
Virtex-6 FPGA Embedded
Tri-Mode Ethernet MAC
Wrapper v1.4
Getting Started Guide

UG545 April 19, 2010

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com UG545 April 19, 2010

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© 2009- 2010 Xilinx, Inc. All rights reserved. Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

04/24/09 1.0 Initial Xilinx release.

06/24/09 1.1 Updated core to v1.2 and ISE® to v11.2. Added Virtex®-6 CXT support.

09/16/09 2.0 Updated core to v1.3 and ISE to v11.3. Added Virtex-6 HXT and Virtex-6 -1L support.

10/15/09 2.0.1 Added Appendix E, “Debugging Designs.”

04/19/10 2.1 Updated core to v1.4 and ISE to v12.1.

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 3
UG545 April 19, 2010

Revision History . 2

Schedule of Figures . 7

Preface: About This Guide
Guide Contents . 9
Conventions . 10

Typographical . 10
Online Document . 11

Chapter 1: Introduction
System Requirements . 13
About the Ethernet MAC Wrapper Core . 13

Designs Using Serial Transceivers . 13
Recommended Design Experience . 14
Additional Resources . 14
Technical Support. 14
Feedback. 14

Ethernet MAC Wrapper . 14
Document . 14

Chapter 2: Licensing the Core
Before you Begin . 15
License Options . 15
Obtaining Your Full License Key . 16
Installing Your License File . 16

Chapter 3: Quick Start Example Design
Overview . 17
Generating the Ethernet MAC Wrapper. 19
Implementing the Example Design . 21
Running the Simulation . 21

Functional Simulation . 21
Virtex-6 Devices . 21
VHDL Simulation . 21
Verilog Simulation . 22

Timing Simulation . 22
VHDL Simulation . 23
Verilog Simulation . 23

What’s Next? . 23

Table of Contents

http://www.xilinx.com

4 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 4: Customizing the Core
Ethernet MAC Wrapper Screens . 25

Interface Configuration Options: Screen 1 . 25
Component Name. 26
Physical Interface . 26
Client Interface . 27
Host and Management Interfaces . 27

Transmitter and Receiver Configuration: Screen 2 . 29
Initial Transmitter Configuration . 30
Receiver Configuration . 30
Initial Address Filter Configuration . 31

MDIO Configuration: Screen 3. 32
Initial MDIO Configuration . 32

Chapter 5: Detailed Example Design
Directory Structure and File Descriptions . 35

<project directory> . 36
<project directory>/<component name> . 36
<component name>/doc . 37
<component name>/example_design . 37
<component name>/example_design/client . 38
<component_name>/example_design/client/fifo . 38
<component_name>/example_design/physical . 39
<component name>/implement . 40
implement/results . 41
<component name>/simulation . 41
simulation/functional . 42
simulation/timing . 43

Implementation and Test Scripts . 44
Setting up for Simulation . 44
Virtex-6 Device Requirements . 44
Implementation Scripts for Timing Simulation . 44
Test Scripts For Timing Simulation . 45

For ModelSim . 45
For IES . 45
For VCS. 45

Test Scripts For Functional Simulation . 46
For ModelSim . 46
For IES . 46
For VCS. 46

Example Design . 47
HDL Example Design . 47
10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO . 48

rx_client_fifo . 49
tx_client_fifo . 49

Address Swap Module . 50
Physical Interface . 50

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 5
UG545 April 19, 2010

Demonstration Test Bench . 51
Test Bench Functionality . 51

Demonstration Test Bench Tasks . 52
Changing the Test Bench . 53

Changing Frame Data . 53
Changing Frame Error Status . 53
Changing the Tri-Mode Ethernet MAC Configuration. 53

Appendix A: Using the Client Side FIFO
Overview of LocalLink Interface . 55
Receive FIFO Operation . 57

LocalLink Interface . 57
Transmit FIFO Operation . 58

LocalLink Interface . 58
Clock Requirements. 59
User Interface Data Width Conversion. 59

Appendix B: Ethernet MAC Clocking
Single-Speed Clocking . 61

1000BASE-X PCS/PMA and SGMII . 61
1000BASE-X PCS/PMA with 16-bit Client Interface . 63
GMII/RGMII at 1000 Mbps . 65

Multi-Speed Clocking . 66
SGMII at Multiple Speeds . 66
GMII/MII/RGMII at Multiple Speeds . 68
GMII/MII at Multiple Speeds with Clock Enable . 71
RGMII at Multiple Speeds with Clock Enable . 72

Appendix C: Constraining the Example Design
Basic Constraints . 73
Clock Constraints . 74

Clock Constraints for MII Configurations . 74
Clock Constraints for GMII Configurations. 74
Clock Constraints for RGMII Configurations . 75
Clock Constraints for 1000BASE-X PCS/PMA Configurations 76
Clock Constraints for SGMII Configurations . 77
Clock Constraints for the Host Interface . 77

Physical Interface Constraints . 78
Physical Interface Constraints for MII Configurations. 78
Physical Interface Constraints for GMII Configurations . 79

GMII IDELAY_VALUE Constraints . 80
Physical Interface Constraints for RGMII Configurations . 81

RGMII IDELAY_VALUE Constraints . 83
Physical Interface Constraints for 1000BASE-X PCS/PMA Configurations 83
Physical Interface Constraints for SGMII Configurations . 84

LocalLink FIFO Constraints . 85

http://www.xilinx.com

6 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Appendix D: SGMII Capabilities
SGMII Receiver Elastic Buffer. 87

FPGA Fabric Rx Elastic Buffer Requirement . 87
Analysis . 88

The Serial Transceiver Rx Elastic Buffer . 89
Closely Related Clock Sources . 89

Jumbo Frame Reception . 90
SGMII / 1000BASE-X PCS/PMA Mode Switching . 90

Switching Modes and Speeds. 91
Operational Requirements . 91

Dynamic Switching. 91
Host Interface Arbitration. 91
Auto-Negotiation . 92

Appendix E: Debugging Designs
Debug Tools . 93

Example Design . 93
ChipScope Pro Tool . 93
Available Reference Boards . 94
Link Analyzers . 94

Simulation Debug . 95
Compiling Simulation Libraries . 96

Xilinx Simulation Library Compilation Wizard . 96
Compxlib . 96

Implementation and Timing Errors . 97
Regional Clocking Errors in Map . 97
Timing Failed for GMII/RGMII/MII OFFSET IN Constraint . 98

Hardware Debug . 98
General Checks . 98
Problems with Transmitting and Receiving Frames . 98
Link Bring-up Using 1000BASE-X or SGMII . 99

Problems with Data Reception or Transmission . 99
Problems with Auto-Negotiation . 100
Problems in Obtaining a Link (Auto-Negotiation Disabled). 100
Problems with a High Bit Error Rate . 101

Problems with the MDIO . 102
Configuring the Ethernet MAC to the Correct Speed . 103

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 7
UG545 April 19, 2010

Chapter 1: Introduction

Chapter 2: Licensing the Core

Chapter 3: Quick Start Example Design
Figure 3-1: Default Example Design and Test Bench . 18
Figure 3-2: Virtex-6 Embedded Tri-Mode Ethernet MAC Wrapper Main Screen 20

Chapter 4: Customizing the Core
Figure 4-1: Interface Configuration . 26
Figure 4-2: Transmitter and Receiver Configuration . 29
Figure 4-3: MDIO Configuration . 32

Chapter 5: Detailed Example Design
Figure 5-1: HDL Example Design . 47
Figure 5-2: Frame Transfer across LocalLink Interface . 49
Figure 5-3: Modification of Frame Data by Address Swap Module 50
Figure 5-4: Demonstration Test Bench . 51

