FizZim — an open-source FSM design environment

Paul Zimmer
Zimmer Design Services

Michael Zimmer
Zimmer Design Services
(and University of California, Santa Barbara)

Brian Zimmer
Zimmer Design Services
(and University of California, Davis)

Zimmer Design Services
1375 Sun Tree Drive
Roseville, CA 95661

paulzimmer@zimmerdesignservices.com

website: www.zimmerdesignservices.com

18 February, 2014

mailto:paulzimmer@zimmerdesignservices.com
www.zimmerdesignservices.com

ABSTRACT

Finite State Machine design is a common task for ASIC designer engineers. Many designers
would prefer to design FSM’s in a gui-based environment, but for various reasons no commercial
tool for this task has really achieved wide-spread acceptance. The authors have written such a
graphical FSM design tool, and offer it to the engineering community for free under the GNU
public license. The gui is written in Java for portability, while the back-end code generation is
written in Perl to allow for easy modification. The paper will describe the basic operation of the
tool and the format of the Verilog it produces, then go on to describe some of the more advanced
features and how they affect the Verilog output.

=2 FILLIM

The FSM Design Tool

Free!

Fizzim 2 Fizzim

Table of contents

1 Introduction - What IS fIZZIM?c.oiiiii e 5
S v U1 €[00 I 474 [PSR 6
2L WINOOWS ..ottt bt b et h e bbb b e b€ e 0 b £ bt Eeh £ ekt A b h £ eb e A E e s e e bt AR e s b eb e e b e s b ekt n b e s e et e nreneenennenea 6
2.2 LLINUX vttt ettt bt h et b bR h bR R R R R £ R R R eR e AR oA £ R AR R £ R e AR e R £ e R e AR R e R nE R e e Rt e E et et e e r e erenre e 6

3 GUI DASICS ...ttt bbbttt bbb bbb e b 7
A ATTTDULES ...ttt bbbt b bbbt b ettt b b b 8
ST = 0 To{ To 1o PSR 9
5.1 Highly Encoded with Registered Outputs as Statebits (HEROS) ..o 9
5.2 0NB HOL .. R R E e E et 9

L O V1 i O P T (o PSRRI 10
6.1 Creating the SEALESeiueicieite ettt b bbb bbbtk b e bbb bbbt e bt b e bbbt b 11
6.2 Creating the traNSTTIONS ..ot bbb bbbttt b e bbb et sbe et nb e 13
6.3 FIllING 1N TNE AELATIS ...ttt b e bbbt b e et sb et nb e 16
6.3.1 GlODAI ALFIULES. .. .ceeitice bbbttt 16
6.3.2 Individual State AIITDULESoiiiiiiie bbb 23
6.3.3 Individual TranSition AFIDULESccoiiiiiiiir bbb 25

6.4 OULPUL USTNG NEIOS ...ttt ettt b e e b etk b bbb bbb e b e b b e bt e b b e bt e b e b e bt e bbbt b b st b 26
6.5 OULPUL USTNG ONENOL.......iiiiitiicieite et bbbttt b ettt b bbb bbb bbb e st b 30
6.5.1 Output using onehot when “implied 100pback™ IS SEL.ccvvviiieiiiriiiiii e 30
6.5.2 Onehot output when “default State IS X IS SET....cceririiriiiiriiriieiieirese st 33

6.6 ASCIT STALE NAIMIEttt bbbt b bbbt b e e bt b e e bt e b b e bt e b b e bt e bt e bbb eb e b b st et r e 35
6.7 (Un)Displaying the attribues taDIEooi i e 36

T MEAIY OULPULS ...ttt bbbttt nb e bbb ere s 37
7.1 Mealy OULPULS @SSIGNET N STALEScveiviietiite ettt bbbt bbbt b et b et nb e 37
7.2 Mealy outputs assigned ON trANSILIONScoeiiirieiiie ettt sb e et sb e 40
7.3 MIXING ThE SEYIES ...ttt e b et bbbttt b et b e bbbt bbbt e bt e bbb e bbb e bt b 43

8 Datapati OULPULS.eeivieieceiesiee ettt et e e ste e esreenteeneenneennas 46
9 Flags (NeW With VEISION 4.0)coiiiiiiiiieie ittt 53
9.1 Basic Example (flag Set ONlY 0N SALES)oveiiiiiieiie e 53
9.2 FIags SEL ON rANSTTIONS......eviietiite ettt ettt bbb bbb bbb bbb bbb e eb e b e bt 57
9.3 Capturing incoming data on an arc USING FlAgSccooerriiiiie e 61
10 TrANSIEION PIIOTTLY .ottt bbbttt b et b e b 65
10.1 BASIC EXAMPIE ..ottt bbbtk ek e s kbbbt b bbbt b bbb 65
10.2 The special case of equation equal t0 “17cciiiiiiiiiiie e e 67
11 AddING Gray COUES..... .ottt bbbttt b et bbb b e 72
12 Mapping states t0 VAIUES IN NEIOScceiiiiiiiiieeee e 76
13 RS (00RO 77
14 Bringing out INtrnal SIgNAISooviiiiiiii e 80
14.1 Renaming iNtErNAl SIGNAISc.eiiriiiiiiicre ettt bbbttt 80
14.2 Bringing OUL INEINAI SIGNAISc.civiiiiitiieiitie e b ettt nb e 80
15 USINQG PAFAMETEIS. ...eieiiiiteite ittt b e bbbt e e b et et be st et ne e 84
16 Inserting random bits of code at StrategiC PlaCesScccevveririiiiiiiieeee e 86
17 INSEITING COMMIEBNTS ...ttt bbbttt b e bbb b 87
18 USING MUITIPIE PAGES. ... ei vttt bbb 88
19 TInClude and "deFINec.oouiiiiicieee e 93
20 FOrCiNg the StAte VECTOc.eiiiiiieieiieiei ettt bbbt bbb 96

Fizzim 3 Fizzim

20.1 With registered outputs as datapath DItScoiiiiiii e 96

20.2 With registered outputs assigned t0 SAte DTScoceoeiiiieiiiec e 97
21 Suppressing outputs in the module POrtlist...........ccooiiiiiiiii 101
22 Splitting lines in free text and eQUALTIONS...........c.cvrieieiiieere e 102
23 UNKNOWN SEAEESccuiiuiiteieiteste ettt bbbt bbb 103

23.1 Case 1 — sparse state space and unknowns go to an exXisting Statecccoererriireinienenee e 103

23.2 Case 2 — full state space and unknowns go t0 an exiSting STAte............coerrereiiriereisesee e 106

23.3 Case 3 — sparse state space and UnKNOWNS g0 t0 8 NEW SEALEccveierierieieiire e 107

23.4 Case 4 — full state space and UnknNOWNS O t0 @ NEW SEALE.........cciirieiierieirieiee e 109
24 Controlling and suppressing Warning MESSAJESccververrerrerrerereseaieeseenrensesressessesseees 113
25 Printing and exporting the state diagramceeeieirierenerese e 114
26 Specifying the fizzim.pl OPLIONSc.ooiiiiii e 115
27 Requiring @ minimum revision of fiIzzim.pl..........ccoooiiiin 116
28 Group SEIECT aN0 MOVE.......cc.iiiiiiiieiee bbb 117
29 —terse (-SUNDUISE) OPTIONoueiiiiiiiieieie ettt sb e 120
30 SYStEMVErIIOG OULPUL ..ot 124
31 Future directions / WISNIIST...........coveiiiiiiicie e 128
32 ACKNOWIEAGEMENTS ...t 129
33 RETEIBNCES ...ttt 130

Fizzim 4 Fizzim

1 Introduction - What is fizzim?

Finite State Machines come up frequently in digital design. Sometimes designers code them
directly in Verilog, but many designers prefer to design their FSMs as a state diagram (“bubbles
and arrows”) and then manually translate this diagram into Verilog.

For these designers, it would certainly be handy to design the FSM directly in a graphical tool
and allow the software to generate the Verilog code. There have been several attempts by
various EDA companies, large and small, to provide such a tool, but nothing has really gotten
much traction.

This may be because the tool is in a strange niche. It is really too small to support business on an
EDA scale, but it is too large for a “G-job”. Also, the graphical part of the G-job is outside the
usual experience of hardware designers.

So, it seems a good candidate for an open source project, provided someone is willing to tackle
that nasty graphical part.

Someone has! Paul Zimmer and his young interns at Zimmer Design Services, Mike Zimmer
and Brian Zimmer, are proud to present fizzim — an open-source, graphical FSM design
environment.

Throughout this tutorial, it is assumed that the reader is familiar with FSM’s and common FSM-
related terms (such as Moore and Mealy). If the reader is unfamiliar with some of this material,
just read through some of the papers in the “references” section.

Note on the current state of the documentation:

The format of the pages changed a little bit with version 4.0. Older sections of the document
have not been update yet. Usage is unchanged.

Fizzim 5 Fizzim

2 Starting fizzim

The fizzim gui is written in java. It is distributed as a “.jar” (java archive) file. We run it using
Sun Java Runtime Environment. Odds are that you already have this loaded for your browser,
but if not you can download it from java.sun.com.

2.1 Windows

On most Windows machine, Java Runtime Environment will already be registered as the correct
app for “jar” files, so just double-clicking on the file should start it. If that doesn’t work, you
can start a terminal window and use the command-line approach as in Linux below.

2.2 Linux

On linux, try right-clicking the file and select “open using”. If java runtime is listed, you’re in
business. You can also run from the command line using:

java —jar fizzim_v10.02.26.jar
Starting with version 4.0, you can also add the fizzim file on the command line:

java -jar fizzim_v11.03.02.jar myfsm.fzm

Fizzim 6 Fizzim

3 GUI basics

The gui is pretty intuitive. Right-click in open space gives you a menu to create new states and
transitions. Right-click on an object gives you a menu to edit the object. Double (left) click on
an object will bring up the properties menu for that object.

Edit>undo or ctl-Z will undo, Edit>redo or ctl-Y will redo. Undo/redo is unlimited.

Fizzim 7 Fizzim

4 Attributes

It is our belief that few hardware engineers will want to touch the gui, but many will want to
modify the Verilog output. In recognition of this, every attempt has been made to try to keep the
gui as independent of the Verilog generation as possible.

To accomplish this, virtually everything is implemented as “attributes”. This should allow new
backend (Verilog-generation) features to be added without touching the gui. Also, while the gui
IS written in Java, the backend is in the lingu-franca of EDA — perl.

There are only 3 types of objects to the gui — the state machine itself, states, and transitions.

Each of these can have attributes assigned to it. But state and transition object attributes have to
be defined first in the global “states” and “transitions” attribute menus before they will be
available in individual states and transitions. The gui knows about a few special attributes, but
only those that require that the display be modified. Examples include transition equations (drop
the “equation =" on the visible text) and output types (use “=" for combinational and “<=" for
registered).

Inputs and outputs are just attributes. The name field is the name of the input or output signal.

Each attribute has 5 fields:

e Attribute Name — this is the name of the input or output, or the name of the special
attribute.

e Default Value — Default value of the attribute. Will be used if no value is assigned in a
state/transition.

e Visibility — Turns on/off visibility on the display. “Only non-default” means to only
show the attribute if its value doesn’t match “Default Value”.

e Type — Information about the attribute. Inputs currently have no defined type, outputs can
be “reg”, “regdp”, or “comb”. Others are attribute-specific.

e Comment — An optional comment that will show up on the diagram, in the Verilog, both,
or neither (see the section on comments).

e Color — Text color.

e (new with version 4.0) UserAitts - a per-item list of attributes for use by the backend
processor.

Fizzim 8 Fizzim

5 Encodings

There are two primary types of state encodings used for FSM design. Highly encoded FSM’s use
a dense binary code and few flops but can sometimes have very complex combinational logic.
One-hot FSM encodings, on the other hand, use a sparse code and many flops, but usually have
much simpler combinational logic. There are many papers on the advantages and disadvantages
of each (reference [2] is one example).

The backend perl script (fizzim.pl) supports both of these encodings.

5.1 Highly Encoded with Registered Outputs as Statebits (HEROS)

Heros is an encoding that uses a dense binary code. As the name implies, registered outputs will
be encoded into the states to minimize flop count. There are mechanisms (discussed below) to
allow particular outputs to be excluded from the state vector. The actual Verilog format is based
on recommendations from Cliff Cummings’ paper (reference [3]).

5.2 One Hot

One-hot encoding is also supported. The Verilog format is based on Steve Golson’s paper
(reference [2]). Some features, such as gray coded transitions, are not available with one-hot
encoding.

Fizzim 9 Fizzim

6 CIliff’s Classic

Let’s jump right in with an example. In [3], Cliff Cummings introduced the following basic state
machine:

Here’s how we would create this in fizzim (Example: cliff_classic.fzm).

Fizzim 10 Fizzim

6.1 Creating the states
Right-clicking in open space gives the following menu:

File Edit Global Attributes Help

Cuick New State
New State
MNew State Transition

New Loophack Transition
New Free Text

We select “New State” and get this:

Edit State Properties [E|

Edit the properties of the selected state:
Aftribute Mame Yalue Wisibility Type Camment Caolor
harrne stated e def_typhe
Width: |130 |
Height: |130 |
OK Cancel

Fizzim 11 Fizzim

Change the state name to “IDLE” and hit “OK”.

Repeat this to add the other three states. Left-click and drag to move the states around.

STATE MACHINE

name def_name

clock clk posedge
TRANSITIONS

eguation 1 def_type

Fizzim 12 Fizzim

6.2 Creating the transitions

To create the state transitions, we can either right-click in open space and select “New State
Transition” and get the full menu:

Edit State Transition Properties

Edit the properties of the selected state transition:
Attribute Mame Yalue Wisibility Twpe Comment Caolar
name transi (I} def_type
equation 1 MR def_type
Start State: |DLY |w [] Stub?
End State: DONE |« oK cancel
13

Fizzim

Fizzim

Or we can right-click on the start state and select “Add State Transition to”:

DLY

Add Loopback Transition

Add State Transition to... »| IDLE
Edit State Properties READ
Mowve to Page... ¥ DONE

We repeat this to add all the transitions. Don’t forget to add the loopback transition. We’ll see
why this matters in a moment.

