_rd” as an attribute (of type

output). Change the value to 1.

Since we set the visibility to only non-default, the value will only show up on this transition, and

we get the following state diagram:

Fizzim Fizzim 42

Fizzim Fizzim 43

The Verilog output looks like this:

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 pre_rd = 0; // default

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 pre_rd = 1;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

So, the output pre_rd does indeed change when the transition path is taken.

7.3 Mixing the styles

Also, note that you can mix the two styles. If the output has been created as a transition attribute,

fizzim.pl will assume that you are going to use the “defined on transitions” approach, and the

comb output value defined on the state will be suppressed if it matches the default value. If it

doesn’t match the default value, it will be output, you’ll get a warning, and any non-default on-

transition values for that combinational output from that state will be suppressed.

In this fsm, the output “rd” has been declared as comb, and has been added to the transition

attributes table. So, fizzim.pl assumes that the definition will use the on-transitions style. The

default value of “rd” is 0 for both states and transitions. “rd” has been given a value of 1 on the

transition from IDLE to READ, and a value of 1 in states READ and DLY:

Fizzim Fizzim 44

(Example: cliff_preread.fzm)

The resulting output looks like this:

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 rd = 0; // default

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 rd = 1;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 // Warning C7: Combinational output rd is assigned on transitions, but

has a non-default value "1" in state DLY

 rd = 1;

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

Fizzim Fizzim 45

 nextstate = IDLE;

 end

 end

 READ: begin

 // Warning C7: Combinational output rd is assigned on transitions, but

has a non-default value "1" in state READ

 rd = 1;

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

In state IDLE, the defined state value is the same as the default value, so transition values are

used.

In states DLY and READ, however, rd has been assigned a non-default value of 1, so the line “rd

= 1” is output, and no assignment values are used on the transitions (because all the transitions

use the default value of 0). Warning C7 is issued to flag this issue.

Note that this structure effectively gives priority to non-default on-transition values, followed by

non-default on-state values, followed by default transitions values.

This is far from simple, so be very careful when mixing the two styles.

Fizzim Fizzim 46

8 Datapath outputs

Recall that fizzim has two types of registered outputs – reg and regdp. The “dp” in regdp stands

for “datapath”. When the type is regdp, fizzim will not attempt to encode the bits in the state

vector.

As a simple example, we’ll go back to Cliff Classic and change the type of output rd to regdp:

(Example: cliff_rdregdp.fzm)

Re-run fizzim.pl, and the output looks like this:

 // state bits

 parameter

 IDLE = 3'b000, // extra=00 ds=0

 DLY = 3'b010, // extra=10 ds=0

 DONE = 3'b001, // extra=01 ds=1

 READ = 3'b100; // extra=00 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 case (state)

 IDLE: begin

 if (go) begin

Fizzim Fizzim 47

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

 // Assign reg'd outputs to state bits

 assign ds = state[0];

 // sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n)

 state <= IDLE;

 else

 state <= nextstate;

 end

 // datapath sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n) begin

 rd <= 0;

 end

 else begin

 // Warning D11: Datapath output rd has no default value - using 0

 rd <= 0; // default to zero for better synth results (no default set in

.fzm file)

 case (nextstate)

 DLY : begin

 rd <= 1;

 end

 READ: begin

 rd <= 1;

 end

 endcase

 end

 end

Fizzim Fizzim 48

Notice that the signal rd is no longer included in the state vector, and that a third always block

has been added. This third always block does a “case” on nextstate, and assigns rd on the clock

edge – creating a registered rd output.

This is similar to the registered output format for onehot encoding discussed earlier. Note that

this particular fsm did not have a default value assigned for rd. As mentioned earlier, fizzim.pl

will default it to 0 for better synth results (and produce a D11 warning).

Well, that’s fine if all you want to do is pull bits out of the state vector. But the real value of

regdp is true datapath outputs. But suppose we wanted a counter to be controlled by the state

machine? You can’t very well embed that in the state bits! Some tools require you to push out a

control signal (usually a Mealy output) and implement the counter externally. Fizzim will let you

bury the counter right in with the state machine.

So, let’s add a counter. First, we add a regdp output called count[8:0].

(Example: cliff_counter.fzm)

The “Multibit Output” button creates an example with the correct syntax (bit field after the

name).

Add an input of “load[8:0]” so we can load the counter.

Fizzim Fizzim 49

Now go around to the states and assign the counter like this:

IDLE: 8’b0

READ: load[8:0]

DLY: count[8:0] - 1

DONE: count[8:0] + 1

The result looks like this:

Fizzim Fizzim 50

Save it away and re-run fizzim.pl, and here’s what you get:

Fizzim Fizzim 51

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110; // extra=1 rd=1 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

 // Assign reg'd outputs to state bits

 assign ds = state[0];

 assign rd = state[1];

 // sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n)

 state <= IDLE;

 else

 state <= nextstate;

 end

 // datapath sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n) begin

 count[8:0] <= 8'b0;

Fizzim Fizzim 52

 end

 else begin

 count[8:0] <= 8'b00000000; // default

 case (nextstate)

 IDLE: begin

 count[8:0] <= 8'b0;

 end

 DLY : begin

 count[8:0] <= count[8:0] - 1;

 end

 DONE: begin

 count[8:0] <= count[8:0] + 1;

 end

 READ: begin

 count[8:0] <= load[8:0];

 end

 endcase

 end

 end

Note that, as with comb outputs, the values for regdp outputs are not parsed by fizzim. They’re

just strings. Outputs of type reg must be parsed so that they can be included in the state

assignments. Currently, only constants are allows as values in reg outputs (no macros,

parameters, etc) because fizzim.pl must parse them.

Note also that fizzim.pl does a string compare to see if a default value matched the assigned

value. That’s why the IDLE case gets “count[8:0] <= 8’b0” – because the default value of

“8’b00000000” doesn’t match.

Fizzim Fizzim 53

9 Flags (new with version 4.0)

Starting with version 4.0, there is a new output type - flags. Flags are like a cross between a

comb and a regdp. Like a comb, they can be assigned on both transitions and states. But, unlike

comb outputs, they are registered - independent of the state vector like a regdp.

9.1 Basic Example (flag set only on states)

One common use of flags is to keep track of where you've been. Let's look at an example.

Starting with the cliff_classic fsm design again, suppose we wanted to skip the DLY state the

very first time only, then run normally.

Go to Global Attributes > Outputs, and click the "Flag" button. This will give you a new entry

with the Type set to "flag". We'll create one called "done_that". Set "ResetValue" to 0.

Note that you cannot set a default value on a flag (the gui won't let you). A flag is intended to

hold it's state until it is explicitly changed, whereas other outputs take on their default value

whenever not explicitly changed. So, it makes no sense to have a default value for a flag. But,

since it is a register, it needs a reset value. That's what the new "ResetValue" column is used for.