Appendix A: Using the Client Side FIFO
Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation 55
Figure A-2: Frame Transfer across LocalLink Interface . 56
Figure A-3: Frame Transfer with Flow Control . 56

Appendix B: Ethernet MAC Clocking
Figure B-1: PCS/PMA with 8-bit Client Interface or SGMII Clocking at 1000 Mbps . . . 62
Figure B-2: PCS/PMA Clocking When Using the 16-bit Client Interface 64
Figure B-3: GMII/RGMII Clocking at 1000 Mbps . 65
Figure B-4: SGMII Clocking at 10/100/1000 Mbps . 67
Figure B-5: GMII Clocking at 10/100/1000 Mbps . 68
Figure B-6: RGMII Clocking at 10/100/1000 Mbps . 69
Figure B-7: MII Clocking at 10/100 Mbps . 70
Figure B-8: GMII/MII Clocking at 10/100/1000 Mbps with Clock Enables 71
Figure B-9: RGMII Clocking at 10/100/1000 Mbps with Clock Enable 72

Appendix C: Constraining the Example Design
Figure C-1: Input GMII Timing. 80
Figure C-2: RGMII Input Timing . 83

Schedule of Figures

http://www.xilinx.com

8 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Appendix D: SGMII Capabilities
Figure D-1: SGMII Implementation: Separate Clock Sources . 88
Figure D-2: SGMII Implementation: Shared Clock Sources . 89
Figure D-3: Host Interface Arbiter and Serial Mode Switching Plug-in 92

Appendix E: Debugging Designs
Figure E-1: Simulation Debug Flow Chart . 95

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 9
UG545 April 19, 2010

Preface

About This Guide

The Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC Wrapper Getting Started Guide
provides information about generating, customizing and simulating wrappers for the
embedded Tri-Mode Ethernet MAC blocks in Virtex®-6 FPGA devices. This guide also
describes running the design files through implementation using Xilinx® tools.

Guide Contents
This guide contains the following chapters:

• Preface, “About this Guide” introduces the organization and purpose of this guide
and the conventions used in this guide.

• Chapter 1, “Introduction,” describes the Virtex-6 FPGA Embedded Tri-Mode Ethernet
MAC wrapper and related information, including recommended design experience,
additional resources, technical support, and submitting feedback to Xilinx.

• Chapter 2, “Licensing the Core,” provides information about licensing the core.

• Chapter 3, “Quick Start Example Design,”describes how to quickly generate the
example design using the CORE Generator™ Graphical User Interface (GUI)
software.

• Chapter 4, “Customizing the Core,”describes the CORE Generator software
customization options.

• Chapter 5, “Detailed Example Design,”provides detailed information about the
example design and demonstration test bench.

• Appendix A, “Using the Client Side FIFO,” describes the operation of the example
design client side FIFO.

• Appendix B, “Ethernet MAC Clocking,” describes the provided clocking scheme for
each interface.

• Appendix C, “Constraining the Example Design,” describes the timing and placement
constraints included with the example design.

• Appendix D, “SGMII Capabilities,” defines the SGMII receiver elastic buffer and
SGMII / 1000BASE-X PCS/PMA mode switching capabilities for the core.

• Appendix E, “Debugging Designs” defines a step-by-step debugging procedure to
assist in the identification and resolution of any issues that might arise during each
phase of the design process.

http://www.xilinx.com

10 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Preface: About This Guide

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays. Signal names also.

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from
a menu

File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals See the User Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Dark Shading
Items that are not supported or
reserved

This feature is not supported

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices

lowpwr ={on|off}

Angle brackets < > User-defined variable or in code
samples

<directory name>

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 11
UG545 April 19, 2010

Conventions

Online Document
The following conventions are used in this document:

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address 0x00112975
returned 45524943h.

An ‘_n’ means the signal is
active low

usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Guide
Contents” for details.

See “Title Formats” in Chapter 1
for details.

Blue, underlined text Hyperlink to a website (URL)
Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com
http://www.xilinx.com

12 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Preface: About This Guide

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 13
UG545 April 19, 2010

Chapter 1

Introduction

This chapter introduces the Virtex®-6 FPGA Embedded Tri-Mode Ethernet MAC (Ethernet
MAC) wrapper and provides related information, including recommended design
experience, additional resources, technical support, and submitting feedback to Xilinx. The
Ethernet MAC wrapper supports Verilog and VHDL.

System Requirements

Windows

• Windows XP Professional 32-bit/64-bit

• Windows Vista Business 32-bit/64-bit

Linux

• Red Hat Enterprise WS 4.0 32-bit/64-bit

• Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation option)

• SuSE Linux Enterprise (SLE) desktop and server v10.1 32-bit/64-bit

Software

• ISE® v12.1 software

About the Ethernet MAC Wrapper Core
The Ethernet MAC wrapper is included in the latest IP Update on the Xilinx® IP Center.
The Ethernet MAC wrapper is provided to all licensed Xilinx ISE software customers free
of charge and is generated using the Xilinx CORE Generator™ v12.1 software or higher.

Designs Using Serial Transceivers
The Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC uses GTX serial transceivers.
Throughout this guide, the generic term serial transceiver is used to represent the GTX serial
transceivers.

http://www.xilinx.com

14 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 1: Introduction

Recommended Design Experience
Although the Ethernet MAC wrapper is fully verified, the challenge associated with
implementing a complete design varies depending on the configuration and functionality
of the application. For best results, previous experience building high performance,
pipelined FPGA designs using Xilinx implementation software and user constraint files
(UCF) is recommended. Contact your local Xilinx representative for a closer review and
estimation for your specific requirements.

Additional Resources
For additional details and updates, see the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC
User Guide, available from the Virtex-6 FPGA product page.

Technical Support
The fastest method for obtaining specific technical support for the Ethernet MAC wrapper
is through the www.xilinx.com/support website. Questions are routed to a technical
support team with specific expertise using the Ethernet MAC wrapper.

Xilinx provides technical support for use of this product as described in the Virtex-6 FPGA
Embedded Tri-Mode Ethernet MAC Wrapper Data Sheet, Virtex-6 FPGA Embedded Tri-Mode
Ethernet MAC Wrapper Getting Started Guide, and the Virtex-6 FPGA Embedded Tri-Mode
Ethernet MAC User Guide. Xilinx does not guarantee timing, functionality, or support of this
product for designs that do not follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the Ethernet MAC wrapper and the
supplied documentation.

Ethernet MAC Wrapper
For comments or suggestions about the Ethernet MAC wrapper, submit a webcase from
www.xilinx.com/support. Be sure to include the following information:

• Product name

• Version number

• Explanation of your comments

Document
For comments or suggestions about this document, submit a webcase from
www.xilinx.com/support. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com/products/virtex6/
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 15
UG545 April 19, 2010

Chapter 2

Licensing the Core

In ISE® v11.3 software and later, a license key is not required for full access to the Virtex®-
6 FPGA Ethernet MAC Wrapper. However, if you are using ISE v11.2 software or older,
please follow the instructions below for obtaining a license key before you use the core in
your design. The Virtex-6 FPGA Ethernet MAC Wrapper core is provided under the terms
of the Xilinx End User Agreement, which conforms to the terms of the SignOnce IP License
standard defined by the Common License Consortium.

Before you Begin
This chapter assumes that you have installed the core using either the CORE Generator™
IP Software Update installer, or by performing a manual installation after downloading the
core from the web.

License Options
The Virtex-6 FPGA Ethernet MAC Wrapper is made available with a Full License key in
ISE v11.2 software and older. After installing the required Xilinx® ISE software and IP
updates, install a Full License key.