Notice that when we add the transition from DLY back to READ, we get something like this:

Fizzim 14 Fizzim

STATE MACHINE

name def_name

clock clk posedge
TRANSITIONS

eguation 1 def_type

That doesn’t look so great, so we need to move one of the transitions. To do this, left-click to
select it. Endpoints and anchorpoints appear:

Fizzim 15 Fizzim

Drag the endpoints to a new location, then drag the anchorpoints to reshape the curve. The
anchorpoints on the ends of the arc control where the arc intersects the state bubble. The other
two control the shape of the curve.

If you move a state bubble, the attached arcs will move with it. As long as the move isn’t too
drastic, the anchorpoint modifications you made will be retained. If you move the state a lot, the
anchorpoints may get reset. This works better than it sounds. Mostly your anchorpoints are
retained when it makes sense.

All text, including the transition equation (the “1”” above), output values in states, state names,
and free text, can be moved by just selecting it and moving it.

Don’t forget to add the loopback transition. We’ll see why this matters in a moment.

6.3 Filling in the details

6.3.1 Global Attributes

Recall that everything is stored as attributes — either attributes on the FSM itself or attributes on
individual states and transitions. So, adding inputs, outputs, transition equations, etc is a matter
of editing attributes.

Let’s start with the global FSM attributes. It is necessary to start here, because the individual
state and transition attributes won’t appear until they are entered as global attributes.

Fizzim 16 Fizzim

Select “Global Attributes > State Machine” from the top menu:

E Fizzim - cliff_classic_juststatesandiransitions.fzm
File Edit | Global Attributes | Help

STATE| State Machine -
name| [nputs § |
clock osedge

TRANg| Outputs
equat] States =f_type

Transitions

Create New Page Page1 X

Fizzim 17 Fizzim

And you get this:

Edit Global Properties

l/ State Machine |/ Inputs |/ Outputs |/ States |/Tran5itinn5

X

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.'

Attribute Mame | Defaultvalue Wisibility Type Comment Colar
narne del_name [l
clock clk [l posedge

Delete User Reset

oK

Cancel

Edit the fields to fill in the module name “clift”, the clock name “clk”, and make it a posedge clk.

Click the “Reset” button, and two more attributes appear. One is “reset_signal”. Change this to
“rst n”, negedge. Set “reset_state” to IDLE via the pull-down menu and set its type to
“anyvalue” (“allzeros” and “allones” will force the reset state to be all zeros or all ones, but this

isn’t compatible with onehot encoding, so we won’t use it on this example).

Fizzim

18

Fizzim

Edit Global Properties

l/ State Machine |/ Inputs r Outputs |/ States |/Transitinns

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.’

3

Attribute Mame | Defaultalue Wisibility Type Comment Colar
narme cliff Mo
clock clk Mo posedge
reset_signal rst_n Mo negedge
reset_state IDLE [+o ammalue
Delete User Reset
OK Cancel

Hit OK. Notice that IDLE now has a double ring to indicate it is the reset state.

Now select “Global Attributes > Inputs” from the top menu.

Fizzim

19

Use the “Input” button to add the inputs:

Edit Global Properties D__(|
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'

r State Machine |T Inputs r Outputs |/ States rTransitinns

Aftribute Mame | Default Yalue Yisibility Type Comment Color
clk [
rst_n [
4o [
WS [

Delete User Input Multibit Inpurt

OK Cancel

Note that “type” doesn’t matter for inputs. We could click OK, then reselect “Global Attributes

> Outputs” from the top menu, or we can just switch to the “Outputs” tab without exiting the
menu.

Click “Output” twice to add the two outputs, “rd” and “ds”. Their type field should be “reg”.
Set “Default Value” to 0, and visibility “Yes”.

Fizzim 20 Fizzim

Edit Global Properties

(State Machine r Inputs |T Outputs r States |/Transitinns

3

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

Aftribiute Mame Default Walue Wigibilit Type Comment Caolar
rd I} eS req
s I} eS req
Delete User Output Muktibit Output
0K Cancel

This will become clearer later, but type “reg” means that they are registered outputs (Moore) and
that they should be encoded as state bits.

Now flip over to the “States” tab. “rd” and “ds” now appear as state attributes. This means you

will be able to assign particular values to them in particular states.

Fizzim

21

Fizzim

Edit Global Properties

3

Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’
(State Machine r Inputs r Outputs |T States rTransitinns |

Aftribiute Mame Default Walue Wigibilit Type Comment Caolar
narme def_name eS def_type
rd I} eS output
s I} eS output

Delete User

OK Cancel

Flip over to the “Transitions” tab. “rd” and “ds” do NOT appear here, because it makes no sense
to define registered outputs on a transition. The standard attribute “equation” DOES appear here,

with the default value of “1”. Leave it alone. But you can change the “Visibility” field to “Only
non-default” to make the “1” equations not show up on the diagram.

Fizzim 22 Fizzim

Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.'

f State Machine |/ Inputs |/ Outputs |/ States |/Transitinns

Aftribute Mame| Default Yalue Wigibility Type Comment Zolar
narmne del_name ¢ [o] def_type
equation 1 Qnly non-def... |def_type
Delete User Graycode Outpurt Priority
0K Cancel
6.3.2 Individual State Attributes

Now we can enter the output values into the states. Notice that the outputs now appear on the

states with a “<=" after them. This indicates registered outputs (

Fizzim

23

9

means combinational).

Fizzim

STATE MACHINE
name cliff
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
INPUTS
clk

rst_n

go

WS
OUTPUTS

rel 0 reg

ds a reg
STATES

rol o output

ds 0 output
TRANSITIONS

eguation 1 def_type

Now we need to enter the non-default values for rd and ds. Right-click on the READ state and
select “Edit State Properties” to bring up the menu. Or just double-click the READ state bubble.
Change the value of rd to “1”.

Edit State Properties rz|
Edit the properties of the selected state:
Aftribute Mame Yalue Yigikility Type Comment Color
narne READ Nk def_type
rol 1 e autput
ds 1] Nk autput
Width: |130 |
Height: |130 |
OK Cancel

Fizzim 24 Fizzim

Do this for the other states to add appropriate output values (rd =1 in DLY, ds =1 in DONE).
6.3.3 Individual Transition Attributes

Double-click on the IDLE to READ transition to bring up the transition menu. Change the
equation to “go”.

Edit State Transition Properties E'
Edit the properties of the selected state transition:
Attribiute Mame Wallue Wigibilit Type Comment Caolar
narme frans1 [0 def_type
equation oo Cnly non-default| def_type
Start State: |IDLE |« [| stub?
End State: READ |+ oK cancel

Hit “OK”. Now click on the “go” text and move it:

Repeat this for the state transition from DLY back to READ that has an equation of “ws”.

Our final state diagram looks like this.

Fizzim 25 Fizzim

STATE MACHINE
name cliff
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
INPUTS
clk

rst_n

go

WS
OUTPUTS

rel 0 reg

ds a reg
STATES

rol o output

ds 0 output
TRANSITIONS

eguation 1 def_type

You might have noticed that I did not put an explicit “!go” on the IDLE loopback transition, nor
an explicit “!ws” on the DLY to DONE transition. That is because fizzim understands that a
transition with an equation of “1” is the default, lowest priority, transition. This will be
explained in the section on transition priorities. You can add the explicit equations, but you
don’t have to.

6.4 Output using heros

Now we can run the backend and generate code:

fizzim.pl < cliff.fzm > cliff.v

The default encoding is heros. Take a look at the output.

It is structured as two “always” blocks per [2]. The first one is combinational and does the next
state determination, and the second is sequential and just infers the flops. See [2] for an
explanation of why this is the preferred implementation.

Let’s look at the output code in detail.

Fizzim 26 Fizzim

First, the module statement:

module cliff (
output wire ds,
output wire rd,
input wire clk,
input wire go,
input wire rst n
input wire ws);

Nothing special there, except that it uses the Verilog 2001 format.

Now look at the state encoding:

// state bits

parameter

IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0
DONE = 3'b001, // extra=0 rd=0 ds=1
READ = 3'b110; // extra=1 rd=1 ds=0

reg [2:0] state;
reg [2:0] nextstate;

Recall that the heros format uses registered outputs as state bits. Fizzim.pl has assigned state bit
0 to “ds”, and state bit 1 to ‘rd”. There are only four states, but DLY and READ both have
state[1:0] equal to 01, because they have identical values of “ds” and “rd”. fizzim.pl recognizes
this, and adds an “extra” bit to distinguish these states. Thus, we end up with 3 state bits to cover
4 states, but since the registered outputs are encoded in the states, we still have fewer flops
overall. Itis possible to force fizzim.pl to pull the output bits out of the state vector by changing
their type to “regdp”. See the section on datapath outputs below.

Also note that the IDLE state ended up as all zeros. In the absence of a requirement that would
prevent this, fizzim.pl heros encoding will favor the reset state as all zeros.

Fizzim 27 Fizzim

Next comes the combinational always block:

// comb always block
always (@* begin
// Warning I2: Neither implied loopback nor default state is x attribute

is set on state machine - defaulting to implied loopback to avoid latches
being inferred

nextstate = state; // default to hold value because implied loopback is
set

case (state)
IDLE: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end
end
DONE: begin
begin
nextstate = IDLE;
end
end
READ: begin
begin
nextstate = DLY;
end
end
endcase
end

Pretty straightforward, and just what you would probably write if you were coding this by hand.
There’s a big case statement on “state”, and the inputs (go and ws) determine “nextstate”. But
notice the warning message.

// Warning I2: Neither implied loopback nor default state is x attribute is
set on state machine - defaulting to implied loopback to avoid latches being
inferred

We have come to a philosophical fork in the road.

Some people, including Cliff Cummings, like to make the default value of the nextstate vector
equal to “X” before executing the “case” statement. This ensures that bad things will happen in
simulation if the case statement is wrong, but it also means that all loopback conditions need to
be entered explicitly.

Fizzim 28 Fizzim

Other people prefer to make nextstate equal to current state before executing the case statement.
This means that the default action is loopback, so no explicit loopbacks are required.

Fizzim.pl is philosophically neutral on this (and most other such issues), so you can choose
which way you want it. This is done by setting an attribute on the FSM — either
“default_state is x” or “implied loopback”. But to avoid problems for new users (who don’t
read the documentation first...), as of version 3.6 fizzim.pl will default to implied_loopback if

neither attribute

is set.

Since this is Cliff’s state machine, we’ll do it Cliff’s way. Select “Global Attributes > State
Machine” and click the “User” button. Enter the attribute name “default state is x’ and give it

a value of “1”:

Edit Global Properties

l/ State Machine |/ Inputs |/ Outputs |/ States rTransitiuns

%]

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.'

Aftribute Mame | Default Yalue Yisibility Type Comment Color
harrne cliff [

clock clk [posedge

reset_signal rst_n [negedge

reset_state IDLE [ampalue

default_state_i.. [1] M

Delete User Reseat
OK Cancel

Save the file and re-run fizzim.pl. The warning message goes away and the combinational block

starts like this:

// comb always block
always (@* begin
nextstate = 3'bxxx; // default to x because default state is x is set

case

(state)

IDLE: begin

By the way, if we had used “implied_loopback™ (create attribute “implied loopback™ and set it to
1), the output would have looked like this:

Fizzim

29

Fizzim

// comb always block
always (@* begin
nextstate = state; // default to hold value because implied loopback is
set
case (state)
IDLE: begin

Continuing with our tour of the heros output, we next have the code that assigns the outputs to
state bits:

// Assign reg'd outputs to state bits
assign ds = statel[0];
assign rd state[l];

Then the sequential always block. Recall that we set the “reset signal” attribute to “rst n” and
it’s type as “negedge”. The “reset state” was set to “IDLE”:

// sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n)
state <= IDLE;
else
state <= nextstate;
end

If we had instead chosen the type as “negative”, we would have gotten an active-low
synchronous reset:

// sequential always block
always (¢ (posedge clk) begin
if (!rst n)
state <= IDLE;
else
state <= nextstate;
end

The final bit of code is for simulation purposes and will be explained in “Ascii state name”
below.

6.5 Output using onehot

6.5.1 Output using onehot when “implied_loopback” is set.

The default onehot encoding is based on Steve Golson’s paper [2]. This technique doesn’t really
allow for the “default_state is x” behavior, so the output looks rather different when this
attribute is set (see below). The following discussion assumes implied_loopback is set (setting
neither flag is not recommended as it can result in inferred latches)

Fizzim 30 Fizzim

fizzim.pl —enc onehot < cliff.fzm > cliff.v

Skipping over the module statement, here’s what our “state encoding” looks like:

// state bits
parameter

IDLE = O,

DLY 2,

DONE = 1,

READ = 3;

reg [3:0] state;

reg

[3:0] nextstate;

Recall that onehot encoding uses one bit for each state. So, 4 states means 4 bits. The parameter
refers to the bit position in the vector. So, when the FSM is in state DONE, for example, only bit
1 will be set (the state vector will be 0010).

The combinational always block looks equally bizarre:

// c

omb always block

always (@* begin

ne

xtstate = 4'b0000;

case (1'bl) // synopsys parallel case full case

state[IDLE]: begin
if (go) begin
nextstate [READ]
end
else begin
nextstate[IDLE]
end
end
state[DLY] : begin
if (ws) begin
nextstate [READ]
end
else begin
nextstate [DONE]
end
end
state[DONE] : begin
begin
nextstate [IDLE]
end
end
state[READ]: begin
begin
nextstate [DLY]
end
end

endcase

end

Fizzim

Il
—
o
=

= 1'bl; // Added because implied loopback is true

= 1'bl;

31 Fizzim

The “case (1)... state[IDLE]” gets translated to mean “when the IDLE bit of the state vector (0)
isa 1. The nextstate is calculated by first setting it to all zeros, then turning on the bit that
represents the next state.

Note that, because of the way it is coded (set to all zeros, then set the bit), the issue of defaulting
the value doesn’t not arise for onehot. If something goes wrong, you get an illegal all-zeros state
which you never get out of. Since implied_loopback was set on this example, fizzim.pl added
the “hold state” path (where the comment about implied loopback is in the code above).

Note the use of “//synopsys parallel case full case”. This tells DesignCompiler that it doesn’t
have to build logic to cover the illegal states (full case), and it doesn’t have to build priority into
the case (parallel_case). This results in dramatically better synthesis results, but may require
special handling in formal verification.

The use of “//synopsys parallel _case full case” on this case statement (onehot combinational
block) and in the regdp block described below is controlled by the state machine attribute
“onehot_pragma”. If this attribute is NOT set, you’ll get the code shown. If it IS set, fizzim.pl
will use the value string of this attribute in place of “synopsys parallel case full case”. This can
be used to add a pragma, delete one, or override this behavior entirely (by setting the attribute to
a null string). If you set it to a null string, expect significantly worse synthesis results!