Also note the UserAtts field has "suppress_portlist". This is included automatically when a new

flag type output is created using the "flag" button. Since flags are normally only used internally,

the "flag" button inserts this for you (you can delete it if you wish).

OK, now that we have our flag, we can start assigning values to it. We'll set it true in state

DONE, and add a transition from READ to DONE with the equation "!been_there":

Fizzim Fizzim 54

Note that the values use a "<=" to indicate that flags are registers.

For heros encoding, the resulting code looks like this:

Fizzim Fizzim 55

module cliff_classic (

 output wire ds,

 output wire rd,

 input wire clk,

 input wire go,

 input wire rst_n,

 input wire ws

);

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110; // extra=1 rd=1 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

 reg been_there;

 reg next_been_there;

 // comb always block

 always @* begin

 nextstate = 3'bxxx; // default to x because default_state_is_x is set

 next_been_there = been_there;

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 next_been_there = 1;

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 if (!been_there) begin

 nextstate = DONE;

 end

 else begin

 nextstate = DLY;

 end

 end

 endcase

 end

Fizzim Fizzim 56

 // Assign reg'd outputs to state bits

 assign ds = state[0];

 assign rd = state[1];

 // sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n) begin

 state <= IDLE;

 been_there <= 0;

 end

 else begin

 state <= nextstate;

 been_there <= next_been_there;

 end

 end

Fizzim Fizzim 57

Notice all the code that got added! "been_there" got created, along with "next_been_there", and

the setting of "been_there" got added to the main sequential always block.

9.2 Flags set on transitions

OK, but we probably could have done that with a regdp. The real power of flags is being able to

set them on transitions.

As an example, now assume that we want to change the fsm to only pay attention to "ws" once

per transaction. We can do this by setting a flag (done_that) on the way from DLY to READ,

and clearing it again on the way from DLY to DONE.

Creating flags that change on transitions is like creating Mealy comb outputs. You have to create

the output, then add it to the transitions table:

Fizzim Fizzim 58

Now edit the arcs from DLY to READ and from DLY to DONE as described:

The resulting code looks like this:

Fizzim Fizzim 59

module cliff_classic (

 output wire ds,

 output wire rd,

 input wire clk,

 input wire go,

 input wire rst_n,

 input wire ws

);

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110; // extra=1 rd=1 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

 reg been_there;

 reg done_that;

 reg next_been_there;

 reg next_done_that;

 // comb always block

 always @* begin

 nextstate = 3'bxxx; // default to x because default_state_is_x is set

 next_been_there = been_there;

 next_done_that = done_that;

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws && !done_that) begin

 nextstate = READ;

 next_done_that = 1;

 end

 else begin

 nextstate = DONE;

 next_done_that = 0;

 end

 end

 DONE: begin

 next_been_there = 1;

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 if (!been_there) begin

 nextstate = DONE;

 end

 else begin

 nextstate = DLY;

Fizzim Fizzim 60

 end

 end

 endcase

 end

 // Assign reg'd outputs to state bits

 assign ds = state[0];

 assign rd = state[1];

 // sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n) begin

 state <= IDLE;

 been_there <= 0;

 done_that <= 0;

 end

 else begin

 state <= nextstate;

 been_there <= next_been_there;

 done_that <= next_done_that;

 end

 end

Fizzim Fizzim 61

Notice the flag being set/cleared on the "if" code that corresponds to the transition arc.

Instead of a simple flag, we could use a multibit variable, and look at a count. Change

"done_that" to "count[7:0]", then change the equation to use "ws && (count <=4)", for example:

9.3 Capturing incoming data on an arc using flags

Flags can also be used to capture incoming data on an arc. In this case, we'll add an input

addr_in[7:0] and a flag output addr_out[7:0]. But we're likely to want addr_out to be available in

the portlist, so we'll delete the "suppress_portlist" from UserAtts:

Fizzim Fizzim 62

We also add addr_out[7:0] to the Transitions page so we can use it on transitions:

Fizzim Fizzim 63

We double-click the transition from IDLE to READ, and enter "addr_in" as the value:

Now our state diagram looks like this:

Fizzim Fizzim 64

Fizzim Fizzim 65

10 Transition priority

10.1 Basic Example

Suppose we add an input to Cliff Classic called “test” that will cause the FSM to pop over to

DONE, wait for test to go away, then pop back to IDLE?

(Example: cliff_priority.fzm)

Since we expect test to be false during normal operation, we can just change the DONE->IDLE

equation to “!test”.

If we run fizzim.pl, the following warnings appears:

 IDLE: begin

 // Warning P3: State IDLE has multiple exit transitions, and

transition trans0 has no defined priority

 // Warning P3: State IDLE has multiple exit transitions, and

transition trans6 has no defined priority

This is telling us that we haven’t defined what the FSM should do when both test and go are true.

Assume that we give priority to test. We could change the equation for the IDLE->READ

transition to be “!test && go”. But this gets really tedious when the transition equations get

Fizzim Fizzim 66

complicated. If we were coding the FSM by hand, we would just encode the priority into the

if/else stucture in Verilog by putting the “if (test)” first.

 if (test) begin

 nextstate = DONE;

 end

 else if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

You can do this in fizzim by assigning a “priority” attribute to the transitions. This will tell

fizzim.pl what order to use in the if/else block in Verilog.

First we create a “priority” attribute for transitions in Global Attributes > Transitions. There’s

even a handy button to do it for you!

Note that I set the default priority to 1000 – a number larger than I expect to ever use. That

means that any transition whose priority is not defined explicitly will have low priority. More on

this in a moment.

Now we can set priority 1 on the test transition out of idle, and priority 2 on the go transition

(double-click each transition and edit the value of priority).

Fizzim Fizzim 67

Now when we run fizzim.pl, and the IDLE transition block looks like this:

 IDLE: begin

 if (test) begin

 nextstate = DONE;

 end

 else if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

You might be wondering why fizzim.pl didn’t complain about the loopback path on IDLE before

we added the transition priorities. For that matter, why doesn’t it complain about the exits from

DLY? One is “ws” and the other is “1” (because this is the default value for the transition

attribute “equation” that was set in the Global Attributes – fizzim sets it this way by default), and

they both have the default priority of 1000.

The answer is that the equation value of “1” gets special handling by fizzim.pl.

10.2 The special case of equation equal to “1”

OK, let’s go back to the original Cliff Classic state machine. We’ll turn equation visiblity to

YES so that all the transition equations are visible (they were set to “Only non-default” to

suppress all the “1” equations):

Fizzim Fizzim 68

Why don’t I need a “!go” equation on the IDLE loopback (and “!ws” on the DLY to DONE

transition)?