The Full license key provides full access to all core functionality both in simulation and in
hardware, including:

• Functional simulation support

• Full implementation support including place and route and bitstream generation

• Full functionality in the programmed device with no time outs

http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com

16 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 2: Licensing the Core

Obtaining Your Full License Key
To obtain a Full license key for ISE v11.2 software or older please follow these instructions.
In ISE v11.3 software and later, the license key requirement was removed.

1. Navigate to the product page for this core:
www.xilinx.com/products/ipcenter/V6_Embedded_TEMAC_Wrapper.htm

2. Click Get License.

3. Follow the instructions to install the required Xilinx ISE software and IP updates, and
generate the required license key on the Xilinx Product Download and Licensing Site.

Installing Your License File
An email will be sent to you containing instructions for installing your license file.
Additional details about IP license key installation can be found in the ISE Design Suite
Installation, Licensing and Release Notes document, which is available at
www.xilinx.com/support/documentation/dt_ise11-1.htm.

http://www.xilinx.com/support/documentation/dt_ise11-1.htm
http://www.xilinx.com
www.xilinx.com/products/ipcenter/V6_Embedded_TEMAC_Wrapper.htm

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 17
UG545 April 19, 2010

Chapter 3

Quick Start Example Design

This chapter provides instructions for generating the Ethernet MAC wrapper using the
CORE Generator™ GUI software.

Overview
The Ethernet MAC wrapper consists of the following:

• An instance-level wrapper file that assigns the attributes of the Ethernet MAC to the
values selected in the Core Generator™ GUI software. In addition, unused inputs are
tied to the appropriate logic level and unused outputs are disconnected.

• An example design with a three-level hierarchy:

♦ The block-level wrapper instantiates the Ethernet MAC wrapper and the interface
logic for the selected physical interface. If selected, the host interface arbiter is also
instantiated at this level.

♦ The LocalLink wrapper connects the transmit and receive client interfaces of the
Ethernet MAC to its own LocalLink FIFOs.

♦ The example design wrapper connects the FIFOs so that data received at the client
is looped back to the transmitter. A small address-swap module is also
instantiated to swap the source and destination addresses of the incoming frame.
Clock management logic including MMCM and clock buffer instances, where
required, is also included.

• A demonstration test bench to exercise the wrappers and the example design. This
injects frames into the physical interface receiver of each selected Ethernet MAC and
monitors the data that is output at the transmitter.

http://www.xilinx.com

18 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 3: Quick Start Example Design

Figure 3-1 displays the example design and test bench provided with the Ethernet MAC
wrapper. The example design has been tested with Xilinx® ISE® v12.1 software, Cadence
Incisive Enterprise Simulator (IES) v9.2, Mentor Graphics ModelSim v6.5c, and Synopsys
VCS and VCS MX 2009.12.
X-Ref Target - Figure 3-1

Figure 3-1: Default Example Design and Test Bench

Reset

Clock Gen

Address
Swap

 Module

Monitor

Stimulus

Attribute Assignment

Virtex-6 Embedded
EMAC

Management

P
hy

si
ca

l I
n

te
rf

a
ce

 L
o

g
ic

 a
n

d
 I

O
B

s10/100/1000 Mbps

 Ethernet FIFO

Rx Client
 FIFO

Tx Client
FIFO

Clock IOBs
and Management

Instance-level Wrapper

Host Interface
Arbiter

Mode Change
Stimulus

Demonstration Test Bench

Block-level Wrapper

Example Design Wrapper

LocalLink-level Wrapper

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 19
UG545 April 19, 2010

Generating the Ethernet MAC Wrapper

Generating the Ethernet MAC Wrapper
To generate the Ethernet MAC wrapper and example design, do the following:

1. Start the CORE Generator software.

2. Choose File > New Project.

3. From the Project Options window, set the following:

♦ In the Part screen, choose the Virtex®-6 part appropriate for your application.

Note: If an unsupported silicon family or part is selected, the Ethernet MAC wrapper
is not displayed in the taxonomy tree.

♦ In the Generation screen, select either VHDL or Verilog for Design Entry. Other
options should be left in the default setting.

4. After creating the project, locate the directory containing the Ethernet MAC wrapper
in the taxonomy tree. The project appears under one of the following:

♦ Communications & Networking/Ethernet

♦ Communications & Networking/Networking

♦ Communications & Networking/Telecommunications

5. Double-click Virtex-6 Embedded Tri-Mode Ethernet MAC Wrapper. The initial
customization screen appears.

http://www.xilinx.com

20 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 3: Quick Start Example Design

6. In the Component Name field, enter a name for the core instance, and then click Finish
to generate the example design using the default values.

The instance-level wrapper and its supporting files, including the example design, are
generated in your CORE Generator software project directory. For a detailed description of
the design example files and directories, see Chapter 5, “Detailed Example Design.”

A functional simulation directory is created that contains scripts to simulate the example
design using the structural HDL models. For more information see “Functional
Simulation,” page 21.

X-Ref Target - Figure 3-2

Figure 3-2: Virtex-6 Embedded Tri-Mode Ethernet MAC Wrapper Main Screen

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 21
UG545 April 19, 2010

Implementing the Example Design

Implementing the Example Design
The HDL example design can be processed using the Xilinx implementation toolset. The
generated output files include several scripts to assist you in running the Xilinx software.

In the following examples, <project_dir> is the CORE Generator software project directory
and <component_name> is the name entered in the Component Name field.

Open a command prompt or shell in your project directory, then enter the following
commands:

For Linux

% cd <component_name>/implement

% ./implement.sh

For Windows

ms-dos> cd <component_name>\implement

ms-dos> implement.bat

These commands execute a script that synthesizes, builds, maps, places, routes, and
performs static timing analysis on the example design. It then creates a gate-level netlist
HDL file, along with an associated timing information (SDF) file. The resulting files are
placed in the results directory.

Running the Simulation

Functional Simulation
To run the functional simulation you must have the Xilinx Simulation Libraries compiled
for your system. For more information, see Compiling Xilinx Simulation Libraries
(COMPXLIB) in the Xilinx ISE Synthesis and Verification Design Guide, which can be
obtained from www.xilinx.com/support/software_manuals.htm. In addition, use the
following guidelines to determine the simulator required for your design:

Virtex-6 Devices

Virtex-6 device designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator. See “Overview,” page 17 for supported simulators. When running VHDL
simulations, a mixed-language license is required.

In the simulation examples that follow, <project_dir> is the CORE Generator software
project directory, and <component_name> is the component name as entered in the core
customization dialog box.

VHDL Simulation

To run a VHDL functional simulation:

• Launch the simulator and set the current directory to
<project_dir>/<component_name>/simulation/functional

• For ModelSim, map the UniSim and SecureIP libraries:

ModelSim> vmap unisim <path to compiled libraries>/unisim

ModelSim> vmap secureip <path to compiled libraries>/secureip

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

22 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 3: Quick Start Example Design

• Launch the simulation script:

ModelSim> do simulate_mti.do

IES> ./simulate_ncsim.sh

The scripts compile the example design files and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MAC.

Verilog Simulation

To run a Verilog functional simulation:

• Launch the simulator and set the current directory to
<project_dir>/<component_name>/simulation/functional

• For ModelSim, map the UniSim and SecureIP libraries:

ModelSim> vmap unisims_ver <path to compiled libraries>/unisims_ver

ModelSim> vmap secureip <path to compiled libraries>/secureip

• Launch the simulation script:

ModelSim> do simulate_mti.do

IES> ./simulate_ncsim.sh

VCS> ./simulate_vcs.sh

The scripts compile the example design files and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MAC.

Timing Simulation
To run the gate-level simulation you must have the Xilinx simulation libraries compiled for
your system. For more information, see Compiling Xilinx Simulation Libraries (COMPXLIB)
in the Xilinx ISE Synthesis and Verification Design Guide, which can be obtained from
www.xilinx.com/support/software_manuals.htm.