The use of onehot_pragma causes fizzim.pl to issue warning O12 (this can be suppressed as
discussed later).

The sequential always block looks like this:

// sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n)
state <= 4'b0001 << IDLE;
else
state <= nextstate;
end

It seems simpler to just set state to zero, then set state[IDLE] to one, but this format was used to
stay as close as possible to Steve Golson’s code in [3]. His “1 << IDLE” got changed to have the
full vector size to work around a bug in one of the Verilog simulators.

Note that there is now a third always block. It is a sequential always block, and creates the
registered outputs. This is necessary because, unlike heros encoding, there is no way to use the
state bits for registered outputs. The block looks at the value of “nextstate” and sets ds and rd
accordingly:

// datapath sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n) begin

ds <= 0;
rd <= 0;
end

Fizzim 32 Fizzim

Note that this structure changed with fizzim.pl version 2.0. Older versions will look different
from code show above.

This structure is also used for registered datapath (“regdp”) outputs (coming soon).
6.5.2 Onehot output when “default state is x” is set

Golson’s code structure used above sets the nextstate vector to all zeros, then sets the single bit
according to the nextstate logic. This technique cannot be used when the default_state is_x
behavior is required.

The handling of this case has changed with fizzim.pl revision 3.0. It now uses a format similar to
that used for SystemVerilog (see the section on SystemVerilog output). The state bits block
looks like this:

// state bits
parameter
IDLE BIT

DLY BIT = 1
DONE BIT
READ BIT

0,
’

2,
3;

parameter

IDLE 4'bl<<IDLE BIT,
DLY 4'bl<<DLY BIT,
DONE 4'b1<<DONE BIT,
READ 4'b1<<READ BIT,
XXX 4'bx;

reg [3:0] state;
reg [3:0] nextstate;

Fizzim 33 Fizzim

What’s new here is the creation of parameter values for the various states, and for the all-ex state.
These new parameter values are still based on the bit position parameters, but give a handy
shorthand that makes the nextstate code a little cleaner:

// comb always block
always (@* begin
nextstate = XXX; // default to x because default state is x is set
case (1'bl) // synopsys parallel case full case
state[IDLE BIT]: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end
end
state[DLY BIT]: begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end
end
state[DONE BIT]: begin
begin
nextstate = IDLE;
end
end
state[READ BIT]: begin
begin
nextstate = DLY;
end
end
endcase
end

The sequential always block and the datapath sequential always block are unchanged from the
implied_loopback case described above.

Fizzim 34 Fizzim

6.6 Ascii state name

Notice that both heros and onehot had some extra simulation code at the end. The code for
onehot looks like this:

// This code allows you to see state names in simulation
"ifndef SYNTHESIS
reg [31:0] statename;
always (@* begin
case (1)
state[IDLE] :
statename = "IDLE";
state[DLY] :
statename = "DLY";
state [DONE] :
statename = "DONE";
state [READ] :
statename = "READ";
default:
statename = "XXXX";
endcase
end
“endif

This code allows the designer to see the ascii state name in simulation (set the data type to ascii
in your waveform viewer), but does not affect synthesis. The “"ifndef SYNTHESIS/ endif”
replaces the old “//synopsys translate on/off” syntax for making this simulation-specific (thanks
to Cliff Cummings for pointing this out).

Equivalent code is generated for heros.

// This code allows you to see state names in simulation
"ifndef SYNTHESIS
reg [31:0] statename;
always (@* begin
case (state)

IDLE:
statename = "IDLE";
DLY:
statename = "DLY";
DONE :
statename = "DONE";
READ:
statename = "READ";
default:
statename = "XXXX";
endcase
end
“endif

Here’s an example of what this looks like:

Fizzim 35 Fizzim

Signals Waves

T 1 22100 p= 44200 p= 66
test.clk | | | | | | | | |
test.rst_n
test.qo | |—| |_|_
test.ws | |
test.rd | |
test.ds |
["'IDIE" ["READ" ["DLY" ["READ" ["DL¥™

This can be turned off by specifying the “-nosimcode” option on fizzim.pl.

This is automatically suppressed when SystemVerilog is selected, since the use of enumerated
types in SystemVerilog output makes special code unnecessary. You can force it back on by
using the “-simcode” option to fizzim.pl.

6.7 (Un)Displaying the attributes table

Notice that most of the examples so far have had the attributes table to the left of the state
machine. This is a handy feature, but you don’t have to use it. To turn it off, do “File >
Preferences” and uncheck the “Table Visible” box.

Alternatively, you can move the table to another (or its own) page. See the section on multiple
pages.

Fizzim 36 Fizzim

7 Mealy outputs

Combinational outputs (Mealy outputs) are also supported. They are distinguished from
sequential outputs by setting the type field to “comb”.

A Mealy output is defined as an output which is dependent on both the state and the inputs.
There are two ways to describe a Mealy output. One way, which derives directly from the
definition, is to specify the combinational equation that describes the output for each state. The
other way is to specify the combinational equation that describes the output on each transition.
Fizzim supports either style.

Let’s add a Mealy output to Cliff’s state machine using the on-states method.

7.1 Mealy outputs assigned in states

Supposed we wanted to create an output that would toggle if “go” was asserted during state
“DLY”? This is just a comb output whose equation is “go” during the DLY state, and 0 at all
other times.

Back to Cliff Classic. Start by creating the new output “go_missed”. Go to the Global Attributes
> Outputs tab and add “go _missed” . Set the type to “comb” and the default value to 0.

(Example: cliff_mealy_onstates.fzm)

| £ Edit Global Properties =

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

r State Machine |/ Inputs rOutputs r States rTransitions

Altribute Mame | Default Value Visibility Type Comment Color UserAits ResetValue
rd 0 Yes reg
ds 0 Yes o
go_missed 0 Yes C [comb
S~ —
| Delete | | User | | Output | | Multibit Output | | Flag |

Fizzim 37 Fizzim

Now edit the DLY state to change the equation to “go”.

Edit State Properties @

Edit the properties of the selected state:

Alfribute Name Value Visibility Type Comment [Col... LgerAlts ResetValue
name DLY Yes def_type
rd 1 Yes output
ds A [Yes output
go_missed_ [go D |vYes output

width: [130 |]

Height: [130 |

OK Cancel

The result looks like this:

STATE MACHIMNE

name cliff_classic
clock clk posedge
reset_signal rst_n negedgs
reset_state IDLE anywvalue
default_state_is_x 1 IDLE
INPUTS rd<=0
clk ds <=0
rst_n go_missed =0
go
WE
QUTPUTS
rel o] reg
ds o] reg
go_missed o comb
STATES DOME READ
rel o] output rd <=0 rd <= 1
ds o oLtput ds <= 1 ~
go_missed] output . ds <=0
TRANSITIONS go_missed =0 go_missed = 0
equation 1 def_type -

qo_missed = go

__%

Notice the go_missed output shows up on each state bubble with an instead of a “<=",

because it is of type “comb”.

Fizzim 38 Fizzim

Re-run the backend, and the new output is added as type “reg’”:

input wire clk,
input wire go,
input wire rst n,
input wire ws

That seems a bit counter-intuitive for a comb output, but recall that “reg” in Verilog doesn’t
necessarily imply a physical register. It’s type reg because it will be assigned in the
combinational always block, which now looks like this:

// comb always block
always (@* begin

// default to x because default state is x is set
default

go missed = 0;
case (state)
IDLE: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end

.
go ! ed— = go;

if (ws) begin
nextstate = READ;
end
else begin
nextstate
end
end
DONE: begin
begin
nextstate
end
end
READ: begin
begin
nextstate
end
end
endcase
end

DONE ;

IDLE;

DLY;

Note that this structure changed with fizzim.pl version 2.0. Older versions will look different
from code show above.

Fizzim 39 Fizzim

Notice the new lines have been added to each state’s case entry that assign values to go_missed.

Note the default value line (circled). To make the code easier to read, and to prevent latches,
fizzim.pl will output the default value, then suppress any non-default values for the output in the
case (state) block. If no default value is given, fizzim.pl will use “0”. This is to provide better
synthesis results out-of-the-box.

One side-effect of this may be zero-length transitions in some simulators. An alternative (used
by fizzim.pl pre-version 2.0) is to set the default to the variable itself. This could be done in the
example by setting the default for “go _missed” to “go_missed”. This would reproduce the
version 1.x behavior.

Note that output equations for comb outputs (in this case, just “go”) are NOT parsed by fizzim.

They are just strings to fizzim.

7.2 Mealy outputs assigned on transitions
Although this behavior could also be described by putting the equation “go” on the transition

from READ to DLY, and creating a loopback transition and putting the same equation on it, it is
probably most naturally described using the “on states” method above.

But there is a case where assigning the Mealy output on transitions might make more sense than
assigning it on states — when the Mealy output equation matches the transition equation.

Suppose we wanted to send out an early copy of the “rd” output on the transition from IDLE to
READ?

This is the same as saying that the new pre_rd output is equal to “go” in state IDLE. So, one way
to implement this is by setting the pre_rd output to “go” in the IDLE state, similar to the example

above.

But since the equation is the same as for the transition from IDLE to READ, another way is to
make the pre_rd output equal to 1 on the transition from IDLE to READ.

Let’s take a closer look at this approach. First, we’ll go back to cliff classic and add the (comb)
pre_rd output:

(Example: cliff_mealy_ontransition.fzm)

Fizzim 40 Fizzim

4| Edit Global Properties el
] P

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.'

(State Machine r Inputs rOutputs r States rTransitions

Altribute Mame | Default Value Visibility Type Comment Color Useralts ResetValue
rd 0 Yes reg
ds 0 Yes reg
pre_rd 0 Cnly non-default j[comb

| Delete || User || Qutput || Multibit Qutput || Flag |

Fizzim will automatically transfer your new comb output to the states attributes list (as in the
previous example), as it does for registered outputs. If you want to specify a comb output
changing on a transition, you have to add it to the Transitions attribute list yourself:

Go to the Global Attributes > Transitions tab, and use the “Output” button to add “pre_rd”. Set
visibility to “Only non-default”.

| Edit Global Properties =
£ P

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

[state Machine | Inputs | Outputs | States | Transitions |

Altribute Name | Default Value Visibility Type Comment Caolor UserAits ResetvValue
name def_name Mo def_type
equation 1 Only non-default |def_type
pre_rd 0 Only non-default |output
l’/\‘\
| Delete | | User | | Graycc@e | | QOutput | | Fﬂiority |

Now double-click the IDLE to READ transition. It now has “pre rd” as an attribute (of type
output). Change the value to 1.

Since we set the visibility to only non-default, the value will only show up on this transition, and
we get the following state diagram:

Fizzim 41 Fizzim

STATE MACHINE

name

clock

reset_signal

reset_state

default_state_is_x
INPUTS

clk

rst_n

go

WE
CUTPUTS

rel

ds

pre_rd
STATES

rel

ds

pre_rd
TRANSITIONS

equation

pre_rd

Fizzim

cliff _classic
clk

rst_n

IDLE

1

posedge
negedge
anyvalue

reg
reg
comby

output
output
output

def_type
output

42

Fizzim

The Verilog output looks like this:

// comb always block
always (@* begin

nextstate = 3'bx; // default to x because default state is x is set
pre_rd = 0; // default
case (sta

E: begin
if (go) begin
nextstate = READ;
pre rd = 1;

nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate
end
end
DONE: begin
begin
nextstate
end
end
READ: begin
begin
nextstate
end
end
endcase
end

DONE;

IDLE;

DLY;

So, the output pre_rd does indeed change when the transition path is taken.

7.3 Mixing the styles

Also, note that you can mix the two styles. If the output has been created as a transition attribute,
fizzim.pl will assume that you are going to use the “defined on transitions” approach, and the
comb output value defined on the state will be suppressed if it matches the default value. If it
doesn ’t match the default value, it will be output, you’ll get a warning, and any non-default on-
transition values for that combinational output from that state will be suppressed.

In this fsm, the output “rd” has been declared as comb, and has been added to the transition
attributes table. So, fizzim.pl assumes that the definition will use the on-transitions style. The
default value of “rd” is 0 for both states and transitions. “rd” has been given a value of 1 on the
transition from IDLE to READ, and a value of 1 in states READ and DLY:

Fizzim 43 Fizzim

STATE MACHINE

name cliff_preread
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
default_state_is_x 1
INPUTS
clk
rst_n
go
WE
CUTPUTS
rel 0 comb
ds 1] reg
STATES
rel 1] output
ds 1] oltput
TRAMSITIONS
eguation 1 def_type
rel 1] oltput

(Example: cliff_preread.fzm)

The resulting output looks like this:

// comb always block
always @* begin
nextstate = 3'bx; // default
rd = 0; // default
case (state)
IDLE: begin
if (go) begin
nextstate = READ;
rd = 1;
end
else begin
nextstate = IDLE;
end
end
DLY : begin

to x because default state is x

// Warning C7: Combinational output rd is assigned on transitions, but

has a non-default value "1" in state DLY

rd = 1;
if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end
end
DONE: begin
begin

Fizzim

Fizzim

nextstate = IDLE;
end
end
READ: begin
// Warning C7: Combinational output rd is assigned on transitions, but
has a non-default value "1" in state READ
rd = 1;
begin
nextstate = DLY;
end
end
endcase
end

In state IDLE, the defined state value is the same as the default value, so transition values are
used.

In states DLY and READ, however, rd has been assigned a non-default value of 1, so the line “rd
=17 is output, and no assignment values are used on the transitions (because all the transitions
use the default value of 0). Warning C7 is issued to flag this issue.

Note that this structure effectively gives priority to non-default on-transition values, followed by
non-default on-state values, followed by default transitions values.

This is far from simple, so be very careful when mixing the two styles.

Fizzim 45 Fizzim

8 Datapath outputs

Recall that fizzim has two types of registered outputs — reg and regdp. The “dp” in regdp stands
for “datapath”. When the type is regdp, fizzim will not attempt to encode the bits in the state
vector.