The answer is that fizzim.pl has some special rules regarding transition priority and equations

equal to “1”. First, if two exit transitions have the same (or no) priority set, the one with the

always-true equation (“1”) is assumed to have lower priority, and no warning is issued.

Similarly, if there are only two exit conditions and the always-true one is the lower priority

(either due the rule above or because it has explicitly been set), no warning is issued.

So, fizzim.pl sees the transition equations from IDLE as “go” and “1”, and assumes that “1” is

the default (lower-priority) transition.

But there’s a little more to this than just saving some typing. It allows fizzim.pl to output

Verilog code that matches what most designers would have written had they coded this by hand.

You wouldn’t write:

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else if (!go) begin

 nextstate = IDLE;

 end

Fizzim Fizzim 69

You’d write this:

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

You’d look at the state diagram, recognize that the loopback was the default, and make it the

“else” condition.

But fizzim has no easy way of inferring what is the default condition. So, you have to tell it.

That’s what priority is for – to tell fizzim.pl what the order of the “if” statement ought to be.

That’s what priority is for – to tell fizzim.pl what the order of the “if” statement ought to be.

If you don’t like this feature, you don’t have to use it. Let’s add the “missing” equations:

(Example: cliff_classic_explicit_equations.fzm)

The Verilog output now looks like this:

 // comb always block

 always @* begin

Fizzim Fizzim 70

 nextstate = 3'bxxx; // default to x because default_state_is_x is set

 case (state)

 IDLE: begin

 // Warning P3: State IDLE has multiple exit transitions, and

transition trans0 has no defined priority

 // Warning P3: State IDLE has multiple exit transitions, and

transition trans5 has no defined priority

 if (go) begin

 nextstate = READ;

 end

 else if (!go) begin

 nextstate = IDLE;

 end

 end

 DLY: begin

 // Warning P3: State DLY has multiple exit transitions, and transition

trans2 has no defined priority

 // Warning P3: State DLY has multiple exit transitions, and transition

trans3 has no defined priority

 if (ws) begin

 nextstate = READ;

 end

 else if (!ws) begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

Except for the warnings, this is what you would expect.

The warnings are telling you that you have two non-1 transition equations and haven’t defined

their priorities. You and I know that they are mutually exclusive, but fizzim.pl doesn’t parse the

equations, so it doesn’t know. So, it warns you.

But you can easily turn the warnings off. To turn off this specific warning, use the –nowarn

switch:

fizzim.pl –nowarn P3 < cliff.fzm > cliff.v

You can also turn off whole groups of warnings (“P” means priority warnings) by just using the

letter:

fizzim.pl –nowarn P < cliff.fzm > cliff.v

Fizzim Fizzim 71

So, if you prefer to always use explicit equations, and never use priorities, just use “-nowarn P”

when you invoke fizzim.pl.

Fizzim Fizzim 72

11 Adding gray codes

Back to Cliff Classic. Here’s what heros came up with for the state encoding:

IDLE is 000, and READ is 110. Suppose we wanted the transition from IDLE to READ to be

gray coded?

Easy – just add a “graycode” attribute the transition.

So, we double-click the transition, and…

(Example: cliff_graycode.fzm)

001

010

110

000

Fizzim Fizzim 73

Wait, there’s no “graycode” attribute, and no buttons to add one. How do we add a “graycode”

attribute?

Recall that attributes on individual states and transitions are only available once they’ve been

added in the global tabs.

So, select “Global Attributes > Transitions”. Click the “Graycode” button. Select whatever

visibility you want (we suggest “Only non-default”) and click OK.

Fizzim Fizzim 74

Now double-click the transition and change the value of the graycode field to “1”.

Fizzim Fizzim 75

Save the file and re-run fizzim.pl, and the state encoding changes to this:

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b110, // extra=1 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b010; // extra=0 rd=1 ds=0

Note that the IDLE to READ transition is now graycoded (000 to 010). Also, a comment has

been added on the transition itself:

 IDLE: begin

 if (go) begin

 nextstate = READ; // graycoded

 end

 else begin

 nextstate = IDLE;

 end

It is not always possible to make a transition gray coded. As an experiment, we’ll try changing

the value of “rd” in DONE to “1”, then turning on gray code on the DONE to IDLE transition.

The DONE to IDLE transition is a double-bit change in the registered outputs, so no gray code is

possible. Save it and run fizzim.pl, and we get this:

Error: No valid state assignment found in range of 3 to 6 bits - try using -

minbits 7 -maxbits 7 on the command line or in be_cmd. - exiting

Note that it is possible to get this error even when gray coding is not strictly impossible.

Fizzim.pl has certain rules for limiting the number of state bits to try. The error shows the range

it tried. If you have a case where you think there really SHOULD be an encoding that meets all

your requirements and fizzim.pl just isn’t finding it, try using the “-maxbits” switch on fizzim.pl

to widen the search space:

fizzim.pl -minbits 7 –maxbits 7 < cliff.fzm > cliff.v

In this case, it just isn’t possible, so you still get the error:

Error: No valid state assignment found in range of 7 to 7 bits - try using -

minbits 8 -maxbits 8 on the command line or in be_cmd. - exiting

Notice that you could get around this by making one or more of your outputs type “regdp” (see

below). This would allow the gray code, but whether this is really a solution is open to debate.

Sure, the state machine is gray coded, but the outputs can now be out-of-sync with the state

machine. Whether this meets the original need for gray coding is up to the designer.

Gray coding is, of course, not possible with onehot encoding.

Fizzim Fizzim 76

12 Mapping states to values in heros

In addition to the impossible gray code example shown above, there are other cases where

fizzim.pl may have trouble finding a mapping of states to codes that meets all the user

requirements.

Starting with version 4.0, the algorithm got a little smarter, and it also got more controllability.

To avoid long runtimes, fizzim.pl will only attempt a limited number of bit ranges. If it cannot

find a correct mapping, it will error out with messages as shown above:

Error: No valid state assignment found in range of 3 to 6 bits - try using -

minbits 7 -maxbits 7 on the command line or in be_cmd. - exiting

At this point, you might want to examine your requirements and see that they really do make

sense. If you still think fizzim.pl should be able to find a mapping, start bumping -minbits and -

maxbits.

Fizzim.pl can also error out of this mapping code if it runs too many iterations:

Error: No valid state assignment found after 10000000 iterations. Try using -

minbits 8 or increase max iterations using -iterations - exiting

If you're still convinced that their should be a mapping, and you're willing to expend some more

cpu time looking for it, you can increase the iterations limit by using the "-iterations" option on

the command line or in be_cmd. Using the suggested -minbits value will skip all bit lengths that

are known to fail, thus speeding up the search and not consuming those iterations.

Fizzim Fizzim 77

13 Stubs

Suppose we wanted to add an “abort” input to Cliff Classic that would cause the FSM to go back

to idle, no matter what state it happened to be in? It’s easy enough to add the transitions, but the

resulting FSM has so many arcs that it becomes very difficult to read.