In the simulation examples that follow, <project_dir> is the CORE Generator software
project directory; <component_name> is the component name as entered in the core
customization dialog box.

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 23
UG545 April 19, 2010

What’s Next?

VHDL Simulation

To run a VHDL timing simulation:

• Launch the simulator and set the current directory to
<project_dir>/<component_name>/simulation/timing

• For ModelSim, map the SimPrim and SecureIP libraries:

ModelSim> vmap simprim <path to compiled libraries>/simprim

ModelSim> vmap secureip <path to compiled libraries>/secureip

• Launch the simulation script:

ModelSim> do simulate_mti.do

IES> ./simulate_ncsim.sh

The scripts compile the gate-level model and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MAC.

Verilog Simulation

To run a Verilog timing simulation:

• Launch the ModelSim simulator and set the current directory to
<project_dir>/<component_name>/simulation/timing

• For ModelSim, map the SimPrim and SecureIP libraries:

ModelSim> vmap simprims_ver <path to compiled
libraries>/simprims_ver

ModelSim> vmap secureip <path to compiled libraries>/secureip

• Launch the simulation script:

ModelSim> do simulate_mti.do

IES> ./simulate_ncsim.sh

VCS> ./simulate_vcs.sh

The scripts compile the gate-level model and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MAC.

What’s Next?
For detailed information about the example design, including guidelines for modifying the
design and extending the test bench, see Chapter 5, “Detailed Example Design.”

http://www.xilinx.com

24 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 3: Quick Start Example Design

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 25
UG545 April 19, 2010

Chapter 4

Customizing the Core

This chapter describes Virtex®-6 FPGA Embedded Tri-Mode Ethernet MAC Wrapper GUI
to customize the functions of the core.

Ethernet MAC Wrapper Screens
The Ethernet MAC Wrapper GUI consists of either two or three screens, depending on
configuration.

• Interface Configuration Options: Screen 1. Used to name the core, select the desired
speed and physical, client, host and management interface characteristics.

• Transmitter and Receiver Configuration: Screen 2. Used to set the default
transmitter, receiver, and address filter configurations.

• MDIO Configuration: Screen 3. This screen is only displayed if the Enable MDIO
option is selected on the first screen.

Interface Configuration Options: Screen 1
Use the initial configuration screen to name the core, select the desired speed as well as
physical, client, host and management interface characteristics.

http://www.xilinx.com

26 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 4: Customizing the Core

Component Name

Enter the base name of the output files generated for the core. The name must begin with a
letter and be composed of the following characters: a to z, 0 to 9, and “_.”

Physical Interface

PHY Interface

Select the physical interface type from the drop-down list:

• MII

• GMII

• RGMII v1.3

• RGMII v2.0

• SGMII

• 1000BASE-X PCS/PMA

X-Ref Target - Figure 4-1

Figure 4-1: Interface Configuration

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 27
UG545 April 19, 2010

Ethernet MAC Wrapper Screens

Speed

Configures the core to run at a single or tri-speed rate.

• Tri-speed. Configures the core to run at a tri-speed rate.

• 1000 Mbps. Configures the core to run at 1000 Mbps only.

• 10/100 Mbps. Configures the core to run at 10 or 100 Mbps.

Overclocking

In supported devices, allows for overclocking when the 1000BASE-X PCS/PMA physical
interface is selected. See “Single-Speed Clocking” in Appendix B for more details on
overclocking implementation.

• 2000 Mbps. Overclock the 1000BASE-X physical interface to 2000 Mbps.

• 2500 Mbps. Overclock the 1000BASE-X physical interface to 2500 Mbps.

Client Interface

Data Width

Configures the data width at the client interface.

• 8-bit. An 8-bit data width is available for all interface types.

• 16-bit. A 16-bit client interface is available for the 100BASE-X PCS/PMA interface,
which enables the Ethernet MAC to be overclocked if desired.

Option to Reduce BUFG Use

Allows for the selection of an advanced clocking scheme to reduce the usage of global
buffers.

• Clock Enable. Selecting Clock Enable reduces the number of BUFGs by requiring the
user logic to use a separate clock-enable signal. See the Virtex-6 FPGA Embedded Tri-
Mode Ethernet MAC User Guide for more information about determining the Clock
Enable signal setup. This option is available for 10 or 100 Mbps operation using the
MII physical interface as well as for Tri-speed operation in GMII and RGMII physical
interfaces.

Host and Management Interfaces

Host Type

Allows access to the host configuration registers via one of the following interfaces:

• Host. Accesses the host interface directly, through the fabric.

• DCR (Device Control Registers). Accesses the host registers through the DCR
interface. An internal bus bridge translates DCR commands to compatible host bus
signaling.

• None. No run-time access to the host interface is possible. The Ethernet MAC operates
based on the attributes set in the GUI.

DCR-specific Options

• DCR Base Address. Enter a unique DCR base address for the Ethernet MAC.

http://www.xilinx.com

28 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 4: Customizing the Core

Management Data I/O Interface

• Enable MDIO. When selected, the MDIO option enables the MDIO ports on the
Ethernet MAC to access the registers in the internal and external PHY. When the
MDIO option is selected, an MDIO configuration screen appears before generating the
core. When unselected, the MDIO configuration screen is not displayed.

SGMII Capabilities

Select the desired mode of operation to enable the appropriate receive buffering.

• 10/100/1000 Mb/s (clock tolerance compliant with Ethernet specification). Default
setting; provides the implementation using the Receiver Elastic Buffer in FPGA fabric.
This alternative Receiver Elastic Buffer utilizes a single block RAM to create a buffer
twice as large as the one present in the serial transceiver, subsequently consuming
extra logic resources. However, this default mode provides reliable SGMII operation
under all conditions.

• 10/100/1000 Mb/s (restricted tolerance for clocks) or 100/1000 Mb/s. Uses the receiver
elastic buffer present in the serial transceivers. This is half the size and can potentially
under- or overflow during SGMII frame reception at 10 Mbps operation. However,
there are logical implementations where this can be proven reliable and favored
because of its lower logic utilization.

• Include SGMII / 1000BASE-X PCS/PMA mode switching block in wrapper. The
Ethernet MAC supports switching between SGMII and 1000BASE-X modes of
operation via configuration registers. If this option is selected, a block is additionally
included in the wrappers, which facilitates mode switching based on a single, level
input.

For detailed information about SGMII capabilities, see Appendix D, “SGMII Capabilities.”

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 29
UG545 April 19, 2010

Ethernet MAC Wrapper Screens

Transmitter and Receiver Configuration: Screen 2
The next configuration screen defines the default transmitter, receiver, and address filter
configurations. Some of these options will be overwritten when running simulation using
the demonstration test bench. See “Demonstration Test Bench Tasks” in Chapter 5 for
more details.

X-Ref Target - Figure 4-2

Figure 4-2: Transmitter and Receiver Configuration

http://www.xilinx.com

30 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 4: Customizing the Core

Initial Transmitter Configuration

Transmitter configuration refers to the Ethernet MAC configuration registers located at
0x280. Initial values for several bits of this register can be set using the GUI. Changes to
the register bits can be written using host interface access, if enabled. For more
information, see “Configuration Registers,” in the Virtex-6 FPGA Embedded Tri-Mode Ethernet
MAC User Guide.

• TX Reset. When selected, places the transmitter in reset. When Host type is set to
None, this option is unselected and cannot be changed.

• TX Enable. When selected, enables the transmitter. When Host type is set to None,
this option is selected and cannot be changed.

• Half-Duplex Enable. When selected, the transmitter operates in half-duplex mode
(applicable for MII, GMII, or RGMII physical interfaces at 10 or 100 Mbps only). When
unselected, the transmitter operates in full-duplex mode.