As a simple example, we’ll go back to Cliff Classic and change the type of output rd to regdp:

(Example: cliff_rdregdp.fzm)

Edit Global Properties [g|
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.”
|/ State Machine |/ Inputs |T Outputs r States r Transitions |

Aftribute Name | DefaultYalue Visibility /T Type Comrment | Color
rd Ves _regdp)
ds Vas I
Delete User Ourtpurt Multibit Outpurt
OK Cancel

Re-run fizzim.pl, and the output looks like this:

state D1TsS

parameter

IDLE = 3'b000, // extra=00 ds=0
DLY = 3'b010, // extra=10 ds=0
DONE = 3'b001, // extra=01 ds=1
READ = 3'b100; // extra=00 ds=0
reg [2:0] state;

reg [2:0] nextstate;

// comb always block
always (@* begin
nextstate = 3'bx; // default to x because default state is x is set
case (state)
IDLE: begin
if (go) begin

Fizzim 46 Fizzim

nextstate
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end
end
DONE: begin
begin
nextstate = IDLE;
end
end
READ: begin
begin
nextstate
end
end
endcase
end

READ;

DLY;

// Assign reg'd outputs to state bits
assign ds = statel[0];

// sequential always block
always ((posedge clk or negedge rst n)
if (!rst n)
state <= IDLE;
else
state <= nextstate;
end

// datapath sequential always block
always @ (posedge clk or negedge rst n)
if ('rst_n) begin
rd <= 0;
end
else begin

// Warning D11l: Datapath output rd has no default value - using 0

begin

begin

rd <= 0; // default to zero for better synth results (no default set in

.fzm file)
case (nextstate)
DLY : begin

rd <= 1;

end

READ: begin
rd <= 1;

end

endcase
end
end

Fizzim 47

Fizzim

Notice that the signal rd is no longer included in the state vector, and that a third always block
has been added. This third always block does a “case” on nextstate, and assigns rd on the clock
edge — creating a registered rd output.

This is similar to the registered output format for onehot encoding discussed earlier. Note that
this particular fsm did not have a default value assigned for rd. As mentioned earlier, fizzim.pl
will default it to O for better synth results (and produce a D11 warning).

Well, that’s fine if all you want to do is pull bits out of the state vector. But the real value of
regdp is true datapath outputs. But suppose we wanted a counter to be controlled by the state
machine? You can’t very well embed that in the state bits! Some tools require you to push out a
control signal (usually a Mealy output) and implement the counter externally. Fizzim will let you
bury the counter right in with the state machine.

So, let’s add a counter. First, we add a regdp output called count[8:0].

(Example: cliff_counter.fzm)

Edit Global Properties [‘S__<|
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

(State Machine r Inputs r Outputs |/ States |/Transitiuns
Aftribiute Mame Default Walue Wigibilit Type Comment Caolar
rd I} eS req
s I} eS req
count[E:0] eS reqdp
Delete User Output Muktibit Output
OK Cancel

The “Multibit Output” button creates an example with the correct syntax (bit field after the
name).

Add an input of “load[8:0]” so we can load the counter.

Fizzim 48 Fizzim

Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to 'Edit Properties.'

f State Machine |T' Inputs r Outputs r States rTransitinns

X]

Attribute Mame | Default Yalue Wisibility Type Comment Calor
clk Mo
rst_n Mo
oo Mo
WS Mo
load[a:0] Mo
Delete User Inpurt Multibit Inpurt

OK Cancel

Now go around to the states and assign the counter like this:

IDLE: 8’b0

READ: load[8:0]
DLY: count[8:0] - 1
DONE: count[8:0] + 1

The result looks like this:

Fizzim 49

Fizzim

STATE MACHIME

name cliff_classic
clock clk posedge
reset_signal rst_n negecdge
reset_state IDLE anyvalus
default_state_is_x 1
INPUTS
clk
rst_n
go
wWE
loac[5:0]
CUTPUTS
rel o reg
ds o] reg
count[:0] 5'b00000000 regdp DCNE
STATES rd==0
rd a output ds <=1
ds o outpLt ount[8:0] <= count[3:0] + 1
count[8:0] 2'b00000000 output
TRAMSITIONS
eguation 1 cef_type

Save it away and re-run fizzim.pl, and here’s what you get:

Fizzim 50

READ
rd ==1
ds==0

count[8:0] == load[8:0]

ount[3:0] == count[3:0] - 1

Fizzim

// state bits

parameter

IDLE = 3'b000, // extra=0
DLY = 3'b010, // extra=0
DONE = 3'b001, // extra=0
READ = 3'bl110; // extra=1

reg [2:0]
reg [2:0]

state;

nextstate;

// comb always block
always (@* begin
nextstate = 3'bx; // default
case (state)
IDLE: begin

if

(go) begin

nextstate = READ;

end

else begin
nextstate = IDLE;

end
end
DLY begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end
end
DONE: begin
begin
nextstate = IDLE;
end
end
READ: begin
begin
nextstate = DLY;
end
end
endcase
end
// Assign

assign ds
assign rd

// sequential always block
always ((posedge clk or negedge rst n) begin

rd=0
rd=1
rd=0
rd=1

ds=0
ds=0
ds=1
ds=0

to x because default state is x is set

reg'd outputs to state bits

= statel[0];
= statell];

if (!rst n)
state <= IDLE;
else
state <= nextstate;

end

// datapath sequential always block
always @ (posedge clk or negedge rst_n) begin

if ('rst_n) begin
count[8:0] <= 8'b0;

Fizzim

51

Fizzim

end
else begin
count[8:0] <= 8'b00000000; // default
case (nextstate)
IDLE: begin
count[8:0] <= 8'b0;
end
DLY : begin
count[8:0] <= count[8:0] - 1;
end
DONE: begin
count[8:0] <= count[8:0] + 1;
end
READ: begin
count[8:0] <= load[8:0];
end
endcase
end
end

Note that, as with comb outputs, the values for regdp outputs are not parsed by fizzim. They’re
just strings. Outputs of type reg must be parsed so that they can be included in the state
assignments. Currently, only constants are allows as values in reg outputs (no macros,
parameters, etc) because fizzim.pl must parse them.

Note also that fizzim.pl does a string compare to see if a default value matched the assigned

value. That’s why the IDLE case gets “count[8:0] <= 8’b0” — because the default value of
“8’b00000000” doesn’t match.

Fizzim 52 Fizzim

9 Flags (new with version 4.0)

Starting with version 4.0, there is a new output type - flags. Flags are like a cross between a
comb and a regdp. Like a comb, they can be assigned on both transitions and states. But, unlike
comb outputs, they are registered - independent of the state vector like a regdp.

9.1 Basic Example (flag set only on states)

One common use of flags is to keep track of where you've been. Let's look at an example.
Starting with the cliff_classic fsm design again, suppose we wanted to skip the DLY state the
very first time only, then run normally.

Go to Global Attributes > Outputs, and click the "Flag" button. This will give you a new entry
with the Type set to "flag". We'll create one called "done_that". Set "ResetValue" to 0.

| £:| Edit Glebal Properties @

Here you can change the global attributes of all objects. Once an aftribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

r State Machine r Inputs r Outputs r States rTransitions

Altribute Mame | Default Value Visibility Type Comment Cuolor UseraAlts ResetValue
rd 0 Yes reg
ds 0 Yes reg
peen there Only non-default [flag suppress_portlist 0

| Delete || User || Output || Multibit OQutput || Flag |

Note that you cannot set a default value on a flag (the gui won't let you). A flag is intended to
hold it's state until it is explicitly changed, whereas other outputs take on their default value
whenever not explicitly changed. So, it makes no sense to have a default value for a flag. But,
since it is a register, it needs a reset value. That's what the new "ResetValue™ column is used for.

Also note the UserAtts field has "suppress_portlist”. This is included automatically when a new
flag type output is created using the "flag" button. Since flags are normally only used internally,
the "flag™ button inserts this for you (you can delete it if you wish).

OK, now that we have our flag, we can start assigning values to it. We'll set it true in state
DONE, and add a transition from READ to DONE with the equation "!been_there™:

Fizzim 53 Fizzim

been_there <=1 —

lbeen_there

Note that the values use a "<=" to indicate that flags are registers.

For heros encoding, the resulting code looks like this:

Fizzim 54 Fizzim

module cliff classic (
output wire ds,
output wire rd,
input wire clk,
input wire go,
input wire rst n,
input wire ws

// state bits

parameter

IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0
DONE = 3'b001, // extra=0 rd=0 ds=1

READ = 3'b110; // extra=1l rd=1 ds=0

state;
nextst
reg been there;
reg next been there;

always (@* begin

n seate—S" r 3 £ to x because default state is x is set
ext been there = been there;

case (stTarey
IDLE: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end

next been there = 1;

nextstate = IDLE;
end
end
READ: begin
if (!been there) begin
nextstate = DONE;
end
else begin
nextstate = DLY;
end
end
endcase
end

Fizzim 55

Fizzim

// Assign reg'd outputs to state bits
assign ds = state[0];
assign rd = state[l];

// sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n) begin

else begin

S =—lIcXLoLdlC,
been there <= next been there;
en

end

Fizzim 56 Fizzim

Notice all the code that got added! "been_there" got created, along with "next_been_there", and
the setting of "been_there" got added to the main sequential always block.

9.2 Flags set on transitions

OK, but we probably could have done that with a regdp. The real power of flags is being able to
set them on transitions.

As an example, now assume that we want to change the fsm to only pay attention to "ws" once
per transaction. We can do this by setting a flag (done_that) on the way from DLY to READ,
and clearing it again on the way from DLY to DONE.

Creating flags that change on transitions is like creating Mealy comb outputs. You have to create
the output, then add it to the transitions table:

| £/ Edit Global Properties @

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.’

[state Machine | Inputs | Outputs | States | Transitions

Altribute Mame | Default Value Visibility Type Comment Color UserAlis ResetValue
rd 0 Yes reg
ds 0 Yes reg
been_there Only non-default [flag suppress_portlist 0
done that Only non-default |flag suppress_portlist 0
| Delete | | User | | Output | | Multibit Output | | Flag |

Fizzim 57 Fizzim

| £ Edit Global Properties @

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.

r State Machine |/ Inputs |/ QOutputs |/ States |TTransilions |

Altribute Name | Default Value Visibility Type Comment Color UserAlts ResetValue
name def_name Mo def_type
equation 1 Only non-default |def_type
done_that Only non-default |output
| Delete | | User | | Graycode | | Qutput | | Priority

Now edit the arcs from DLY to READ and from DLY to DONE as described:

DOME
ref ==10
dg ==1
been_there == 1

been_there

done_that == 0

we &8 ldone_that
done_that ==1

The resulting code looks like this:

Fizzim 58 Fizzim

module cliff classic (
output wire ds,
output wire rd,
input wire clk,
input wire go,
input wire rst n,
input wire ws

// state bits

parameter

IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0
DONE = 3'b001, // extra=0 rd=0 ds=1
READ = 3'b110; // extra=1 rd=1 ds=0
reg [2:0] state;

reg [2:0] nextstate;

reg been there;

reg done_ that;

reg next been there;

reg next done that;

// comb always block

always (@* begin

nextstate = 3'bxxx; // default to x because default state is x is set
been there;

next been there =
next done that = d
case (state)
IDLE: begin
if (go) begin
nextstate =
end
else begin
nextstate =
end
end
DLY : begin
if (ws && !don
Nextstate
next done_ th

nextstate =
next done_ th

end
DONE: begin
next been ther
begin
nextstate =
end
end
READ: begin
if (!been ther
nextstate =
end
else begin
nextstate =

Fizzim

one that;

READ;

IDLE;

e that) begin

READ;
at = 1;

DONE ;
at = 0;

e = 1;

IDLE;

e) begin
DONE ;

DLY;

59

Fizzim

end
end
endcase
end

// Assign reg'd outputs to state bits
assign ds = statel[0];
assign rd = statel[l];

// sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n) begin
state <= IDLE;
been there <= 0;
done that <= 0;
end
else begin
state <= nextstate;
been there <= next been there;
done that <= next done that;
end
end

Fizzim 60 Fizzim

Notice the flag being set/cleared on the "if"" code that corresponds to the transition arc.

Instead of a simple flag, we could use a multibit variable, and look at a count. Change
"done_that" to "count[7:0]", then change the equation to use "ws && (count <=4)", for example:

DOME
rd ==0
de ==1
been_there <=1

lheen_there

count[7:0] =="d0

wWs &alcount ==4)
count[7:0] == court+1

9.3 Capturing incoming data on an arc using flags

Flags can also be used to capture incoming data on an arc. In this case, we'll add an input
addr_in[7:0] and a flag output addr_out[7:0]. But we're likely to want addr_out to be available in
the portlist, so we'll delete the "suppress_portlist™ from UserAtts:

Fizzim 61 Fizzim

o

|£:| Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.'

r State Machine |T Inputs r Qutputs r States |’Tran5i'tions

Altribute Mame | Default Value Visibility Type Comment Color LserAlts Resetvalue
clk Na
rsi_n Mo
go Mo
L No
< addr_in[7:0]) Mo
\/
| Delete | | User | | Input | | Multibit Input

| £ Edit Global Properties

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.’
[state Machine | Inputs | Outputs | States | Transitions

Altribute Name | Default Value Visibility Type Comment Caolor UseraAits ResetvValue
rd_——_—_ |0 Yes reg ————
ds Yes reg ~N
addr_out[7:0] Only non-default [flag captured address)
\/
| Delete | | User | | Output | | Multibit Qutput | | Flag |

We also add addr_out[7:0] to the Transitions page so we can use it on transitions:

Fizzim 62 Fizzim

| £:| Edit Global Properties

(2
Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an objec iag to 'Edit Properties.’
[state Machine | Inputs | Outputs | States([{ Transitions |
Altribute Mame | Default Value Visibility \Fj\pe—— ResetValue

— Comment Color UserAits
name def_name Mo def_type
Jeflation ™ Only non-default [def_type
addr_out[7:0]) Only non-default joutput

| Delete || User || Graycode || Output || Priority

We double-click the transition from IDLE to READ, and enter "addr_in" as the value:

Edit 5tate Transition Properties

Edit the properties of the selected state transition:

(==

Altribute M. Walue Wisibility Type Comment UserAlts [ResetValue
name trans0 i [o] def_type
eguation ge——Only non-... (def_type
addr_out] ([addr_in Only non-... |output
Start State: |IDLE | v e
End State: |READ |+ [| Stub? OK Cancel
Now our state diagram looks like this:
Fizzim 63

Fizzim

IDLE
rd==10
ds==0
addr_out[7:0] == "hi00

Qo
addr_out[7:0] == addr_in

Fizzim 64 Fizzim

10 Transition priority

10.1 Basic Example

Suppose we add an input to Cliff Classic called “test” that will cause the FSM to pop over to
DONE, wait for test to go away, then pop back to IDLE?