To avoid this problem, transitions can be designated as “stubs”. Stubs are just like regular

transitions, except the arc only goes to a stub symbol with the name of the destination state.

Here’s how we would create the stub back to idle on abort for Cliff Classic. After adding “abort”

as an input, we create new transition arcs back to IDLE for each state by right-clicking in open

space and selecting “New State Transition”. This brings up a box where we can select the states

and set the equation. To make it a stub, check the “Stub?” box.

We’ll also have to add priorities to the transition attributes and assign the DLY->READ

transition on “ws” a lower priority than the “abort” transition.

(Example: cliff_abort_stub.fzm)

Fizzim Fizzim 78

The resulting Verilog has all the expected transitions:

 always @* begin

 nextstate = 3'bxxx; // default to x because default_state_is_x is set

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY: begin

 if (abort) begin

 nextstate = IDLE;

 end

 else if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 if (abort) begin

Fizzim Fizzim 79

 nextstate = IDLE;

 end

 else begin

 nextstate = IDLE;

 end

 end

 READ: begin

 if (abort) begin

 nextstate = IDLE;

 end

 else begin

 nextstate = DLY;

 end

 end

 endcase

 end

Fizzim Fizzim 80

14 Bringing out internal signals

14.1 Renaming internal signals

The default values of the state vector, nextstate vector, and ascii statename are “state”,

“nextstate”, and “statename”, respectively. You can change this on the command line using the

switches “-statevar”, “-nextstatevar”, and “-statenamevar”.

14.2 Bringing out internal signals

Sometimes the designer wants to bring the internal state vectors (state and/or nextstate) out as

ports on the module. This is not done by adding them to the output list (fizzim.pl will error out if

you do this). Instead, there are special FSM global attributes that you can set:

 “stateout” – value field is the name of the signal to use. Do not use [m:n] – size will be

determined automatically by fizzim.pl.

 “nextstateout” – value field is the name of the signal to use. Again, do not use [m:n] –

size will be determined automatically by fizzim.pl.

Fizzim Fizzim 81

If the signal name matches the internal signal name (“state” and “nextstate” by default – see

“renaming internal signals” below), fizzim.pl will output these directly.

module cliff_classic (

 output wire ds,

 output wire rd,

 output reg [2:0] state,

 output reg [2:0] nextstate,

 input wire clk,

 input wire go,

 input wire rst_n,

 input wire ws);

(Example: cliff_stateout.fzm)

If not, it will create a new wire with the correct width for the output and assign this wire to the

internal signal. Suppose we change the names to “mystate” and “mynextstate”.

(Example: cliff_mystateout.fzm)

module cliff_classic (

 output wire ds,

 output wire rd,

 output wire [2:0] mystate,

 output wire [2:0] mynextstate,

 input wire clk,

 input wire go,

Fizzim Fizzim 82

 input wire rst_n,

 input wire ws);

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110; // extra=1 rd=1 ds=0

 reg [2:0] state;

 assign mystate = state;

 reg [2:0] nextstate;

 assign mynextstate = nextstate;

In other words, whatever you name it, fizzim.pl will do the right thing.

Note that SystemVerilog does not support outputting the state variables as module ports. This is

because the state variables are enumerated types and not available outside the module

(technically, the declaration could be moved outside the module, but then there is no way of

knowing if this conflicts with something else in the design).

So, in SystemVerilog, the internal state/nextstate variables must be different from the port names.

This can be accomplished in one of two ways. First, you can simple give the output a different

name, like the “mystate/mynextstate” example above. In this case, the SystemVerilog output

would look like this:

module cliff_classic (

 output logic ds,

 output logic rd,

 output logic [2:0] mystate,

 output logic [2:0] mynextstate,

 input logic clk,

 input logic go,

 input logic rst_n,

 input logic ws

);

 // state bits

 enum logic [2:0] {

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110, // extra=1 rd=1 ds=0

 XXX = 'x

 } state, nextstate;

 assign mystate = state;

 assign mynextstate = nextstate;

Fizzim Fizzim 83

The other approach is to use the –statevar/-nextstatevar options to rename the internal names.

The example file cliff_stateout.fzm normally produces an error when run with –lang

SystemVerilog:

module cliff_classic (

 output logic ds,

 output logic rd,

Error: Cannot use state or nextstate variables as module ports in

SystemVerilog - you must rename them. See documentation for details. -

 exiting

But when run with “-statevar stateI –nextstatevar nextstateI”, it produces this:

module cliff_classic (

 output logic ds,

 output logic rd,

 output logic [2:0] state,

 output logic [2:0] nextstate,

 input logic clk,

 input logic go,

 input logic rst_n,

 input logic ws

);

 // state bits

 enum logic [2:0] {

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110, // extra=1 rd=1 ds=0

 XXX = 'x

 } stateI, nextstateI;

 assign state = stateI;

 assign nextstate = nextstateI;

Either way, the result is the same - different names for the ports and the internal signals.

Fizzim Fizzim 84

15 Using parameters

Parameters are a very handy feature of the verilog language. They allow code to be written once

and used in a variety of contexts with different widths, for example. They also provide a

mechanism for applying meanful names to values – fizzim.pl uses parameter statements to assign

names to the state values, for example.

Parameters are often preferable to `define values because they are more tightly bound to their

module, instead of being global. If fizzim.pl used `define to specify the statenames, for example,

this might accidentally redefine this value elsewhere in the design.

Stating with version 3.6, fizzim supports parameters. They are entered in the gui as state

machine attributes of type “parameter”:

Fizzim Fizzim 85

This results in a “parameter block” begin added to the module statement:

module cliff_classic

 #(

 parameter ADDR_WIDTH = 20,

 parameter DATA_WIDTH = 128

)(

 output reg [ADDR_WIDTH-1:0] addr,

 output reg ds,

 output reg rd,

 input wire clk,

 input wire go,

 input wire rst_n,

 input wire ws

);

The default values specified in the gui will be used as the defaults.

These parameter values can then be used to specify things inside the fsm. In the example above,

ADDR_WIDTH was used as part of the declaration of “addr”:

Note that “addr” is of type “regdp”. Parameters cannot be used to size type “reg” outputs! This

is because fizzim.pl needs to know the size of type “reg” outputs at compile time in order to

create the state vector assignments.

Fizzim Fizzim 86

16 Inserting random bits of code at strategic places

Fizzim.pl has the following attributes that allow you to insert random bits of code at strategic

locations:

 insert_at_top_of_file – string from value field will be inserted at the top of the file, before

the “module” statement.

 insert_in_module_declaration – string from value field will be inserted into the module

declaration.

 insert_at_top_of_module – string from value field will be inserted after the module

statement, but before anything else.

 insert_at_bottom_of_module - string from value field will be inserted just before the

endmodule statement.

 insert_at_bottom_of_file - string from value field will be inserted after the endmodule

statement.