• VLAN Enable. When selected, the transmitter allows transmission of the VLAN-
tagged frames, as specified in IEEE Std 802.3-2005.

• Jumbo Frame Enable. When selected, the transmitter sends frames greater than the
maximum length specified in the IEEE Std 802.3-2005. When unselected, the
transmitter sends only frames less than the specified maximum length.

• In-band FCS Enable. When selected, this bit causes the Ethernet MAC transmitter to
expect that the FCS field is supplied by the client.

• Flow Control Enable. When selected, the transmission of flow control PAUSE frames
is enabled.

• IFG Adjust Enable. When selected, the transmitter reads the value of
CLIENTEMACTXIFGDELAY at the start of frame transmission and adjusts the IFG. This
option is applicable for full-duplex operation only.

Receiver Configuration

Receiver configuration refers to the Ethernet MAC configuration registers located at
0x240. Initial values for several bits of this register can be set using the GUI. Changes to
the register bits may be written using host interface access, if enabled. For more
information, see “Configuration Registers,” in the Virtex-6 FPGA Embedded Tri-Mode Ethernet
MAC User Guide.

• RX Reset. When selected, places the receiver in reset. When Host type is set to None,
this option is unselected and cannot be changed.

• RX Enable. When selected, enables the receiver. When Host type is set to None, this
option is selected and cannot be changed.

• Half-Duplex Enable. When selected, the receiver operates in half-duplex mode
(applicable for MII, GMII, or RGMII physical interfaces at 10 or 100 Mbps only). When
unselected, the receiver operates in full-duplex mode.

• VLAN Enable. When selected, the receiver accepts VLAN-tagged frames, as specified
in IEEE Std 802.3-2005. The maximum accepted payload length increases by four
bytes.

• Jumbo Frame Enable. When selected, the Ethernet MAC receiver accepts frames over
the maximum length specified in the IEEE Std 802.3-2005 specification. When
unselected, the receiver accepts only frames up to the specified maximum.

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 31
UG545 April 19, 2010

Ethernet MAC Wrapper Screens

• In-band FCS Enable. When selected, the receiver passes the FCS field up to the client.
When unselected, the FCS field is not passed to the client. In either case, the FCS of
each frame is checked for correctness.

• Flow Control Enable. When selected, flow control PAUSE frames will be received
and acted upon.

• Length/Type Field Check Disable. When selected, disables the Length/Type field
check on the frame.

• Control Frame Length Check Disable. When selected, control frames larger than the
legal minimum frame size are accepted.

Initial Address Filter Configuration

• Address Filter Enable. When selected, received frames are subject to the address
filter.

• Unicast Pause MAC Address. The value entered by you is used by the Ethernet MAC
to compare the destination address of any incoming flow control frames, and as the
source address for any outbound flow control frames.

The address is ordered for the least significant byte in the register to have the first byte
transmitted or received, for example, a MAC address of AA-BB-CC-DD-EE-FF is
entered as FF-EE-DD-CC-BB-AA.

http://www.xilinx.com

32 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 4: Customizing the Core

MDIO Configuration: Screen 3
The MDIO Configuration screen is only displayed if the 1000BASE-X PCS/PMA or SGMII
PHY interface is selected and the Enable MDIO option is selected in the “Management
Data I/O Interface” section of the first EMAC configuration screen. Some of these options
will be overwritten when running simulation using the demonstration test bench. See
“Demonstration Test Bench Tasks” in Chapter 5 for more details.

Initial MDIO Configuration

• PHY Auto-Negotiation Enable. If selected, Auto-Negotiation is enabled.

• PHY Isolate. If selected, the PHY is electrically isolated.

• PHY Loopback MSB. If selected, the PHY loopback is enabled.

• PHY Unidirection Enable. If selected, the PHY is capable of transmitting data
regardless of whether a valid link has been established.

• PHY Loopback in Transceiver. If selected, loopback occurs in the serial transceiver.
Otherwise loopback occurs in the Ethernet MAC.

• PHY Ignore PHYAD 0. If selected, the PHY ignores the MDIO broadcast address,
PHYAD 0.

• PHY Link Timer Value. Programmable auto negotiation link timer value.

X-Ref Target - Figure 4-3

Figure 4-3: MDIO Configuration

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 33
UG545 April 19, 2010

Ethernet MAC Wrapper Screens

The PHY Reset and PHY Power-down MDIO options need to be set manually in the
Ethernet MAC instance-level wrapper. These options cannot be configured through the
GUI. For details on the correlation between the hexadecimal link timer value and the actual
time, see the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

http://www.xilinx.com

34 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 4: Customizing the Core

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 35
UG545 April 19, 2010

Chapter 5

Detailed Example Design
This chapter provides detailed information about working with the example design,
including a description of the files and the directory structure generated by the CORE
Generator™ software, the purpose and contents of the implementation scripts, the
contents of the example HDL wrappers, and the operation of the demonstration test bench.

Directory Structure and File Descriptions
The Virtex®-6 FPGA Embedded Tri-Mode Ethernet MAC core directories and their
associated files are defined in the sections that follow. To go to a specific directory, click a
one of the following links.

<project directory>topdirectory

Top-level project directory; user-defined name

 <project directory>/<component name>
Core release notes file

 <component name>/doc
Product documentation

 <component name>/example_design
Verilog or VHDL design files

 <component name>/example_design/client
Support files for the example client loopback logic and host interface
arbiter, if applicable

 <component_name>/example_design/client/fifo
Files for the FIFO instances in the LocalLink client

 <component_name>/example_design/physical
Files for the physical interface of the Ethernet MAC

<component name>/implement
Implementation script files

 implement/results
Results directory, created after implementation scripts are run, and
contains implementation results

 <component name>/simulation
Test bench HDL (Verilog or VHDL)

 simulation/functional
Functional simulation scripts

 simulation/timing
Timing simulation scripts

http://www.xilinx.com

36 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

<project directory>
The <project directory> contains all the CORE Generator software project files.

<project directory>/<component name>
The <component name> directory contains the release notes file provided with the core,
which may include changes and updates beyond other documentation sources.

Table 5-1: Project Directory

Name Description

<project_dir>

<component_name>.xco As an output file, the XCO file is a log file
which records the settings used to generate a
particular instance of the Ethernet MAC
wrapper. An XCO file is generated by the
CORE Generator software for each core that it
creates in the current project directory. An
XCO file can also be used as an input to the
CORE Generator software.

<component_name>_flist.txt A text file listing all the output files produced
when the wrapper and example design files
were generated in the CORE Generator
software.

Back to Top

Table 5-2: Component Name Directory

Name Description

<project_dir>/<component_name>

v6_emac_readme.txt Virtex-6 FPGA Embedded Tri-Mode
Ethernet MAC Wrapper release notes text
file.

Back to Top

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 37
UG545 April 19, 2010

Directory Structure and File Descriptions

<component name>/doc
The doc directory contains Ethernet MAC documentation. For detailed information about
the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC, see the Virtex-6 FPGA Embedded
Tri-Mode Ethernet MAC User Guide.

<component name>/example_design
The example design directory and its sub-directories contain the support files necessary for
a Verilog or VHDL implementation of the example design. See “Example Design,” page 47
for more information. The main Ethernet MAC wrapper files and the top-level file for the
example design are contained in this directory.

Table 5-3: Doc Directory

Name Description

<project_dir>/<component_name>/doc

v6_emac_ds710.pdf Virtex-6 FPGA Embedded Tri-Mode Ethernet
MAC Wrapper Data Sheet.

v6_emac_gsg545.pdf Virtex-6 FPGA Embedded Tri-Mode Ethernet
MAC Wrapper Getting Started Guide.

Back to Top

Table 5-4: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

<component_name>.v[hd] Ethernet MAC instance-level wrapper file.