(Example: cliff_priority.fzm)

STATE MACHINE

name cliff_classic

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

default_state_is_x 1
INPUTS
clk

rst_n

go

WE

test
CUTPUTS

rel reg

ds reg
STATES

rel output

ds output
TRAMSITIONS

eguation 1 def_type

Since we expect test to be false during normal operation, we can just change the DONE->IDLE
equation to “!test”.

If we run fizzim.pl, the following warnings appears:

IDLE: begin
// Warning P3: State IDLE has multiple exit transitions, and
transition trans0 has no defined priority
// Warning P3: State IDLE has multiple exit transitions, and
transition trans6 has no defined priority

This is telling us that we haven’t defined what the FSM should do when both test and go are true.

Assume that we give priority to test. We could change the equation for the IDLE->READ
transition to be “!test && go”. But this gets really tedious when the transition equations get

Fizzim 65 Fizzim

complicated. If we were coding the FSM by hand, we would just encode the priority into the

if/else stucture in Verilog by putting the “if (test)” first.

if (test) begin
nextstate = DONE;

end

else if (go) begin
nextstate = READ;

end

else begin
nextstate = IDLE;

end

You can do this in fizzim by assigning a “priority” attribute to the transitions. This will tell

fizzim.pl what order to use in the if/else block in Verilog.

First we create a “priority” attribute for transitions in Global Attributes > Transitions. There’s

even a handy button to do it for you!

Edit Global Properties E'

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.”

r State Machine |/ Inputs |/ Outputs |/ States |TTransitinns |

Attribute Hame | Default Yalue Wigibilit Type Comment
narme fef_name Mo def_tvpe
eguation A Only non-def.. [def_tvpe
priority — ([1000) Qnly nan-def...
N

Delete User Graycode Output ®

OK Cancel

Note that | set the default priority to 1000 — a number larger than | expect to ever use. That

means that any transition whose priority is not defined explicitly will have low priority. More on

this in a moment.

Now we can set priority 1 on the test transition out of idle, and priority 2 on the go transition

(double-click each transition and edit the value of priority).

Fizzim 66

Fizzim

STATE MACHINE
name cliff_classic

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

default_state_is_x 1
INPUTS
clk

rst_n

go

wWE

test
CUTPUTS

rel o reg

ds o] reg
STATES

rel o] output

ds o] output
TRANSITIONS

equation 1 def_type

priority 1

Now when we run fizzim.pl, and the IDLE transition block looks like this:

IDLE: begin
if (test) begin
nextstate = DONE;
end
else if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end
end

You might be wondering why fizzim.pl didn’t complain about the loopback path on IDLE before
we added the transition priorities. For that matter, why doesn’t it complain about the exits from
DLY? One is “ws” and the other is “1” (because this is the default value for the transition
attribute “equation” that was set in the Global Attributes — fizzim sets it this way by default), and
they both have the default priority of 1000.

The answer is that the equation value of “1” gets special handling by fizzim.pl.

10.2 The special case of equation equal to “1”
OK, let’s go back to the original Cliff Classic state machine. We’ll turn equation visiblity to

YES so that all the transition equations are visible (they were set to “Only non-default” to
suppress all the “1” equations):

Fizzim 67 Fizzim

STATE MACHINE
name cliff_classic

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

default_state_is_x 1
INPUTS
clk

rst_n

go

WE
CUTPUTS

rel 1] reg

ds 1] req
STATES

rel 1] output

ds 1] output
TRAMSITIONS

eguation 1 def_type

Why don’t I need a “!go” equation on the IDLE loopback (and “!ws” on the DLY to DONE
transition)?

The answer is that fizzim.pl has some special rules regarding transition priority and equations
equal to “1”. First, if two exit transitions have the same (or no) priority set, the one with the
always-true equation (“1”) is assumed to have lower priority, and no warning is issued.
Similarly, if there are only two exit conditions and the always-true one is the lower priority
(either due the rule above or because it has explicitly been set), no warning is issued.

So, fizzim.pl sees the transition equations from IDLE as “go” and “1”, and assumes that “1” is
the default (lower-priority) transition.

But there’s a little more to this than just saving some typing. It allows fizzim.pl to output
Verilog code that matches what most designers would have written had they coded this by hand.
You wouldn’t write:

case (state)
IDLE: begin

if (go) begin
nextstate = READ;

end

else if (!go) begin
nextstate = IDLE;

end

Fizzim 68 Fizzim

You’d write this:

case (state)
IDLE: begin

if (go) begin
nextstate = READ;

end

else begin
nextstate = IDLE;

end

You’d look at the state diagram, recognize that the loopback was the default, and make it the
“else” condition.

But fizzim has no easy way of inferring what is the default condition. So, you have to tell it.
That’s what priority is for — to tell fizzim.pl what the order of the “if”” statement ought to be.

That’s what priority is for — to tell fizzim.pl what the order of the “if”” statement ought to be.
If you don’t like this feature, you don’t have to use it. Let’s add the “missing” equations:

(Example: cliff_classic_explicit_equations.fzm)

STATE MACHINE

name cliff_classic

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

default_state_is_x 1
INPUTS
clk

rst_n

go

WE
CUTPUTS

rel 1] reg

ds 1] req
STATES

rel 1] output

ds 1] output
TRAMSITIONS

eguation 1 def_type

The Verilog output now looks like this:

// comb always block
always (@* begin

Fizzim 69 Fizzim

nextstate = 3'bxxx; // default to x because default state is x is set
case (state)
IDLE: begin
// Warning P3: State IDLE has multiple exit transitions, and
transition trans0 has no defined priority
// Warning P3: State IDLE has multiple exit transitions, and
transition trans5 has no defined priority
if (go) begin
nextstate = READ;
end
else if (!go) begin
nextstate = IDLE;
end
end
DLY: begin
// Warning P3: State DLY has multiple exit transitions, and transition
trans2 has no defined priority
// Warning P3: State DLY has multiple exit transitions, and transition
trans3 has no defined priority
if (ws) begin
nextstate = READ;
end
else if (!ws) begin
nextstate = DONE;
end
end
DONE: begin
begin
nextstate = IDLE;
end
end
READ: begin
begin
nextstate = DLY;
end
end
endcase
end

Except for the warnings, this is what you would expect.
The warnings are telling you that you have two non-1 transition equations and haven’t defined
their priorities. You and I know that they are mutually exclusive, but fizzim.pl doesn’t parse the

equations, so it doesn’t know. So, it warns you.

But you can easily turn the warnings off. To turn off this specific warning, use the —nowarn
switch:

fizzim.pl —nowarn P3 < cliff.fzm > cliff.v

You can also turn off whole groups of warnings (“P”” means priority warnings) by just using the
letter:

fizzim.pl —nowarn P < cliff.fzm > cliff.v

Fizzim 70 Fizzim

So, if you prefer to always use explicit equations, and never use priorities, just use “-nowarn P”
when you invoke fizzim.pl.

Fizzim 71 Fizzim

11 Adding gray codes

Back to Cliff Classic. Here’s what heros came up with for the state encoding:

IDLE is 000, and READ is 110. Suppose we wanted the transition from IDLE to READ to be
gray coded?

Easy — just add a “graycode” attribute the transition.
So, we double-click the transition, and...

(Example: cliff_graycode.fzm)

Fizzim 72 Fizzim

Edit State Transition Properties

Edit the properties of the selected state transition:
Aftribute Mame Yalue Wisibility Tvpe Comment | Calor
narne trans1 e [u] def_type
equation (s Qnly non-default|def_type
Start State: |IDLE |« [| Stub?
End State: READ |+ oK cancel

Wait, there’s no “graycode” attribute, and no buttons to add one. How do we add a “graycode”

attribute?

Recall that attributes on individual states and transitions are only available once they’ve been

added in the global tabs.

So, select “Global Attributes > Transitions”. Click the “Graycode” button. Select whatever

visibility you want (we suggest “Only non-default”) and click OK.

Fizzim 73

Fizzim

Edit Global Properties D__q

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'

r State Machine r Inputs r Outputs r States |T' Transitions |

Attribute Mame| Defaultalue Yisibility Type Comment Color

harme def_narme Mo def_type

equation 1 Cnly non-def.. |def_type

draycode 1] Cnly non-def..

Delete User Graycode Ourtpurt Priority
OK Cancel

Now double-click the transition and change the value of the graycode field to “1”.

Edit State Transition Properties

Edit the properties of the selected state transition:
Aftribute Mame Yalue Wisibility Type Comment [Colar
narre trans i [u] def_type
equation oo Qnly non-default|def_type
draycode 1 Only nan-default
Start State: |IDLE |« [Stub?
End State: READ |+ oK cancel

Fizzim 74 Fizzim

Save the file and re-run fizzim.pl, and the state encoding changes to this:

// state bits
parameter
IDLE 3'b000, // extra=0 rd=0 ds=0

DLY = 3'b110, // extra=1 rd=1 ds=0
DONE = 3'b001, // extra=0 rd=0 ds=1
READ = 3'b010; // extra=0 rd=1 ds=0

Note that the IDLE to READ transition is now graycoded (000 to 010). Also, a comment has
been added on the transition itself:

IDLE: begin
if (go) begin
nextstate = READ; // graycoded
end
else begin
nextstate = IDLE;
end

It is not always possible to make a transition gray coded. As an experiment, we’ll try changing
the value of “rd” in DONE to “1”, then turning on gray code on the DONE to IDLE transition.
The DONE to IDLE transition is a double-bit change in the registered outputs, so no gray code is
possible. Save it and run fizzim.pl, and we get this:

Error: No valid state assignment found in range of 3 to 6 bits - try using -
minbits 7 -maxbits 7 on the command line or in be cmd. - exiting

Note that it is possible to get this error even when gray coding is not strictly impossible.
Fizzim.pl has certain rules for limiting the number of state bits to try. The error shows the range
it tried. If you have a case where you think there really SHOULD be an encoding that meets all
your requirements and fizzim.pl just isn’t finding it, try using the “-maxbits” switch on fizzim.pl
to widen the search space:

fizzim.pl -minbits 7 —maxbits 7 < cliff.fzm > cliff.v

In this case, it just isn’t possible, so you still get the error:

Error: No valid state assignment found in range of 7 to 7 bits - try using -
minbits 8 -maxbits 8 on the command line or in be cmd. - exiting

Notice that you could get around this by making one or more of your outputs type “regdp” (see
below). This would allow the gray code, but whether this is really a solution is open to debate.
Sure, the state machine is gray coded, but the outputs can now be out-of-sync with the state
machine. Whether this meets the original need for gray coding is up to the designer.

Gray coding is, of course, not possible with onehot encoding.

Fizzim 75 Fizzim

12 Mapping states to values in heros

In addition to the impossible gray code example shown above, there are other cases where
fizzim.pl may have trouble finding a mapping of states to codes that meets all the user
requirements.

Starting with version 4.0, the algorithm got a little smarter, and it also got more controllability.
To avoid long runtimes, fizzim.pl will only attempt a limited number of bit ranges. If it cannot
find a correct mapping, it will error out with messages as shown above:

Error: No valid state assignment found in range of 3 to 6 bits - try using -
minbits 7 -maxbits 7 on the command line or in be cmd. - exiting

At this point, you might want to examine your requirements and see that they really do make
sense. If you still think fizzim.pl should be able to find a mapping, start bumping -minbits and -
maxbits.

Fizzim.pl can also error out of this mapping code if it runs too many iterations:

Error: No valid state assignment found after 10000000 iterations. Try using -
minbits 8 or increase max iterations using -iterations - exiting

If you're still convinced that their should be a mapping, and you're willing to expend some more
cpu time looking for it, you can increase the iterations limit by using the "-iterations" option on
the command line or in be_cmd. Using the suggested -minbits value will skip all bit lengths that
are known to fail, thus speeding up the search and not consuming those iterations.

Fizzim 76 Fizzim

13 Stubs

Suppose we wanted to add an “abort” input to Cliff Classic that would cause the FSM to go back
to idle, no matter what state it happened to be in? It’s easy enough to add the transitions, but the
resulting FSM has so many arcs that it becomes very difficult to read.

To avoid this problem, transitions can be designated as “stubs”. Stubs are just like regular
transitions, except the arc only goes to a stub symbol with the name of the destination state.
Here’s how we would create the stub back to idle on abort for Cliff Classic. After adding “abort”
as an input, we create new transition arcs back to IDLE for each state by right-clicking in open
space and selecting “New State Transition”. This brings up a box where we can select the states
and set the equation. To make it a stub, check the “Stub?” box.

Edit State Transition Properties

Edit the properties of the selected state transition:
Attribiute Mame Walle Wisitility Type Comment Caolar
name trans10 [0 def_type
equation ahort Qnly non-default| def_type
Start State: |READ |« Stub?
End State: IDLE |+ OK cancel

We’ll also have to add priorities to the transition attributes and assign the DLY->READ
transition on “ws” a lower priority than the “abort” transition.

(Example: cliff_abort_stub.fzm)

Fizzim 77 Fizzim

priority =1

priority = 2

abort

IDLE < —
priority =1 priority =1

priority = 1 priorty = 2

The resulting Verilog has all the expected transitions:

always (@* begin
nextstate = 3'bxxx; // default to x because default state is x is set
case (state)
IDLE: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end
end
DLY: begin
if (abort) begin
nextstate = IDLE;
end
else if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end
end
DONE: begin
if (abort) begin

Fizzim 78 Fizzim

nextstate IDLE;
end
else begin
nextstate = IDLE;
end
end
READ: begin
if (abort) begin
nextstate = IDLE;
end
else begin
nextstate = DLY;
end
end
endcase
end

Fizzim 79 Fizzim

14 Bringing out internal signals

14.1 Renaming internal signals

The default values of the state vector, nextstate vector, and ascii statename are “state”,

“nextstate”, and “statename”, respectively. You can change this on the command line using the

switches “-statevar”,

9% ¢

14.2 Bringing out internal signals

-nextstatevar”, and “-statenamevar”.

Sometimes the designer wants to bring the internal state vectors (state and/or nextstate) out as
ports on the module. This is not done by adding them to the output list (fizzim.pl will error out if
you do this). Instead, there are special FSM global attributes that you can set:

e “stateout” — value field is the name of the signal to use. Do not use [m:n] — size will be

determined automatically by fizzim.pl.

e ‘“nextstateout” — value field is the name of the signal to use. Again, do not use [m:n] —
size will be determined automatically by fizzim.pl.