Using these “hooks”, it should be possible to insert about anything you want into the Verilog

code.

Since it is common to insert a large chunk of code at the top of the file (copyright statement),

there is a special attribute that will read from a file an put whatever it finds at the top of the

output file:

 include_at_top_of_file – pointer to file whose contents should be inserted at the top of the

file.

Currently, the other insert_at attributes have no similar file provision, although it would be easy

to add. There just doesn’t seem to be any great need for it.

Fizzim Fizzim 87

17 Inserting comments

All of the attribute forms have a comment field. Some of these comments are intended for the

visible table in the gui, some are for the Verilog code, some show up in both, and some are

utterly useless. Here’s a basic guide:

Comment Field Attribute On

Diagram?

In Verilog?

Globals > State

Machine

name Yes Yes – on “module” line

 clock Yes No

 reset_signal Yes No

 reset_state Yes No

 <user atts> Yes No

Globals > Inputs <all> Yes Yes – on input declaration of module statement

Globals > Outputs <all> Yes Yes – on output declaration of module statement

Globals > States name No No

 <outputs> (outputs

tab)

No

Globals > Transitions name No No

 equation Yes No

 <user atts> Yes No

State Properties name No Yes – on STATE: line in comb block case statement

 <outputs> No No

Transition Properties name No Yes – on transitions “if” statement in comb block

 <user atts> No No

Fizzim Fizzim 88

18 Using multiple pages

Fizzim will also let you split the FSM across multiple pages.

We’ll start with a simple example. Back to Cliff Classic. Let’s move the READ state to its own

page.

(Example: cliff_classic_multipage.fzm)

Click the “Create New Page” tab at the bottom left. We now have 2 page tabs:

Fizzim Fizzim 89

Pop back to Page 1, select the READ state by clicking on it, then right-click to select Move to

Page > Page 2:

Fizzim Fizzim 90

Page 1 now looks like this:

Fizzim Fizzim 91

The arcs leading to/from state READ now terminate on page connectors. Input arcs come in

from the left, output arcs go out on the right.

Page 2 looks like this:

Fizzim Fizzim 92

The usual editing rules apply. You can select the page connectors, state, etc and move them

around to clean up the diagram.

One handy use of multiple pages is to move the attributes table to its own page. You can select

the attributes table just like a state and move it.

Fizzim Fizzim 93

19 `include and `define

Many designers prefer to assign constants by using names set by `define:

`define OPCODE_READ 4’b0110

Often these `define statements will be put into a single shared file, which is then read into

Verilog using the `include directive.

This is easy enough to do in fizzim, provided that the values are not being assigned to a output

of type “reg”. This restriction will be explained in a moment. For now, let’s look at how you

can do it for type comb or regdp.

(Example: cliff_ticdefine.fzm)

Since values of comb and regdp are not parsed by fizzim.pl, there’s no problem using a `define

value. Here, I’ve added a multibit output called “opcode[1:0]” and given it values of `NOP,

`READ, `DELAY, and `INCR.

Now I create my “defines.v” file:

`define NOP 2'b00

`define READ 2'b01

Fizzim Fizzim 94

`define DELAY 2'b10

`define INCR 2'b11

To get it read in, we use the state machine attribute “insert_at_top_of_file” (see “inserting

random bits of code a strategic places above), and set it to:

`include "defines.v" \n\n

The result looks like this:

`include "defines.v"

module cliff_ticdefines (

 output wire ds,

 output reg [1:0] opcode,

 output wire rd,

 input wire clk,

 input wire go,

 input wire rst_n,

 input wire ws

);

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110; // extra=1 rd=1 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 opcode[1:0] = `NOP; // default

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 opcode[1:0] = `DELAY;

…

So, why not allow type reg? Well, the problem is that fizzim.pl must know the values for type

reg outputs so that it can encode the state machine properly (well, not for onehot, but the idea is

to have a single source able to produce both heros and onehot).

Fizzim Fizzim 95

Fine, so parse the Verilog, right? Well, it’s not quite that simple. First, you’d have to FIND the

include file(s). Does that mean parsing the “.vc” file and reproducing Verilog’s directory

searchpath algorithm? Hmmm. And what if the `define statements are in among other compiler

directives? Now you have to parse most or all of the compiler directives as well.

Worse, the code generation happens in a different step than the simulation or synthesis. What

happens if someone edits the defines file after the FSM code is generated? Ouch. To get around

this, you’d probably want to add some sort of sim-only code that verifies that the required values

didn’t change. But that only works for simulation, what about synthesis? Ideally, you’d like to

do this with compiler directives, but I don’t see how to do that.

So, it might be feasible, but allowing `define values for reg outputs raises a lot of thorny issues,

as well as being a fair amount of work. So, for now, it remains on the “maybe, but probably not”

list.

Fizzim Fizzim 96

20 Forcing the state vector

Despite the heros encoding’s ability to do all that whizzy stuff, some control-freaks (or speed-

freaks!) will still insist on forcing particular values onto the state bits.

Fizzim.pl doesn’t support this directly (in part because we think it’s generally a bad idea), but it’s

easy enough to fake it. How you fake it depends on whether you want to just force the

assignments (making the registered outputs datapath bits), or you want to force the assignments,

then use the values as your registered outputs.

20.1 With registered outputs as datapath bits

To force the state assignment without trying to use the values as registered outputs, here’s what

you do:

First, create your registered outputs as type regdp.

Now, add an output called, for example, “STATE” with the width of your state vector. Edit each

state to assign this to your target value.

Here’s what Cliff Classic looks like with this done:

(Example: cliff_forcestate_regdp.fzm)

Fizzim Fizzim 97

If you’ve encoded the state bits correctly, heros will find your encoding to be just exactly what it

needs, and you get output like this:

 . . .

// state bits

 parameter

 IDLE = 2'b00, // STATE[1:0]=00

 DLY = 2'b10, // STATE[1:0]=10

 DONE = 2'b11, // STATE[1:0]=11

 READ = 2'b01; // STATE[1:0]=01

. . .

 // Assign reg'd outputs to state bits

 assign STATE[1:0] = state[1:0];

20.2 With registered outputs assigned to state bits

If you want to assign your registered outputs to bits from your forced state vector, do this:

(Example: cliff_forcestate_regout.fzm)

Change their type to “comb” and set their default values to assign each to a state bit (ex:

name=ds, Default value=STATE[0]). Add the STATE vector as described above.

Fizzim Fizzim 98

The result would look something like this:

Fizzim Fizzim 99

To make it look even prettier, you could turn the default visibility on rd and ds to “NO”, then go

to one state (IDLE) and turn it on:

Or you could turn visibility off complete, and add the mapping as free text. You get the idea.