<component_name>_block.v[hd] Block-level Ethernet MAC wrapper with
instantiation of physical interface circuitry
and the host interface arbiter, if applicable.

<component_name>_locallink.v[hd] An intermediate-level wrapper with a
LocalLink client interface provided by the
instantiation of the receive and transmit
FIFOs.

<component_name>_example_design.v[hd] Top-level example design providing a
simple loopback function and clocking
resource instantiation.

<component_name>_example_design.ucf UCF for the design. See Appendix C,
“Constraining the Example Design” for
more information.

Back to Top

http://www.xilinx.com

38 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

<component name>/example_design/client
This directory contains the support files necessary for the example client loopback logic,
which is connected to the Ethernet MAC client interfaces. The 8-bit versions of the
following files are only present when an 8-bit client interface is selected. Similarly, the 16-
bit versions are only present when a 16-bit client interface is selected. If the SGMII /
1000BASE-X PCS/PMA mode switching block is enabled, this directory also contains the
files necessary to support mode switching automation.

<component_name>/example_design/client/fifo
This directory contains the files for the FIFO instanced in the LocalLink client wrapper. For
more information about the FIFO see “10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO,” page 48.

Table 5-5: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design/client

address_swap_module_[8|16].v[hd] The client loopback instances this to swap the
source and destination addresses of the
incoming frames.

host_if_arbiter.v[hd] The host interface arbiter manages host
interface accesses. Generated if the SGMII /
1000BASE-X PCS/PMA mode switching block
is enabled.

host_if_plugin_sms.v[hd] The serial mode switching block is a plug-in to
the host interface arbiter and executes mode
switching commands. Generated if the SGMII
/ 1000BASE-X PCS/PMA mode switching
block is enabled.

Back to Top

Table 5-6: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design/client/fifo

eth_fifo_[8 | 16].v[hd] The FIFO top level, which instantiates the
transmit and receive client FIFOs.

tx_client_fifo_[8 | 16].v[hd] The transmit client FIFO. Takes data from the
client in LocalLink format, stores it, and sends
it to the MAC.

rx_client_fifo_[8 | 16].v[hd] The receive client FIFO. Reads in and stores
data from the MAC before outputting it to the
client in LocalLink format.

Back to Top

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 39
UG545 April 19, 2010

Directory Structure and File Descriptions

<component_name>/example_design/physical
This directory contains the files that describe the physical interfaces of the Ethernet MAC.
Appropriate files are delivered by the CORE Generator software depending on the options
selected.

Table 5-7: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design/physical

fcs_blk_mii.v[hd] Generated if the MII or tri-speed GMII
physical interface is selected for the Ethernet
MAC. Assures correct FCS transmission.

fcs_blk_rgmii.v[hd] Generated if the 10/100 Mb/s or tri-speed
RGMII physical interface is selected for the
Ethernet MAC. Assures correct FCS
transmission.

gmii_if.v[hd] Generated if the GMII physical interface is
selected for the Ethernet MAC.

mii_if.v[hd] Generated if the MII physical interface is
selected for the Ethernet MAC.

rgmii_if.v[hd] Generated if the RGMII v1.3 physical
interface is selected for the Ethernet MAC.

rgmii_v2_0_if.v[hd] Generated if the RGMII v2.0 physical
interface is selected for the Ethernet MAC.

v6_gtxwizard.v[hd] If an SGMII or 1000BASE-X PCS/PMA
interface is selected, this is the intermediate-
level serial transceiver wrapper file.

v6_gtxwizard.xco Generated if an SGMII or 1000BASE-X
PCS/PMA interface is selected. This XCO file
contains the configuration parameters
necessary to regenerate the
v6_gtxwizard.v[hd] and
v6_gtxwizard_gtx.v[hd] files using the CORE
Generator software.

v6_gtxwizard_gtx.v[hd] If an SGMII or 1000BASE-X PCS/PMA
interface is selected, this is the instance-level
serial transceiver wrapper file.

v6_gtxwizard_top.v[hd] If an SGMII or 1000BASE-X PCS/PMA
interface is selected, this file connects the
serial transceiver wrappers to the physical
interface of the Ethernet MAC.

http://www.xilinx.com

40 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

<component name>/implement
The implement directory contains the core implementation script files.

rx_elastic_buffer.v[hd] If the Tri-speed SGMII interface and SGMII
Capabilities 10/100/1000 Mb/s (no clock
constraints required) options are selected
(Screen 1 of the GUI), the clock correction has
to be implemented in the fabric to prevent
buffer errors from occurring in long frames at
10 Mbps. This file implements a clock
correction buffer using a block RAM.

Back to Top

Table 5-7: Example Design Directory (Cont’d)

Name Description

Table 5-8: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.bat A Windows batch file that processes the
example design through the Xilinx® tool
flow.

implement.sh A Linux shell script that processes the
example design through the Xilinx tool flow.

xst.scr The XST script file for the top-level example
design.

xst.prj The XST project file for the design; it
enumerates all the HDL files that need to be
synthesised.

Back to Top

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 41
UG545 April 19, 2010

Directory Structure and File Descriptions

implement/results
The results directory is created by the implement scripts and is used to run the example
design files and the Ethernet MAC wrapper files through the Xilinx implementation tools.
After these scripts are run, results and timing simulation files appear in the directory.

<component name>/simulation
The simulation directory and its sub-directories provide the files necessary to test a Verilog
or VHDL implementation of the example design.

Table 5-9: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

routed.v[hd] The back-annotated SimPrim based Verilog
or VHDL design. Used for timing simulation.

routed.sdf The timing information for simulation is
contained in this file.

Back to Top

Table 5-10: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation

demo_tb.v[hd] The Verilog or VHDL demonstration test
bench for the Ethernet MAC wrapper.

configuration_tb.v[hd] The configuration test bench is instantiated
in demo_tb.vhd. It provides stimuli to
configure the Ethernet MAC via the selected
management interface.

phy_tb.v[hd] The physical interface test bench. This
stimulates the receiver ports and monitors
the transmitter ports of the physical interface.
This is instantiated in demo_tb.vhd.

Back to Top

http://www.xilinx.com

42 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 5-11: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do A ModelSim macro file that compiles the
example design sources and the structural
simulation model then runs the functional
simulation to completion.

wave_mti.do A ModelSim macro file that opens a wave
windows and adds interesting signals to it. It
is called used by the simulate_mti.do macro
file.

simulate_ncsim.sh An IES script file that compiles the example
design sources and the structural simulation
model and then runs the functional
simulation to completion.

wave_ncsim.sv An IES macro file that opens a wave window
and adds interesting signals to it.

simulate_vcs.sh VCS script file that compiles the Verilog
sources and runs the simulation to
completion.

ucli_commands.key The file sourced by VCS at the start of
simulation; it configures the simulator.

vcs_session.tcl VCS macro file that opens a wave window
and adds signals of interest. It is called by the
simulate_vcs.sh script file.

Back to Top

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 43
UG545 April 19, 2010

Directory Structure and File Descriptions

simulation/timing
The timing directory contains timing simulation scripts provided with the core.

Table 5-12: Timing Directory

Name Description

<project_dir>/<component_name>/simulation/timing

simulate_mti.do A ModelSim macro file that compiles the
Verilog or VHDL timing model and demo
test bench then runs the timing simulation to
completion.

wave_mti.do A ModelSim macro file that opens a wave
window and adds interesting signals to it. It
is called used by the simulate_mti.do macro
file.

simulate_ncsim.sh An IES script file that compiles the Verilog or
VHDL timing model and demo test bench
and then runs the timing simulation to
completion.

wave_ncsim.sv An IES macro file that opens a wave window
and adds interesting signals to it.

simulate_vcs.sh VCS script file that compiles the Verilog
timing model and runs the simulation to
completion.

ucli_commands.key The file sourced by VCS at the start of
simulation; it configures the simulator.

vcs_session.tcl VCS macro file that opens a wave window
and adds signals of interest. It is called by the
simulate_vcs.sh script file.