Edit Global Properties

3

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.’

l/ State Machine |/ Inputs |/ Owutpunts |/ States rTransitiuns

Aftribiute Mame Default VYalue Wisibility Type Comment Colar
narme cliff_classic (I}

clock clk (I} posedge

reset_signal rst_n (I} negedge

reset_state IDLE (I} ampalue

default_state_i... 1 (I}

stateout state Mo

nextstate out hextstate M

Delete User Reset
OK Cancel

Fizzim

80

Fizzim

If the signal name matches the internal signal name (“state” and “nextstate” by default — see
“renaming internal signals” below), fizzim.pl will output these directly.

module cliff classic (
output wire ds,
output wire rd,
output reg [2:0] state,
output reg [2:0] nextstate,
input wire clk,
input wire go,
input wire rst n
input wire ws);

(Example: cliff_stateout.fzm)
If not, it will create a new wire with the correct width for the output and assign this wire to the
internal signal. Suppose we change the names to “mystate” and “mynextstate”.

(Example: cliff_mystateout.fzm)

Edit Global Properties rz|
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'

l/ State Machine |/ Inputs |/ Outputs |/ States |/Transitiuns

Attribute Mame | DefaultYalue Yigikility Type Comment Color

narne cliff_classic (]

clock clk (] posedge

reset_signal rst_n (] negedge

reset_state ICLE (] ampalue

default_state_i... |1 (]

stateout mystate (]

nextstateout rrvh extstate Mo

Delete User Reset
OK Cancel

module cliff classic (
output wire ds,
output wire rd,
output wire [2:0] mystate,
output wire [2:0] mynextstate,
input wire clk,
input wire go,

Fizzim 81 Fizzim

input wire rst n,
input wire ws);

// state bits

parameter
IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0

DONE = 3'b001, // extra=0 rd=0 ds=1
READ = 3'b110; // extra=1l rd=1 ds=0

mystate = state;
[2:0] nextstate;
mynextstate = nextstate;

In other words, whatever you name it, fizzim.pl will do the right thing.

Note that SystemVerilog does not support outputting the state variables as module ports. This is
because the state variables are enumerated types and not available outside the module
(technically, the declaration could be moved outside the module, but then there is no way of
knowing if this conflicts with something else in the design).

So, in SystemVerilog, the internal state/nextstate variables must be different from the port names.
This can be accomplished in one of two ways. First, you can simple give the output a different
name, like the “mystate/mynextstate” example above. In this case, the SystemVerilog output
would look like this:

module cliff classic (

output logic ds,

output logic rd,

output logic [2:0] mystate,
output logic [2:0] mynextstate,
input logic clk,

input logic go,

input logic rst n,

input logic ws

) 7

// state bits

enum logic [2:0] {
IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0
DONE 3'b001, // extra=0 rd=0 ds=1
READ = 3'pb110, // extra=1 rd=1 ds=0
XXX = 'x

} state, nextstate;

assign mystate = state;
assign mynextstate = nextstate;

Fizzim 82 Fizzim

The other approach is to use the —statevar/-nextstatevar options to rename the internal names.

The example file cliff_stateout.fzm normally produces an error when run with —lang
SystemVerilog:

module cliff classic (
output logic ds,
output logic rd,

Error: Cannot use state or nextstate variables as module ports in

SystemVerilog - you must rename them. See documentation for details.

exiting
But when run with “-statevar statel —nextstatevar nextstatel”, it produces this:

module cliff classic (

output logic ds,

output logic rd,

output logic [2:0] state,
output logic [2:0] nextstate,
input logic clk,

input logic go,

input logic rst n,

input logic ws

)i

// state bits

enum logic [2:0] {
IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0
DONE = 3'b001, // extra=0 rd=0 ds=1
READ = 3'b110, // extra=1 rd=1 ds=0
XXX = 'x

} statel, nextstatel;

assign state = statel;
assign nextstate = nextstatel;

Either way, the result is the same - different names for the ports and the internal signals.

Fizzim 83

Fizzim

15 Using parameters

Parameters are a very handy feature of the verilog language. They allow code to be written once

and used in a variety of contexts with different widths, for example. They also provide a

mechanism for applying meanful names to values — fizzim.pl uses parameter statements to assign
names to the state values, for example.

Parameters are often preferable to "define values because they are more tightly bound to their
module, instead of being global. If fizzim.pl used “define to specify the statenames, for example,

this might accidentally redefine this value elsewhere in the design.

Stating with version 3.6, fizzim supports parameters. They are entered in the gui as state

machine attributes of type “parameter”:

Edit Global Properties

[f State Machine r Inputs |/ Outputs |/ States |/Transitiuns

3

Here you can change the glohal attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'

Aftribute Mame | DefaultValue Wisibility Tvpe Comment Calor
narme cliff_classic [0
clock clk [0 posedge
reset_signal rst_n [0 negedge
reset_state IDLE [0 ammalue
default_state_i... [1 [0
ADDRE_WIDTH |20 [0 parameter
DATAWIDTH 128 [0 parameter
Delete User Reset
OK Cancel
Fizzim 84

Fizzim

This results in a “parameter block” begin added to the module statement:

module cliff classic
#(
parameter ADDR WIDTH = 20,
parameter DATA WIDTH = 128
) (
output reg [ADDR WIDTH-1:0] addr,
output reg ds,
output reg rd,
input wire clk,
input wire go,
input wire rst n,
input wire ws
) 7

The default values specified in the gui will be used as the defaults.

These parameter values can then be used to specify things inside the fsm. In the example above,
ADDR_WIDTH was used as part of the declaration of “addr”:

Edit Global Properties f'5_<|

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.'

r State Machine r Inputs |T Outputs r States |/Transitiuns

Atribute Mame Default Yalue Yisikility Tvpe Comment | Color
ro I es comb
ds I es comb
addrpaDDRE_AWIDTH-1:0) (0 es regdp
Delete User Ourtpart Multibit Outpurt

OK Cancel

Note that “addr” is of type “regdp”. Parameters cannot be used to size type “reg” outputs! This
is because fizzim.pl needs to know the size of type “reg” outputs at compile time in order to
create the state vector assignments.

Fizzim 85 Fizzim

16 Inserting random bits of code at strategic places

Fizzim.pl has the following attributes that allow you to insert random bits of code at strategic
locations:

e insert_at_top_of file — string from value field will be inserted at the top of the file, before
the “module” statement.

e insert_in_module_declaration — string from value field will be inserted into the module
declaration.

e insert_at_top_of _module — string from value field will be inserted after the module
statement, but before anything else.

e insert_at_bottom_of module - string from value field will be inserted just before the
endmodule statement.

e insert_at_bottom_of file - string from value field will be inserted after the endmodule
statement.

Using these “hooks”, it should be possible to insert about anything you want into the Verilog
code.

Since it is common to insert a large chunk of code at the top of the file (copyright statement),
there is a special attribute that will read from a file an put whatever it finds at the top of the
output file:

e include_at top_of file — pointer to file whose contents should be inserted at the top of the
file.

Currently, the other insert_at attributes have no similar file provision, although it would be easy
to add. There just doesn’t seem to be any great need for it.

Fizzim 86 Fizzim

17 Inserting comments

All of the attribute forms have a comment field. Some of these comments are intended for the
visible table in the gui, some are for the Verilog code, some show up in both, and some are
utterly useless. Here’s a basic guide:

Comment Field Attribute On In Verilog?
Diagram?
Globals > State name Yes Yes — on “module” line
Machine
clock Yes No
reset_signal | Yes No
reset state | Yes No
<user atts> | Yes No
Globals > Inputs <all> Yes Yes — on input declaration of module statement
Globals > Outputs <all> Yes Yes — on output declaration of module statement
Globals > States name No No
<outputs> | (outputs | No
tab)
Globals > Transitions | name No No
equation Yes No
<user atts> | Yes No
State Properties name No Yes —on STATE: line in comb block case statement
<outputs> | No No
Transition Properties name No Yes — on transitions “if” statement in comb block
<user atts> | No No

Fizzim

87

Fizzim

18 Using multiple pages

Fizzim will also let you split the FSM across multiple pages.

We’ll start with a simple example. Back to Cliff Classic. Let’s move the READ state to its own
page.

(Example: cliff_classic_multipage.fzm)

Click the “Create New Page” tab at the bottom left. We now have 2 page tabs:

Fizzim - cliff_classic.fzm \:HE|F>__(|
File Edit Global Attributes Help

1]

Fizzim 88 Fizzim

Fizzim, - cliff_classic.fzm
File Edit Global Attributes Help

STATE MACHINE -
name cliff_classic P
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalus
default_state_js_x 1

INPUTS
clk
retn Edit Text
s:s Move to Page... ¥ Page 2

CUTPUTS
rd [t} reg L
ds 1] reg

STATES
rd] outpLt
ds o output

TRANSITIONS
eguation 1 def_type

1

Create New Page Page 1 X Page 2 X

Pop back to Page 1, select the READ state by clicking on it, then right-click to select Move to
Page > Page 2:

Fizzim 89 Fizzim

File Edit Global Attributes Help
STATE MACHINE -
name cliff_classic »
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue IDLE
default_state_is_x 1 rd==0
INPUTS ds <=0
clk
rst_n
go 3
ws T
CUTPUTS
rd i} reg go
ds 0 reg
STATES
rd 1] output DOME
ds o output rd==0
TRANSITIONS ds==1
equation 1 def_type 14
Add Loopback Transition
Add State Transition to... »
Edit State Properties
Move to Page... b‘ Page 2 |
DLY
rd==1 ws
ds==0
=
Create New Page Page1 X Page 2 X

Page 1 now looks like this:

Fizzim 90 Fizzim

Fizzim - cliff_classic.fzm
File Edit Global Attributes Help

STATE MACHINE
name
clock
reset_signal
reset_state
default_state_is_x
INPUTS
clk
rst_n
go
WS
QUTPUTS
rel
ds
STATES
rel
ds
TRAMSITIONS
equation

cliff_classic
clk

rst_n

IDLE

1

o

o

posedge
negedge
anyvalue

reg
reg

output
output

def_type

go

[»

[>

READ (Page 2)

L

READ (Page 2)

WS

L

READ (Page 2)

1]

Create New Page : Page1 X | Page2 X]

The arcs leading to/from state READ now terminate on page connectors. Input arcs come in

from the left, output arcs go out on the right.

Page 2 looks like this:

Fizzim

91

Fizzim

Fizzim - cliff_classic.fzm |;||E|E|
File Edit Global Attributes Help

[»

[>

IDLE (Page 1)

DLY (Page 1)

DL (Page 1)

Create New Page Page1 X Page2 X |

The usual editing rules apply. You can select the page connectors, state, etc and move them
around to clean up the diagram.

One handy use of multiple pages is to move the attributes table to its own page. You can select
the attributes table just like a state and move it.

Fizzim 92 Fizzim

19 “include and “define

Many designers prefer to assign constants by using names set by “define:
‘define OPCODE_READ 4’'b0110

Often these "define statements will be put into a single shared file, which is then read into
Verilog using the “include directive.

This is easy enough to do in fizzim, provided that the values are not being assigned to a output
of type “reg”. This restriction will be explained in a moment. For now, let’s look at how you
can do it for type comb or regdp.

(Example: cliff_ticdefine.fzm)
Since values of comb and regdp are not parsed by fizzim.pl, there’s no problem using a ‘define

value. Here, I’ve added a multibit output called “opcode[1:0]” and given it values of "NOP,
"READ, DELAY, and 'INCR.

STATE MACHINE
name cliff_ticdefines

clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue

IDLE
rd==0
ds==0

defautt_state_is_x 1
insert_at_top_of_file “include "defines.v" \nin

INPUTS opcode[1:0] = "HOP
clk
rst_n
go
WE
QUTPUTS
rel o] reg
ds o] reg
opcode[1:0] “MOP comb DOME
STATES rd==0 |EE:D1
rel o] output ds <=1 ds <=0
ds o output opcode[1:0] = "INCR ="
opcode[1:0] “NOP output opcode[1:0] = "READ
TRAMNSITIONS
equation 1 def_type

DLY
rel <=1
ds==0
opcode[1:0] = "DELAY

Now I create my “defines.v” file:

“define NOP 2'b0O
“define READ 2'b01

Fizzim 93 Fizzim

"define DELAY 2'bl0
"define INCR 2'bll

To get it read in, we use the state machine attribute “insert_at_top_of_file” (see “inserting
random bits of code a strategic places above), and set it to:

“include "defines.v" \n\n

The result looks like this:

“include "defines.v"

module cliff ticdefines (
output wire ds,
output reg [1:0] opcode,
output wire rd,
input wire clk,
input wire go,
input wire rst n,
input wire ws
) 7

// state bits

parameter

IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0
DONE = 3'b001, // extra=0 rd=0 ds=1

READ 3'b110; // extra=1 rd=1 ds=0
reg [2:0] state;
reg [2:0] nextstate;

// comb always block
always (@* begin
nextstate = 3'bx; // default to x because default state is x 1s set
opcode[1:0] = 'NOP; // default N o
case (state)
IDLE: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate
end
end
DLY : begin
opcode[1:0]

IDLE;

"DELAY;

So, why not allow type reg? Well, the problem is that fizzim.pl must know the values for type
reg outputs so that it can encode the state machine properly (well, not for onehot, but the idea is
to have a single source able to produce both heros and onehot).

Fizzim 94 Fizzim

Fine, so parse the Verilog, right? Well, it’s not quite that simple. First, you’d have to FIND the
include file(s). Does that mean parsing the “.vc” file and reproducing Verilog’s directory
searchpath algorithm? Hmmm. And what if the “define statements are in among other compiler
directives? Now you have to parse most or all of the compiler directives as well.

Worse, the code generation happens in a different step than the simulation or synthesis. What
happens if someone edits the defines file after the FSM code is generated? Ouch. To get around
this, you’d probably want to add some sort of sim-only code that verifies that the required values
didn’t change. But that only works for simulation, what about synthesis? Ideally, you’d like to
do this with compiler directives, but | don’t see how to do that.

So, it might be feasible, but allowing “define values for reg outputs raises a lot of thorny issues,

as well as being a fair amount of work. So, for now, it remains on the “maybe, but probably not”
list.

Fizzim 95 Fizzim

20 Forcing the state vector

Despite the heros encoding’s ability to do all that whizzy stuff, some control-freaks (or speed-
freaks!) will still insist on forcing particular values onto the state bits.