Fizzim Fizzim 100

However you choose to do it, the comb block will now look like this:

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 ds = STATE[0]; // default

 rd = STATE[1]; // default

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

Now your outputs are forced to the state bit values.

Fizzim Fizzim 101

21 Suppressing outputs in the module portlist

Starting with version 4.0, there is a new "UserAtt" called "suppress_portlist" that will remove

any output from the module portlist. It defaults true for flags. For other outputs, you have to set

it manually. Just edit the "UserAtts" column on the "Outputs" page and add "suppress_portlist".

Fizzim Fizzim 102

22 Splitting lines in free text and equations

Beginning with gui version v110824 and fizzim.pl version 4.01 (package release 4.01), you can

split lines in free text and transition equations by embedding newline characters in the text. Just

insert the string "\n". This will cause a line break when the text (free text or transition equation)

is displayed in the gui. Free text is never part of the fizzim.pl verilog/systemverilog output, but

the newline will be stripped from transition equations before the output is generated.

Fizzim Fizzim 103

23 Unknown states

Most state machines have more possible combinations of the state bits than they have states.

Cliff_classic is like this. Due to the fact that two of the states have identical outputs, the heros

encoding will use 3 bits for the states – one for rd, one for ds, and one “extra”. This means that

only 4 of the 8 possible values of the 3-bit state vector correspond to states of the state machine.

There’s no inherent problem in this. The coding of the fsm guarantees that it will not be possible

to get into any of these “unknown” states. The logic created by synthesis will only ever go to

legal states. The only way the fsm can get into one of these states is if the gates or flipflops

malfunction. This is distinct from a “bug in the fsm” which would mean the fsm didn’t do what

the designer intended. Getting into one of these states requires a circuit problem, not a design

flaw.

Still, some designers like to design their fsm such that these unknown states go to a known state

– so the fsm doesn’t “hang” if the circuit malfunctions (but it had better be a one-time

malfunction or all bets are off). Fizzim supports this through an attribute called

“undefined_states_go_here”.

23.1 Case 1 – sparse state space and unknowns go to an existing state

Here’s a simple example. We’ll add the undefined_states_go_here attribute to cliff_classic, and

send the unknown states to IDLE.

Recall that the nature of the output values in cliff_classic forces fizzim to generate a 3-bit vector

for this 4-bit state machine:

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110; // extra=1 rd=1 ds=0

So, there are lots of undefined state values (100, for example). Using the

undefined_states_go_here attribute, we can have fizzim create code that will send the fsm to

IDLE if it ever lands in one of these states.

"undefined_states_go_here" is a state attribute, and it is not predefined in the gui (it is a "user"

attribute). So, as with other such special attributes, we have to create it first, then set it:

To create a new user attribute, use Global Attributes > States

Fizzim Fizzim 104

Click "User" and type in the name. Set the default value to 0 and set visibility however you like.

Now, double click on IDLE and set the value of this attribute to 1 in this state:

The state diagram should now look like this:

Fizzim Fizzim 105

Now, the case statement will look like this:

 // comb always block

 always @* begin

 nextstate = state; // default to hold value because implied_loopback is

set

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

Fizzim Fizzim 106

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 default : begin

 nextstate = IDLE; // Added because undefined_states_go_here is set

 end

 endcase

 end

Note the addition of the "default : " statement. Any states that don't match the known ones fall

through to this statement and the next transition will be to IDLE.

23.2 Case 2 – full state space and unknowns go to an existing state

OK, so what happens if we change the encoding so that this 4-bit state machine actually fits into

a 2 bit state vector?

Notice that the state vector is now only 2 bits:

 // state bits

 parameter

Fizzim Fizzim 107

 IDLE = 2'b00, // rd=0 ds=0

 DLY = 2'b11, // rd=1 ds=1

 DONE = 2'b01, // rd=0 ds=1

 READ = 2'b10; // rd=1 ds=0

Well, you get the "default :" statement anyway:

 reg [1:0] state;

 reg [1:0] nextstate;

 // comb always block

 always @* begin

 nextstate = 2'bxx; // default to x because default_state_is_x is set

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 default : begin

 nextstate = IDLE; // Added because undefined_states_go_here is set

 end

 endcase

 end

This is harmless functionally, but it might be useful for linting tools that insist on seeing the

"default :".

23.3 Case 3 – sparse state space and unknowns go to a new state

OK, back to the original cliff_classic. Suppose, rather than have unknown states go to IDLE, we

want them to go to a new ERROR state (note: I don't recommend actually calling the state

Fizzim Fizzim 108

"ERROR", since I always avoid using the string in verilog names as it makes grepping more

difficult)?

Well, just add the new state as usual, create the undefined_states_go_here attribute as above, and

set it in the new state:

The resulting code looks like this:

 // state bits

 parameter

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 ERROR = 3'b100, // extra=1 rd=0 ds=0

 READ = 3'b110; // extra=1 rd=1 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

 // comb always block

 always @* begin

 nextstate = 3'bxxx; // default to x because default_state_is_x is set

 case (state)

 IDLE : begin

 if (go) begin

 nextstate = READ;

Fizzim Fizzim 109

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE : begin

 begin

 nextstate = IDLE;

 end

 end

 ERROR: begin

 end

 READ : begin

 begin

 nextstate = DLY;

 end

 end

 default : begin

 nextstate = ERROR; // Added because undefined_states_go_here is set

 end

 endcase

 end

23.4 Case 4 – full state space and unknowns go to a new state

Ahah! What if the space state was already full and we added the ERROR state? Are we going to

end up with a 3-bit vector instead of a 2-bit vector just to have a now-useless ERROR state?

NO! Fizzim is smart enough to detect this. If fizzim sees a state with undefined_states_go_here

set, and there are no transitions into this state, and it is not the reset state, it will first try the state

encoding without this state. If this encoding ends up full, the special state is suppressed.

Fizzim Fizzim 110

 // state bits

 parameter

 IDLE = 2'b00, // rd=0 ds=0

 DLY = 2'b11, // rd=1 ds=1

 DONE = 2'b01, // rd=0 ds=1

 READ = 2'b10; // rd=1 ds=0

 // Note: State ERROR (with undefined_states_go_here attribute) dropped

because it had no transitions into it and the state map was full without it.

 reg [1:0] state;

 reg [1:0] nextstate;

 // comb always block

 always @* begin

 nextstate = state; // default to hold value because implied_loopback is

set

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

Fizzim Fizzim 111

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

Notice the "Note: " showing what fizzim has done.

What if this special state has outputs? Well, if the outputs are comb or regdp, nothing changes.