Back to Top

http://www.xilinx.com

44 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

Implementation and Test Scripts

Setting up for Simulation
The Xilinx UniSim and SecureIP libraries must be mapped into the simulator. If the UniSim
and SecureIP libraries are not set up for your environment, go to Answer Record 15338 for
assistance compiling Xilinx simulation models and for setting up the simulator
environment.

Virtex-6 Device Requirements
Virtex-6 device designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator. See “Overview” in Chapter 3 for supported simulators. When running VHDL
simulations, a mixed-language license is required.

Implementation Scripts for Timing Simulation
The implementation script, generated in the implement directory, is either a shell script or
batch file that processes the example design through the Xilinx tool flow.

<project_dir>/<component_name>/implement

Figure 5-1 shows a block diagram of the design.

Linux

<project_dir>/<component_name>/implement/implement.sh

Windows

<project_dir>/<component_name>/implement/implement.bat

The implement script performs the following steps:

1. The HDL example design is synthesized using XST.

2. Ngdbuild is run to produce an NGD file containing the entire design. A constraints file
is also used at this stage to constrain the clocks to operate at the correct speed for
Ethernet implementations. This file also contains constraints to control any clock
domain crossings present in the design and example pin placements where
appropriate.

For detailed information about the constraints files, see Appendix C, “Constraining
the Example Design.”

3. The design is placed and routed on the target device.

4. Static timing analysis is performed on the routed design using trce.

5. A bitstream is generated.

6. Netgen runs on the routed design to generate Verilog or VHDL netlists and timing
information in the form of SDF files.

The Xilinx tool flow generates several output and report files. These files are saved in the
following directory which is created by the implement script:

<project_dir>/<component_name>/implement/results

http://www.xilinx.com/support/answers/15338.htm
http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 45
UG545 April 19, 2010

Implementation and Test Scripts

Test Scripts For Timing Simulation
The test script macro that automates the simulation of the test bench. The test scripts do the
following:

• Compile the gate-level netlist

• Compile the demonstration test bench

• Start a simulation of the test bench

• Open a Wave window and adds some signals of interest (wave_mti.do,
wave_ncsim.sv, vcs_session.tcl)

• Run the simulation to completion

For ModelSim

Verilog

<project_dir>/<component_name>/simulation/timing/simulate_mti.do

VHDL

<project_dir>/<component_name>/simulation/timing/simulate_mti.do

For IES

Verilog

<project_dir>/<component_name>/simulation/timing/simulate_ncsim.sh

VHDL

<project_dir>/<component_name>/simulation/timing/simulate_ncsim.sh

For VCS

Verilog

<project_dir>/<component_name>/simulation/timing/simulate_vcs.sh

http://www.xilinx.com

46 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

Test Scripts For Functional Simulation
The test script that automates the functional simulation of the test bench. The test scripts do
the following:

• Compile the Ethernet MAC wrapper

• Compile the example design files

• Compile the demonstration test bench

• Start a simulation of the test bench with no timing information

• Open a Wave window and adds some signals of interest (wave_mti.do,
wave_ncsim.sv,or vcs_session.tcl)

• Run the simulation to completion

For ModelSim

Verilog

<project_dir>/<component_name>/simulation/functional/simulate_mti.do

VHDL

<project_dir>/<component_name>/simulation/functional/simulate_mti.do

For IES

Verilog

<project_dir>/<component_name>/simulation/functional/simulate_ncsim.sh

VHDL

<project_dir>/<component_name>/simulation/functional/simulate_ncsim.sh

For VCS

Verilog

<project_dir>/<component_name>/simulation/functional/simulate_vcs.sh

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 47
UG545 April 19, 2010

Example Design

Example Design

HDL Example Design

The top-level example design for the Ethernet MAC wrapper is defined in the following
files:

Verilog

<project_dir>/<component_name>/example_design/
<component_name>_example_design.v

VHDL

<project_dir>/<component_name>/example_design/
<component_name>_example_design.vhd

X-Ref Target - Figure 5-1

Figure 5-1: HDL Example Design

Embedded Ethernet
MAC Wrapper

FPGA
Fabric

Clock
Circuitry

Physical
Interface

component_name_block

component_name_example_design

Address
Swap

Module

Client
Interface

component_name_locallink

Embedded
Ethernet MAC

Physical I/F

(GMII/MII,
RGMII,

Serial Transceiver for
1000BASE-X PCS/PMA

or SGMII)

10M/100M/1G
Ethernet FIFO

Tx Client
FIFO

Rx Client
FIFO

Lo
ca

lL
in

k
In

te
rf

ac
e

http://www.xilinx.com

48 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

The HDL example design contains the following:

• The Ethernet MAC instance-level wrapper

• An instance of the block-level Ethernet MAC wrapper containing GMII/MII, RGMII,
SGMII or 1000BASE-X PCS/PMA interface logic, and the host interface arbiter if
applicable.

• An instance of the LocalLink-level wrapper containing transmit and receive
LocalLink FIFOs.

• An instance of the top-level example design containing an address swap module,
which loops the received data back to the transmitter. Clock management logic
including an MMCM and clock buffer instances where required, is also instantiated.
This allows the functionality of the core to be demonstrated either using a simulation
package, as discussed in this guide, or in hardware, if placed on a suitable board.

10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO
The 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO is defined in the following files:

Verilog

<project_dir>/<component_name>/example_design/client/fifo/

eth_fifo_[8|16|8,16].v

<project_dir>/<component_name>/example_design/client/fifo/

tx_client_fifo_[8|16|8,16].v

<project_dir>/<component_name>/example_design/client/fifo/

rx_client_fifo_[8|16|8,16].v

VHDL

<project_dir>/<component_name>/example_design/client/fifo/

eth_fifo_[8|16|8,16].vhd

<project_dir>/<component_name>/example_design/client/fifo/

tx_client_fifo_[8|16|8,16].vhd

<project_dir>/<component_name>/example_design/client/fifo/

rx_client_fifo_[8|16|8,16].vhd

The 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO contains an instance of tx_client_fifo to
connect to the Ethernet MAC client side transmitter interface, and an instance of the
rx_client_fifo to connect to the Ethernet MAC client receiver interface. Both transmit
and receive FIFO components implement a LocalLink user interface, through which the
frame data can be read and written.

Figure 5-2 illustrates a simple frame transfer across the LocalLink. For more information
about the FIFO, see Appendix A, “Using the Client Side FIFO.”

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 49
UG545 April 19, 2010

Example Design

rx_client_fifo

The rx_client_fifo is built around a dual port block RAM, providing a total memory
capacity of 4096 bytes of frame data. The receive FIFO will write in data received through
the Ethernet MAC. If the frame is marked as good, that frame will be presented on the
LocalLink interface for reading by you, (in this case the tx_client_fifo module). If the
frame is marked as bad, that frame is dropped by the receive FIFO.

If the receive FIFO memory overflows, the frame currently being received will be dropped,
regardless of whether it is a good or bad frame, and the signal rx_overflow will be
asserted. Situations in which the memory may overflow are:

• The FIFO may overflow if the receiver clock is running at a faster rate than the
transmitter clock or if the inter-packet gap between the received frames is smaller than
the inter-packet gap between the transmitted frames. If this is the case, the Tx FIFO
cannot read data from the Rx FIFO as fast as it is being received.