Fizzim.pl doesn’t support this directly (in part because we think it’s generally a bad idea), but it’s
easy enough to fake it. How you fake it depends on whether you want to just force the

assignments (making the registered outputs datapath bits), or you want to force the assignments,
then use the values as your registered outputs.

20.1 With registered outputs as datapath bits

To force the state assignment without trying to use the values as registered outputs, here’s what
you do:

First, create your registered outputs as type regdp.

Now, add an output called, for example, “STATE” with the width of your state vector. Edit each
state to assign this to your target value.

Here’s what Cliff Classic looks like with this done:

(Example: cliff_forcestate_regdp.fzm)

Fizzim 96 Fizzim

STATE MACHINE

name cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue IDLE
default_state_is_x 1 rd <=0
NPT ds <0
rst_n STATE[1:0] <= 00
go
WE
QUTPUTS
ds ragdp
STATE[1:0] reg
STATES DCME
READ
rel output rd==0 vl <= 1
ds output ds ==1 ds <=0
STATEM:0] output STATE[1:0] == 11 01 ez
TRANSITIONS STATE[T0] =01
equation 1 def_type

DLY
rel <=1
ds==0

STATEM:0] ==10

If you’ve encoded the state bits correctly, heros will find your encoding to be just exactly what it
needs, and you get output like this:

// state bits

parameter

IDLE = 2'b00, // STATE[1:0]=00
DLY = 2'b10, // STATE[1:0]=10
DONE = 2'bl1l, // STATE[1:0]=11
READ = 2'b01; // STATE[1:0]=01

// Assign reg'd outputs to state bits
assign STATE[1:0] = state[l:0];

20.2 With registered outputs assigned to state bits

If you want to assign your registered outputs to bits from your forced state vector, do this:
(Example: cliff_forcestate regout.fzm)

Change their type to “comb” and set their default values to assign each to a state bit (ex:
name=ds, Default value=STATE[0]). Add the STATE vector as described above.

Fizzim 97 Fizzim

Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’
r State Machine r Inputs |T Outputs r States |/Transitinns

Aftribute Mame Default Walue Wigibilit Type Comment Caolar
rd STATE[1] eS comb
s STATE[D] eS comb
STATE[Z:0] eS req
Delete User Ourtpurt Multibit Outpurt
OK Cancel

Edit Global Properties [E|

The result would look something like this:

Fizzim

98

Fizzim

STATE MACHINE
name cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
default_state_is_x 1

INPUTS
clk
rst_n

E
rd = STATE[
ds = STATE[0]
STATE[2:0] <= 00D

STATE[1] comkb
STATE[D] comk
reg

DCONE READ

rel STATE[1] output red = STATE[1] el =

ds STATE[D] output ds = STATE[D] :; - SSTI':'TrIIEE[[B]]

STATE[Z:0] output STATE[2:0] == 001 STATE[Z:0] <= 010
TRANSITIONS

equation 1 def_type

DLY
rd = STATE[1]
ds = STATE[D]
STATE[Z:0] == 110

To make it look even prettier, you could turn the default visibility on rd and ds to “NO”, then go
to one state (IDLE) and turn it on:

STATE MACHINE

name cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state) IDLE anyvalue IDLE
lNgSfraSurt_state_ls_x 1 re = STATE[]
ok ds = STATE[O]
rstn STATE[2:0] <= 000
go
WS
CUTPUTS
rel STATE[1] comk
ds STATE[D] comkb
STATE[2:0] reg
ST:TES STATE[] utput L READ
i outp! STATE[2:0] <= 001 7 e
ds STATE[0] output STATE[20] <= 010
STATE[2:0] output
TRAMSITIONS
eguation 1 def_type

DLY
STATE[2:0] == 110

Or you could turn visibility off complete, and add the mapping as free text. You get the idea.

Fizzim 99 Fizzim

However you choose to do it, the comb block will now look like this:

// comb always block
always (@* begin
nextstate = 3'bx;
ds = STATE[O]; //
rd = STATE[1]; //
case (state)
IDLE: begin
if (go) begin
nextstate =
end
else begin
nextstate =
end
end
DLY : begin
if (ws) begin
nextstate =
end
else begin
nextstate =
end
end
DONE: begin
begin
nextstate =
end
end
READ: begin
begin
nextstate =
end
end
endcase
end

Now your outputs are forced to the state bit values.

Fizzim

// default to x because default state is x is set

default
default

READ;

IDLE;

READ;

DONE ;

IDLE;

DLY;

100

Fizzim

21 Suppressing outputs in the module portlist

Starting with version 4.0, there is a new "UserAtt" called "suppress_portlist” that will remove
any output from the module portlist. It defaults true for flags. For other outputs, you have to set
it manually. Just edit the "UserAtts" column on the "Outputs" page and add "suppress_portlist".

Fizzim 101 Fizzim

22 Splitting lines in free text and equations

Beginning with gui version v110824 and fizzim.pl version 4.01 (package release 4.01), you can

split lines in free text and transition equations by embedding newline characters in the text. Just
insert the string "\n". This will cause a line break when the text (free text or transition equation)
is displayed in the gui. Free text is never part of the fizzim.pl verilog/systemverilog output, but

the newline will be stripped from transition equations before the output is generated.

Fizzim 102 Fizzim

23 Unknown states

Most state machines have more possible combinations of the state bits than they have states.
Cliff_classic is like this. Due to the fact that two of the states have identical outputs, the heros
encoding will use 3 bits for the states — one for rd, one for ds, and one “extra”. This means that
only 4 of the 8 possible values of the 3-bit state vector correspond to states of the state machine.

There’s no inherent problem in this. The coding of the fsm guarantees that it will not be possible
to get into any of these “unknown” states. The logic created by synthesis will only ever go to
legal states. The only way the fsm can get into one of these states is if the gates or flipflops
malfunction. This is distinct from a “bug in the fsm” which would mean the fsm didn’t do what
the designer intended. Getting into one of these states requires a circuit problem, not a design
flaw.

Still, some designers like to design their fsm such that these unknown states go to a known state
— so the fsm doesn’t “hang” if the circuit malfunctions (but it had better be a one-time
malfunction or all bets are off). Fizzim supports this through an attribute called
“undefined_states_go_here”.

23.1 Case 1 — sparse state space and unknowns go to an existing state

Here’s a simple example. We’ll add the undefined_states_go_here attribute to cliff_classic, and
send the unknown states to IDLE.

Recall that the nature of the output values in cliff_classic forces fizzim to generate a 3-bit vector
for this 4-bit state machine:

// state bits

parameter

IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0
DONE = 3'b001, // extra=0 rd=0 ds=1
READ = 3'b110; // extra=1 rd=1 ds=0

So, there are lots of undefined state values (100, for example). Using the
undefined_states_go_here attribute, we can have fizzim create code that will send the fsm to
IDLE if it ever lands in one of these states.

"undefined_states go_here" is a state attribute, and it is not predefined in the gui (it is a "user"
attribute). So, as with other such special attributes, we have to create it first, then set it:

To create a new user attribute, use Global Attributes > States

Fizzim 103 Fizzim

-

Edit Global Properties =
Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.'

r State Machine r Inputs r Outputs h’ States r Transitions |

Altribute Mame Default Value Visibility Type Comment| Color

name def_name fes def_type

rd 0 fes output

ds 0 fes output
undefined_states_go_here 0 Only non-de...

Delete User
OK Cancel

Click "User™" and type in the name. Set the default value to 0 and set visibility however you like.

Now, double click on IDLE and set the value of this attribute to 1 in this state:

-

Edit State Properties @

Edit the properties of the selected state:

Altribute Mame Value Wisibility Type Comment
name IDLE Yes def_type
rd 0 Yes output
ds 0 Yes output
undefined_states_... 1 Only non-default

width: [130 | e

Height: [130 |

OK Cancel

The state diagram should now look like this:

Fizzim 104 Fizzim

Now, the case statement will look like this:

// comb always block

always (@* begin
nextstate = state; // default to hold value because implied loopback is

set

case (state)

Fizzim

IDLE: begin
if (go) begin
nextstate =
end
end
DLY : begin
if (ws) begin
nextstate =
end
else begin
nextstate =
end
end
DONE: begin
begin
nextstate =

READ;

READ;

DONE;

IDLE;

eﬂned_states _go_here =

105

Fizzim

end

end

READ: begin
begin

nextstate = DLY;

end

end

default : begin
nextstate = IDLE; // Added because undefined states go here is set

end

endcase
end

Note the addition of the "default : " statement. Any states that don't match the known ones fall
through to this statement and the next transition will be to IDLE.

23.2 Case 2 — full state space and unknowns go to an existing state

OK, so what happens if we change the encoding so that this 4-bit state machine actually fits into
a 2 bit state vector?

STATE MACHINE
name unknown_4state
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
default_state_is_x 1
NPT ds <20
rst_n uhdefined_states_go_here =
go
wWE ;
CUTPUTS __/
rel o] reg
ds o redg
STATES
rel o output
ds o] output
undefined_states_go_here o]
TRANSITIONS
eguation 1 def_type

Notice that the state vector is now only 2 bits:

// state bits
parameter

Fizzim 106 Fizzim

IDLE 2'p00, // rd=0 ds=0
DLY = 2'bl1l, // rd=1 ds=1
DONE = 2'b01, // rd=0 ds=1
READ 2'p10; // rd=1 ds=0

Well, you get the "default :" statement anyway:

reg [1:0] state;
reg [1:0] nextstate;

// comb always block
always (@* begin
nextstate = 2'bxx; // default to x because default state is x is set
case (state)
IDLE: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate
end
end
DONE: begin
begin
nextstate
end
end
READ: begin
begin
nextstate
end
end
default : begin
nextstate = IDLE; // Added because undefined states go here is set
end
endcase
end

DONE ;

IDLE;

DLY;

This is harmless functionally, but it might be useful for linting tools that insist on seeing the
"default :".

23.3 Case 3 — sparse state space and unknowns go to a new state

OK, back to the original cliff_classic. Suppose, rather than have unknown states go to IDLE, we
want them to go to a new ERROR state (note: | don't recommend actually calling the state

Fizzim 107 Fizzim

"ERROR", since | always avoid using the string in verilog names as it makes grepping more
difficult)?

Well, just add the new state as usual, create the undefined_states_go_here attribute as above, and
set it in the new state:

STATE MACHINE
name unknown_4state
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
default_state_is_x 1
INPUTS
clk
rst_n
go
WS
CUTPUTS
rel o req
ds o] reg
STATES
rel o output
ds o] output
undefined_states_go_here o
TRAMNSITIONS
eguation 1 def_type

ERROR
rd==0

ds==0
undefined_states_go_here =1

The resulting code looks like this:

// state bits

parameter

IDLE = 3'b000, // extra=0 rd=0 ds=0
DLY = 3'b010, // extra=0 rd=1 ds=0
DONE = 3'b001, // extra=0 rd=0 ds=1

ERROR = 3'b100, // extra=1l rd=0 ds=0
READ = 3'b110; // extra=1 rd=1 ds=0

reg [2:0] state;
reg [2:0] nextstate;

// comb always block
always (@* begin
nextstate = 3'bxxx; // default to x because default state is x is set
case (state)
IDLE : begin
if (go) begin
nextstate = READ;

Fizzim 108 Fizzim

end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate
end
end
DONE : begin
begin
nextstate
end
end
ERROR: begin
end
READ : begin
begin
nextstate
end
end
default : begin
nextstate = ERROR; // Added because undefined states go here is set
end
endcase
end

DONE;

IDLE;

DLY;

23.4 Case 4 — full state space and unknowns go to a new state

Ahah! What if the space state was already full and we added the ERROR state? Are we going to
end up with a 3-bit vector instead of a 2-bit vector just to have a now-useless ERROR state?

NO! Fizzim is smart enough to detect this. If fizzim sees a state with undefined_states_go_here

set, and there are no transitions into this state, and it is not the reset state, it will first try the state
encoding without this state. If this encoding ends up full, the special state is suppressed.

Fizzim 109 Fizzim

STATE MACHINE

name unknown_dstate_iloop
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue
implied_loopback 1
INPUTS
clk
rst_n
go
wWE
CUTPUTS
rel o] reg
ds o] reg
STATES
rel o output
ds o] output
undefined_states_go_here o]
TRANSITIONS
eguation 1 def_type

undefined_states_go_here =1

// state bits

parameter
IDLE = 2'b00, // rd=0 ds=0
DLY = 2'bl1l, // rd=1 ds=1

DONE = 2'b01, // rd=0 ds=1

READ = 2'b10; // rd=1 ds=0

// Note: State ERROR (with undefined states go here attribute) dropped
because it had no transitions into it and the state map was full without it.

reg [1:0] state;
reg [1:0] nextstate;

// comb always block
always (@* begin
nextstate = state; // default to hold value because implied loopback is
set
case (state)
IDLE: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ;
end

Fizzim 110 Fizzim

else begin
nextstate
end
end
DONE: begin
begin
nextstate
end
end
READ: begin
begin
nextstate
end
end
endcase
end

DONE;

IDLE;

DLY;

Notice the "Note: " showing what fizzim has done.

What if this special state has outputs? Well, if the outputs are comb or regdp, nothing changes.
The default of the output will always be asserted. For a comb output, you get something like
this:

// state bits

parameter

IDLE = 2'b00, // extra=0 rd=0

DLY 2'b01, // extra=0 rd=1

DONE = 2'bl10, // extra=1l rd=0

READ = 2'bl1l; // extra=1 rd=1

// Note: State ERROR (with undefined states go here attribute) dropped
because it had no transitions into it and the state map was full without it.
Use -force keep undefined goto state to override this.

reg [1:0] state;
reg [1:0] nextstate;

// comb always block
always (@* begin
nextstate = state; // default to hold value because implied loopback is
set
ds = 0; // default
case (state)
IDLE: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;

end

end

DLY : begin
ds = 1;

if (ws) begin
nextstate = READ;

end

else begin
nextstate = DONE;

end

Fizzim 111 Fizzim

end
DONE: begin
ds = 1;
begin
nextstate = IDLE;
end
end
READ: begin
begin
nextstate = DLY;
end
end
endcase
end

For a regdp output, you'll get this:

// datapath sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n) begin
err <= 0;
end
else begin
err <= 0; // default
// Warning D9: Did not find any non-default values for any datapath
outputs - suppressing case statement
end
end

This ends up as a wire tied to ground...

If, however, you declare this output as type "reg", you won't get the special state suppression
functionality. Type "reg" means the bit is supposed to be part of the state vector. Figuring out
which outputs could be suppressed (and tying them off) is just too hard - use a regdp or comb.