The default of the output will always be asserted. For a comb output, you get something like

this:

 // state bits

 parameter

 IDLE = 2'b00, // extra=0 rd=0

 DLY = 2'b01, // extra=0 rd=1

 DONE = 2'b10, // extra=1 rd=0

 READ = 2'b11; // extra=1 rd=1

 // Note: State ERROR (with undefined_states_go_here attribute) dropped

because it had no transitions into it and the state map was full without it.

Use -force_keep_undefined_goto_state to override this.

 reg [1:0] state;

 reg [1:0] nextstate;

 // comb always block

 always @* begin

 nextstate = state; // default to hold value because implied_loopback is

set

 ds = 0; // default

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 DLY : begin

 ds = 1;

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

Fizzim Fizzim 112

 end

 DONE: begin

 ds = 1;

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

For a regdp output, you'll get this:

 // datapath sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n) begin

 err <= 0;

 end

 else begin

 err <= 0; // default

 // Warning D9: Did not find any non-default values for any datapath

outputs - suppressing case statement

 end

 end

This ends up as a wire tied to ground...

If, however, you declare this output as type "reg", you won't get the special state suppression

functionality. Type "reg" means the bit is supposed to be part of the state vector. Figuring out

which outputs could be suppressed (and tying them off) is just too hard - use a regdp or comb.

Note that this suppression behavior an be overidden using the "-

force_keep_undefined_goto_state" switch.

Fizzim Fizzim 113

24 Controlling and suppressing warning messages

Fizzim.pl has a couple of command-line switches that allow you to control what warning

messages are generated, and where they go.

Currently, warning messages are placed in the following groups:

1. “R” messages – Reset-related warnings.

2. “I” messages – Implied loopback warnings.

3. “P” messages – Priority-related warnings.

4. “C” messages – Combinational output-related warnings.

Each individual message also has a number. Note that the numbers within the group are not

necessarily continguous, since each number is itself unique across all groups.

So, for example, warning message “R1” is “No reset specified” and warning message “R5” is

“No reset value for datapath output <output> set in reset state <state> - Assigning a reset value of

<value> based on default”.

You can use the –nowarn switch to suppress these warnings. Using the full group+number will

suppress just that message:

-nowarn R1

Using just the group will suppress all messages in the group, so:

-nowarn R

suppresses all reset messages.

You can also control where the messages are sent using the –warnout switch. This switch has 3

possible values:

 stdout – place the messages in the Verilog as comments.

 stderr – just send the messages to unix stderr.

 both – send the messages to both places.

The default value for warnout is “both”.

Fizzim Fizzim 114

25 Printing and exporting the state diagram

One of the nice things about using a gui-based FSM design tool is the ability to use the state

diagram in your documentation. In addition to printing the state diagram, you can export it in

three ways:

1. As a .png file

2. As a .jpg file

3. Directly to the clipboard

Having the attributes table on the diagram allows you to put ALL the information into your

documentation quickly and easily.

All the state diagrams in this paper were inserted using the export to clipboard feature.

Note that currently fizzim only prints/exports one page at a time.

Fizzim Fizzim 115

26 Specifying the fizzim.pl options

There is a special state machine attribute called “be_cmd” that is used to specify the backend

command to run. Some day, this will be used to run the backend from within the gui. That’s still

on the todo list (because it has some platform dependencies), but the be_cmd attribute is fully

supported in fizzim.pl. The attribute is parsed to obtain the options and those options are treated

exactly as if they had been specified on the command line – ahead of the actual command line

options. Since they come first, they can be overridden by the options specified on the command

line, giving priority to these.

Fizzim Fizzim 116

27 Requiring a minimum revision of fizzim.pl

Beginning with revision 3.6, fizzim.pl has a command line option (more often used in be_cmd)

“-minversion” which will cause it to error out if it’s version is less than the version specified:

$ cat cliff.fzm | fizzim.pl -minversion 6.1

Error: Version 3.55 is less than required minversion 6.1 – exiting

This is to cover the situation where your fsm requires a specific feature or bug fix.

Fizzim Fizzim 117

28 Group select and move

The fizzim gui also supports multiple item select and move. In this case, the “items” are states

and the attribute table – transitions are only moved by moving the attached state(s).

Any modifications made to attached transitions are generally retained if both of the attached

states are moved (in fact, whenever possible, they are retained when a single attached state is

moved).

A common example is having to move the while fsm because the attribute table grew too big.

Suppose I added a be_cmd and ended up with this:

I can move the whole fsm by selecting all the states either by selecting each state individually

(click, ctl-click, ctl-click, etc), or by drawing a box around the whole fsm:

Fizzim Fizzim 118

And then just drag it to the new location.

Fizzim Fizzim 119

Notice that my arcs didn’t change.

Fizzim Fizzim 120

29 –terse (-sunburst) option

Cliff Cummings of Sunburst Design is one of the industry’s top Verilog experts. He participates

in standards activities, teaches Verilog and SystemVerilog classes, and presents frequently on all

things Verilog.

Cliff is a firm believer in “less is more”. He prefers a coding style that eliminates any and all

unnecessary syntax (like begin/end blocks, etc). fizzim.pl has an option (-terse or –sunburst) that

will produce this sort of output.

Here’s an example:

(Example: cliff_terse_example.fzm)

Standard output looks like this:

module cliff_classic (

 output wire ds,

 output reg pre_rd,

 output reg rd,

 input wire clk,

 input wire go,

 input wire rst_n,

 input wire ws

);

 // state bits

 parameter

 IDLE = 3'b000, // extra=00 ds=0

 DLY = 3'b010, // extra=10 ds=0

 DONE = 3'b001, // extra=01 ds=1

 READ = 3'b100; // extra=00 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 pre_rd = 0; // default

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 pre_rd = 1;

 end

 else begin

 nextstate = IDLE;

 end

 end

Fizzim Fizzim 121

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

 // Assign reg'd outputs to state bits

 assign ds = state[0];

 // sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n)

 state <= IDLE;

 else

 state <= nextstate;

 end

 // datapath sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n) begin

 rd <= 0;

 end

 else begin

 rd <= 0; // default

 case (nextstate)

 DLY : begin

 rd <= 1;

 end

 READ: begin

 rd <= 1;

 end

 endcase

 end

 end

 // This code allows you to see state names in simulation

 `ifndef SYNTHESIS

 reg [31:0] statename;

 always @* begin

 case (state)

 IDLE:

 statename = "IDLE";

 DLY :

 statename = "DLY";

Fizzim Fizzim 122

 DONE:

 statename = "DONE";

 READ:

 statename = "READ";

 default:

 statename = "XXXX";

 endcase

 end

 `endif

endmodule

The sunburst version looks like this:

module cliff_classic (

 output ds,

 output reg pre_rd,

 output reg rd,

 input clk,

 input go,

 input rst_n,

 input ws

);