Note that this suppression behavior an be overidden using the "-
force_keep_undefined goto_state" switch.

Fizzim 112 Fizzim

24 Controlling and suppressing warning messages

Fizzim.pl has a couple of command-line switches that allow you to control what warning
messages are generated, and where they go.

Currently, warning messages are placed in the following groups:

“R” messages — Reset-related warnings.

“I” messages — Implied loopback warnings.

“P” messages — Priority-related warnings.

“C” messages — Combinational output-related warnings.

PwbhpE

Each individual message also has a number. Note that the numbers within the group are not
necessarily continguous, since each number is itself unique across all groups.

So, for example, warning message “R1” is “No reset specified” and warning message “R5” is
“No reset value for datapath output <output> set in reset state <state> - Assigning a reset value of
<value> based on default”.

You can use the —nowarn switch to suppress these warnings. Using the full group+number will
suppress just that message:

-nowarn R1

Using just the group will suppress all messages in the group, so:
-nowarn R

suppresses all reset messages.

You can also control where the messages are sent using the —warnout switch. This switch has 3
possible values:

e stdout — place the messages in the Verilog as comments.
e stderr — just send the messages to unix stderr.
e both — send the messages to both places.

The default value for warnout is “both”.

Fizzim 113 Fizzim

25 Printing and exporting the state diagram

One of the nice things about using a gui-based FSM design tool is the ability to use the state
diagram in your documentation. In addition to printing the state diagram, you can export it in
three ways:

1. Asa.png file

2. Asa .jpgfile

3. Directly to the clipboard

Having the attributes table on the diagram allows you to put ALL the information into your
documentation quickly and easily.

All the state diagrams in this paper were inserted using the export to clipboard feature.

Note that currently fizzim only prints/exports one page at a time.

Fizzim 114 Fizzim

26 Specifying the fizzim.pl options

There is a special state machine attribute called “be_cmd” that is used to specify the backend
command to run. Some day, this will be used to run the backend from within the gui. That’s still
on the todo list (because it has some platform dependencies), but the be_cmd attribute is fully
supported in fizzim.pl. The attribute is parsed to obtain the options and those options are treated
exactly as if they had been specified on the command line — ahead of the actual command line
options. Since they come first, they can be overridden by the options specified on the command
line, giving priority to these.

Fizzim 115 Fizzim

27 Requiring a minimum revision of fizzim.pl

Beginning with revision 3.6, fizzim.pl has a command line option (more often used in be_cmd)
“-minversion” which will cause it to error out if it’s version is less than the version specified:

$ cat cliff.fzm | fizzim.pl -minversion 6.1

Error: Version 3.55 is less than required minversion 6.1 - exiting

This is to cover the situation where your fsm requires a specific feature or bug fix.

Fizzim 116 Fizzim

28 Group select and move

The fizzim gui also supports multiple item select and move. In this case, the “items” are states
and the attribute table — transitions are only moved by moving the attached state(s).

Any modifications made to attached transitions are generally retained if both of the attached

states are moved (in fact, whenever possible, they are retained when a single attached state is
moved).

A common example is having to move the while fsm because the attribute table grew too big.
Suppose | added a be_cmd and ended up with this:

Fizzim - be_cmd.fzm

File Edit Global Attributes Help

STATE MACHINE

name fsm1a_ffol

clock clk posedge
reset_signal rst_n e
reset_state IDLE anyél
default_state_is_x 1 rd <=0
be_cmd fizzim.pl -enc onehat -terse -nosi le -stat STATE -nextstatevar NEXT

INPUTS data_strobe == 0

clk

rst_n

go

waitstate_request
QUTPUTS

rd

reg

data_strobe 1] reg
STATES DOMESTATE
READ
rd rd==0 output rel <= 1
cata_strobe 1] data_strobe <=1 output _
TRAMSITIONS data_strobe ==0
eguation 1 def_type

DLY
rd==1
data_strobe <=0

waitstate_reguest

| can move the whole fsm by selecting all the states either by selecting each state individually
(click, ctl-click, ctl-click, etc), or by drawing a box around the whole fsm:

Fizzim 117 Fizzim

zim - be_cmd.fzm

File Edit Global Attributes Help

STATE MACHIMNE
name
clock
reset_signal rst_n
reset_state IDLE
default_state_is_x 1

famla_ffol
clk

be_cmd fizzim pl -enc onehot -terse -r
INPUTS

clk

rst_n

go

waitstate_request
QUTPUTS

STATE -next

MEXT

rd

clata_strobe 1]
STATES

rd

clata_strobe 1]
TRAMSITIONS

equation 1

data_strobe <=1

DOMESTATE
d==0

And then just drag it to the new location.

Fizzim

118

clata_strobe <=0

go

reg
reg

output
oltput

cef_type

waitstate_request

N

Fizzim

Fizzim, - be_cmd.fzm
File Edit Global Attributes Help

STATE MACHINE

name fsm1a_ffol
clock clk
reset_signal rst_n
reset_state IDLE
default_state_is_x 1
be_cmd fizzim pl -enc onehot -terse -nosi le -stat STATE -nextstat
INPUTS
clk
rst_n
go
waitstate_request
QUTPUTS
rd
data_strobe 1]
STATES
rd
data_strobe 1]
TRANSITIONS
equation 1

IDLE
re <=0
clata_strobe <=0

DOMESTATE
rd==0
data_strobe ==1

DLy
rd==1
data_strobe <=0

Notice that my arcs didn’t change.

Fizzim

119

MEXT

data_strobe <=0

posedge
negedge
anyvalue

regq
reg

output
output

def_type

READ
rd <=1

waitstate_reguest

Fizzim

29 —terse (-sunburst) option

CIiff Cummings of Sunburst Design is one of the industry’s top Verilog experts. He participates
in standards activities, teaches Verilog and SystemVerilog classes, and presents frequently on all

things Verilog.

Cliff is a firm believer in “less is more”. He prefers a coding style that eliminates any and all
unnecessary syntax (like begin/end blocks, etc). fizzim.pl has an option (-terse or —sunburst) that
will produce this sort of output.

Here’s an example:

(Example: cliff_terse_example.fzm)

Standard output looks like this:

module cliff classic

output wire
output reg
output reg
input wire
input wire
input wire
input wire

// state bi
parameter

IDLE = 3'b0
DLY = 3'b0
DONE 3'b0
READ = 3'bl

reg [2:0] s

ds,
pre rd,
rd,
clk,
go,

rst n,
WS

ts

00, //
10, //
01, //
00; //

tate;

(

extra=00 ds=0
extra=10 ds=0
extra=01 ds=1
extra=00 ds=0

reg [2:0] nextstate;

// comb always block
always (@* begin

nextstate
pre rd =
case (sta

= 3'bx;

0; // default

te)

IDLE: begin
o) begin

if (g
nex

tstate

= READ;

pre rd = 1;

end
else
nex
end
end

Fizzim

begin
tstate

= IDLE;

// default to x because default state is x is set

120

Fizzim

DLY : begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate
end
end
DONE: begin
begin
nextstate
end
end
READ: begin
begin
nextstate
end
end
endcase
end

DONE;

IDLE;

DLY;

// Assign reg'd outputs to state bits
assign ds = statel[0];

// sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n)
state <= IDLE;
else
state <= nextstate;
end

// datapath sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n) begin
rd <= 0;
end
else begin
rd <= 0; // default
case (nextstate)
DLY : begin

rd <= 1;

end

READ: begin
rd <= 1;

end

endcase
end
end

// This code allows you to see state names in
"ifndef SYNTHESIS
reg [31:0] statename;
always (@* begin
case (state)

IDLE:

statename = "IDLE";
DLY

statename = "DLY";

Fizzim 121

simulation

Fizzim

DONE :
statename = "DONE";
READ:
statename
default:
statename
endcase
end
“endif

"READ";

"XXXX";

endmodule

The sunburst version looks like this:

module cliff classic (
output ds,
output reg pre rd,
output reg rd,
input clk,
input go,
input rst n,
input ws

// state bits

parameter

IDLE = 3'b000, // extra=00 ds=0
DLY = 3'b010, // extra=10 ds=0
DONE = 3'b001, // extra=01 ds=1

READ = 3'p100; // extra=00 ds=0

reg [2:0] state;
reg [2:0] nextstate;

// comb always block
always (@* begin
nextstate = 3'bx; // default to x because default state is x is set
pre_rd = 0; // default
case (state)
IDLE: begin

if (go) begin
nextstate = READ;
pre rd = 1;
end
else nextstate = IDLE;
end
DLY : if (ws) nextstate = READ;
else nextstate = DONE;
DONE : nextstate = IDLE;
READ: nextstate = DLY;
endcase

end

// Assign reg'd outputs to state bits
assign ds = statel[0];

Fizzim 122 Fizzim

// sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n)
state <= IDLE;
else
state <= nextstate;
end

// datapath sequential always block
always ((posedge clk or negedge rst n) begin
if (!rst n) rd <= 0;
else begin
rd <= 0; // default
case (nextstate)
DLY : rd <= 1;
READ: rd <= 1;
endcase
end
end

// This code allows you to see state names in simulation
"ifndef SYNTHESIS
reg [31:0] statename;
always (@* begin
case (state)

IDLE: statename = "IDLE";
DLY : statename = "DLY";
DONE : statename = "DONE";
READ: statename = "READ";
default: statename = "XXXX'";
endcase
end
“endif
endmodule

Fizzim 123 Fizzim

30 SystemVerilog output
Beginning in revision 3.0, fizzim.pl can produce output in SystemVerilog format.

SystemVerilog is invoked by specifying “-language SystemVerilog” on the command line (or in
the be_cmd attribute string — see the section on be_cmd).

The code is structured to follow coding guidelines from Cliff Cummings (as taught in his

SystemVerilog class). The primary changes are in the following areas:

1. Use of logic data type instead of wire and reg

2. Use of enumerated types instead of parameters for state names. In most waveform
viewers, the eliminates the need for special code to be able to see the state names.

Because of this, the “-simcode” option defaults to off when the language is
SystemVerilog (the default is on normally).

w

Use of always_comb, always_ff instead of always_at *
4. Use unique case instead of “//synopsys full case parallel case” in onehot encoding

(unless the attribute “onehot pragma” is set).

The heros output for cliff_classic looks like this in SystemVerilog:

module cliff classic
output logic ds,
output logic rd,
input logic clk,
input logic go,
input logic rst n,
input logic ws

) 7

// state bits

enum logic [2:0] {
IDLE = 3'b000, //
DLY = 3'b010, //
DONE = 3'b001, //
READ = 3'bl10, //
XXX = 'x

} state, nextstate;

// comb always bloc
always comb begin
nextstate = XXX;
case (state)
IDLE: begin
if (go) begin
nextstate =
end
else begin
nextstate =
end

Fizzim

(

rd=0
rd=1
rd=0
rd=1

extra=0
extra=0
extra=0
extra=1

k

// default to

READ;

IDLE;

ds=0
ds=0
ds=1
ds=0

x because default state is x is set

124

Fizzim

end
DLY : begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end
end
DONE: begin
begin
nextstate = IDLE;
end
end
READ: begin
begin
nextstate = DLY;
end
end
endcase
end

// Assign reg'd outputs to state bits
assign ds = state[0];
assign rd = statel[l];

// sequential always block
always ff (@ (posedge clk or negedge rst n) begin
if (!rst n)
state <= IDLE;
else
state <= nextstate;
end

endmodule

The heros output for cliff_classic looks like this in SystemVerilog:

module cliff classic (
output logic ds,
output logic rd,
input logic clk,
input logic go,
input logic rst n,
input logic ws

)

// state bits

enum {
IDLE BIT,
DLY BIT,
DONE BIT,
READ BIT

} index;

enum logic [3:0] {

IDLE = 4'bl<<IDLE BIT,
DLY = 4'bl<<DLY BIT,

Fizzim 125 Fizzim

DONE = 4'b1<<DONE_BIT,
READ = 4'b1<<READ_BIT,
XXX = 'x

} state, nextstate;

// comb always block
always_comb begin
nextstate = XXX; // default to x because default state is x is set
unique case (1'bl)
state[IDLE BIT]: begin
if (go) begin
nextstate = READ;
end
else begin
nextstate = IDLE;
end
end
state[DLY BIT]: begin
if (ws) begin
nextstate = READ;
end
else begin
nextstate = DONE;
end
end
state[DONE BIT]: begin
begin
nextstate = IDLE;
end
end
state[READ BIT]: begin
begin
nextstate = DLY;
end
end
endcase
end

// sequential always block
always_ ff (@ (posedge clk or negedge rst n) begin
if (!rst n)
state <= IDLE;
else
state <= nextstate;
end

// datapath sequential always block
always_ ff (@ (posedge clk or negedge rst n) begin
if (!rst n) begin

ds <= 0;
rd <= 0;
end
else begin
ds <= 0; // default

rd <= 0; // default
unique case (1'bl)
nextstate[DLY BIT]: begin
rd <= 1;

Fizzim 126 Fizzim

end
nextstate[DONE BIT]: begin

ds <= 1;

end

nextstate[READ BIT]: begin
rd <= 1;

end

endcase
end
end
endmodule

Fizzim 127 Fizzim

31 Future directions / wishlist

e Multi-page print

e Better support for pages sizes other than 8-1/2 by 11.

e (Limited?) parsing of “include files for “defines and/or parameters to allow their use as
values for reg outputs.

Fizzim 128 Fizzim

32 Acknowledgements

The authors would like to acknowledge the following individuals for their assistance in mapping
our the feature set and reviewing the output:

Bruce Lavigne — Hewlett Packard
Mark Gooch — Hewlett Packard
Jon Watts — Hewlett Packard

Cliff Cummings — Sunburst Design

Fizzim 129 Fizzim

33 References

(1) Synthesizable Finite State Machine Design Techniques Using the New
SystemVerilog 3.0 Enhancements
Cliff Cummings
Synopsys Users Group 2003 San Jose
(available at www.sunburst-design.com)

(2) State machine design techniques for Verilog and VHDL
Steve Golson
Synopsys Users Group 1994 San Jose
(available at www.trilobyte.com)

(3) Coding And Scripting Techniques For FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs
Cliff Cummings
Synopsys Users Group 2000 Boston
(available at www.sunburst-design.com)

Fizzim 130 Fizzim

http://www.sunburst-design.com/
http://www.trilobyte.com/
http://www.sunburst-design.com/