 // state bits

 parameter

 IDLE = 3'b000, // extra=00 ds=0

 DLY = 3'b010, // extra=10 ds=0

 DONE = 3'b001, // extra=01 ds=1

 READ = 3'b100; // extra=00 ds=0

 reg [2:0] state;

 reg [2:0] nextstate;

 // comb always block

 always @* begin

 nextstate = 3'bx; // default to x because default_state_is_x is set

 pre_rd = 0; // default

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 pre_rd = 1;

 end

 else nextstate = IDLE;

 end

 DLY : if (ws) nextstate = READ;

 else nextstate = DONE;

 DONE: nextstate = IDLE;

 READ: nextstate = DLY;

 endcase

 end

 // Assign reg'd outputs to state bits

 assign ds = state[0];

Fizzim Fizzim 123

 // sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n)

 state <= IDLE;

 else

 state <= nextstate;

 end

 // datapath sequential always block

 always @(posedge clk or negedge rst_n) begin

 if (!rst_n) rd <= 0;

 else begin

 rd <= 0; // default

 case (nextstate)

 DLY : rd <= 1;

 READ: rd <= 1;

 endcase

 end

 end

 // This code allows you to see state names in simulation

 `ifndef SYNTHESIS

 reg [31:0] statename;

 always @* begin

 case (state)

 IDLE: statename = "IDLE";

 DLY : statename = "DLY";

 DONE: statename = "DONE";

 READ: statename = "READ";

 default: statename = "XXXX";

 endcase

 end

 `endif

endmodule

Fizzim Fizzim 124

30 SystemVerilog output

Beginning in revision 3.0, fizzim.pl can produce output in SystemVerilog format.

SystemVerilog is invoked by specifying “-language SystemVerilog” on the command line (or in

the be_cmd attribute string – see the section on be_cmd).

The code is structured to follow coding guidelines from Cliff Cummings (as taught in his

SystemVerilog class). The primary changes are in the following areas:

1. Use of logic data type instead of wire and reg

2. Use of enumerated types instead of parameters for state names. In most waveform

viewers, the eliminates the need for special code to be able to see the state names.

Because of this, the “-simcode” option defaults to off when the language is

SystemVerilog (the default is on normally).

3. Use of always_comb, always_ff instead of always_at *

4. Use unique case instead of “//synopsys full_case parallel_case” in onehot encoding

(unless the attribute “onehot_pragma” is set).

The heros output for cliff_classic looks like this in SystemVerilog:

module cliff_classic (

 output logic ds,

 output logic rd,

 input logic clk,

 input logic go,

 input logic rst_n,

 input logic ws

);

 // state bits

 enum logic [2:0] {

 IDLE = 3'b000, // extra=0 rd=0 ds=0

 DLY = 3'b010, // extra=0 rd=1 ds=0

 DONE = 3'b001, // extra=0 rd=0 ds=1

 READ = 3'b110, // extra=1 rd=1 ds=0

 XXX = 'x

 } state, nextstate;

 // comb always block

 always_comb begin

 nextstate = XXX; // default to x because default_state_is_x is set

 case (state)

 IDLE: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

Fizzim Fizzim 125

 end

 DLY : begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 DONE: begin

 begin

 nextstate = IDLE;

 end

 end

 READ: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

 // Assign reg'd outputs to state bits

 assign ds = state[0];

 assign rd = state[1];

 // sequential always block

 always_ff @(posedge clk or negedge rst_n) begin

 if (!rst_n)

 state <= IDLE;

 else

 state <= nextstate;

 end

endmodule

The heros output for cliff_classic looks like this in SystemVerilog:

module cliff_classic (

 output logic ds,

 output logic rd,

 input logic clk,

 input logic go,

 input logic rst_n,

 input logic ws

);

 // state bits

 enum {

 IDLE_BIT,

 DLY_BIT,

 DONE_BIT,

 READ_BIT

 } index;

 enum logic [3:0] {

 IDLE = 4'b1<<IDLE_BIT,

 DLY = 4'b1<<DLY_BIT,

Fizzim Fizzim 126

 DONE = 4'b1<<DONE_BIT,

 READ = 4'b1<<READ_BIT,

 XXX = 'x

 } state, nextstate;

 // comb always block

 always_comb begin

 nextstate = XXX; // default to x because default_state_is_x is set

 unique case (1'b1)

 state[IDLE_BIT]: begin

 if (go) begin

 nextstate = READ;

 end

 else begin

 nextstate = IDLE;

 end

 end

 state[DLY_BIT]: begin

 if (ws) begin

 nextstate = READ;

 end

 else begin

 nextstate = DONE;

 end

 end

 state[DONE_BIT]: begin

 begin

 nextstate = IDLE;

 end

 end

 state[READ_BIT]: begin

 begin

 nextstate = DLY;

 end

 end

 endcase

 end

 // sequential always block

 always_ff @(posedge clk or negedge rst_n) begin

 if (!rst_n)

 state <= IDLE;

 else

 state <= nextstate;

 end

 // datapath sequential always block

 always_ff @(posedge clk or negedge rst_n) begin

 if (!rst_n) begin

 ds <= 0;

 rd <= 0;

 end

 else begin

 ds <= 0; // default

 rd <= 0; // default

 unique case (1'b1)

 nextstate[DLY_BIT]: begin

 rd <= 1;

Fizzim Fizzim 127

 end

 nextstate[DONE_BIT]: begin

 ds <= 1;

 end

 nextstate[READ_BIT]: begin

 rd <= 1;

 end

 endcase

 end

 end

endmodule

Fizzim Fizzim 128

31 Future directions / wishlist

 Multi-page print

 Better support for pages sizes other than 8-1/2 by 11.

 (Limited?) parsing of `include files for `defines and/or parameters to allow their use as

values for reg outputs.

Fizzim Fizzim 129

32 Acknowledgements

The authors would like to acknowledge the following individuals for their assistance in mapping

our the feature set and reviewing the output:

Bruce Lavigne – Hewlett Packard

Mark Gooch – Hewlett Packard

Jon Watts – Hewlett Packard

Cliff Cummings – Sunburst Design

Fizzim Fizzim 130

33 References

(1) Synthesizable Finite State Machine Design Techniques Using the New

SystemVerilog 3.0 Enhancements

Cliff Cummings

 Synopsys Users Group 2003 San Jose

 (available at www.sunburst-design.com)

(2) State machine design techniques for Verilog and VHDL

Steve Golson

Synopsys Users Group 1994 San Jose

(available at www.trilobyte.com)

(3) Coding And Scripting Techniques For FSM Designs With Synthesis-Optimized,

Glitch-Free Outputs

Cliff Cummings

 Synopsys Users Group 2000 Boston

 (available at www.sunburst-design.com)

http://www.sunburst-design.com/
http://www.trilobyte.com/
http://www.sunburst-design.com/