• The FIFO size of 4096 bytes limits the size of the frames that it can store without error.
If a frame is larger than 4000 bytes, the FIFO can overflow and data will be lost. For
this reason, it is recommended that the example design not be used with the Ethernet
MAC in Jumbo Frame mode for frames larger than 4000 bytes.

tx_client_fifo

The tx_client_fifo is built around a dual port block RAM, providing a total memory
capacity of 4096 bytes of frame data. When a full frame has been written into the transmit
FIFO, the FIFO presents data to the MAC transmitter. On receiving the acknowledge signal
from the Ethernet MAC, the rest of the frame is transmitted providing there is no
retransmit request output by the Ethernet MAC. If a retransmission request is received, the
frame is queued for retransmission.

If the FIFO memory fills to capacity, the dst_rdy_out_n signal is used to halt the
LocalLink interface writing data until space becomes available in the FIFO. If the FIFO
memory fills but no full frames are available for transmission, that is, if a frame larger than
4000 bytes is written into the FIFO, the FIFO asserts tx_overflow and continues to accept
the rest of the frame from the user. The overflow frame is dropped by the FIFO to ensure
that the LocalLink interface does not lock up.

X-Ref Target - Figure 5-2

Figure 5-2: Frame Transfer across LocalLink Interface

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4 5 6 7

http://www.xilinx.com

50 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

Address Swap Module
X-Ref Target - Figure 5-3

The address swap module is described in the following files:

Verilog

<project_dir>/<component_name>/example_design/client/
address_swap_module_[8|16|8,16].v

VHDL

<project_dir>/<component_name>/example_design/client/
address_swap_module_[8|16|8,16].vhd

The address swap module takes frame data from the Ethernet MAC LocalLink client
interface. The module swaps the destination and source addresses of each frame (as shown
in Figure 5-3) to ensure that the outgoing frame destination address matches the source
address of the link partner. The module transmits the frame control signals with an equal
latency to the frame data.

Physical Interface
Appropriate physical interface logic is provided, which connects the physical interface of
the Ethernet MAC block to the I/O of the FPGA, and as required, contains the following
components:

• For GMII/MII, this component contains Input/Output block (IOB) buffers and IOB
flip-flops. For GMII, IODELAYs are also instantiated on the receiver data input. These
are configured in FIXED mode and align the received data with the clock.

• For RGMII, this component contains IOB buffers and IOB double-data rate flip-flops.
IODELAYs are also instantiated on the receiver data input. These are configured in
FIXED mode and align the received data with the clock. If RGMII v2.0 is selected, an
IODELAY is used to delay the transmitter clock output by the 2 ns required by the
specification.

• For 1000BASE-X PCS/PMA or SGMII, this component instantiates and connects the
serial transceiver.

Figure 5-3: Modification of Frame Data by Address Swap Module

rx_ll_data_in

rx_ll_sof_in_n

rx_ll_eof_in_n

rx_ll_data_out

rx_ll_sof_out_n

rx_ll_eof_out_n

6 Byte SA 6 Byte DA DATAL/T FCS

rx_ll_src_rdy_in_n

rx_ll_src_rdy_out_n

rx_ll_dst_rdy_in_n

6 Byte DA DATAL/T FCS6 Byte SA

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 51
UG545 April 19, 2010

Demonstration Test Bench

Demonstration Test Bench

Test Bench Functionality
The demonstration test bench, illustrated in Figure 5-4, is a simple VHDL or Verilog
program to exercise the example design and the core itself.

The demonstration test bench is defined in the following files:

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

<project_dir>/<component_name>/simulation/configuration_tb.v

<project_dir>/<component_name>/simulation/phy_tb.v

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

<project_dir>/<component_name>/simulation/configuration_tb.vhd

<project_dir>/<component_name>/simulation/phy_tb.vhd

The top-level test bench (demo_tb.vhd, demo_tb.v) consists of the following:

• Clock generators

• A control mechanism to manage the interaction of management, stimulus, and
monitor blocks.

The configuration test bench (configuration_tb.vhd, configuration_tb.v) consists of
the following:

• A management block to exercise the host or DCR interfaces (if selected) or to
configure the Ethernet MAC through the configuration vector

• Semaphores to indicate configuration status to the top level test bench

X-Ref Target - Figure 5-4

Figure 5-4: Demonstration Test Bench

Example Design

ManagementManagement
 & Reset

demo_tb

configuration_tb

Monitor

Stimulus

phy_tb

EMAC
 RX

EMAC
 TX

Test Bench
Control

http://www.xilinx.com

52 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

The physical layer test bench (phy_tb.vhd, phy_tb.v) consists of the following:

• A stimulus block, which connects to the physical receiver interface of the example
design

• A monitor block to check data returned through the physical transmitter interface

Demonstration Test Bench Tasks

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The Ethernet MAC is configured through the management or configuration interface,
and:

♦ Sets up the MDC clock frequency

♦ Disables auto-negotiation in SGMII and 1000BASE-X PCS/PMA modes
(overwriting GUI configuration)

♦ Disables flow control (overwriting GUI configuration)

♦ Disables receiver and transmitter reset configuration registers (overwriting GUI
configuration)

♦ Disables receiver and transmit half duplex mode (overwriting GUI configuration)

♦ Disables the PHY isolate feature for SGMII and 1000BASE-X PCS/PMA modes
(overwriting GUI configuration)

♦ Disables the transceiver and Ethernet MAC loopback feature for SGMII and
1000BASE-X PCS/PMA modes (overwriting GUI configuration)

♦ Disables the unidirectional enable bit in PCS/PMA management register for
SGMII and 1000BASE-X PCS/PMA modes (overwriting GUI configuration)

♦ Enables transmitter and receiver. The configuration test bench then sets the speed
of the Ethernet MAC.

• If the Ethernet MAC is selected to run at 1000 Mbps or in Tri-Speed mode, the
following four frames are pushed into the Ethernet MAC receiver interface at 1 Gbps:

♦ The first frame is a minimum length frame

♦ The second frame is a type frame

♦ The third frame is an errored frame

♦ The fourth frame is a padded frame

• The frames received at the transmitter of the Ethernet MAC interface are checked
against the stimulus frames to ensure data is the same. The monitor process takes into
account the source/destination address field and FCS modifications resulting from
the address swap module.

• If applicable, the Ethernet MAC is configured through the management interface to
run at 100 Mbps. The same four frames are then sent to the receiver interface and
checked against the stimulus frames.

• If applicable, the Ethernet MAC is then configured through the management interface
to run at 10 Mbps. The same four frames are then sent to the receiver interface and
checked against the stimulus frames.

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 53
UG545 April 19, 2010

Demonstration Test Bench

• If applicable, the BASE_X_ENABLE signal is asserted, and later deasserted, in order to
command the Ethernet MAC to switch its operating mode from SGMII to 1000BASE-X
and back again. Additional frames are sent after each switch. This demonstrates the
function of the serial mode switching plug-in.

Changing the Test Bench

Changing Frame Data

The contents of the frame data passed into the Ethernet MAC receivers can be modified by
changing the DATA fields for each frame defined in the test bench. More frames can be
added by defining a new frame of data.

Changing Frame Error Status

Errors can be inserted into any of the pre-defined frames by changing the ERROR field to
‘1’ in any column of that frame. When an error is introduced into a frame, the
BAD_FRAME field for that frame must be set in order to disable the monitor checking for
that frame. The error currently written into the third frame can be removed by setting all
ERROR fields for the frame to ‘0’ and unsetting the BAD_FRAME field.

Changing the Tri-Mode Ethernet MAC Configuration

The configuration of the Ethernet MAC used in the demonstration test bench can be
altered.

Caution! Certain Ethernet MAC configurations cause the test bench either to result in failure or
cause processes to run indefinitely. Be sure to determine which configurations can be used
safely with the test bench.

The Ethernet MAC can be reconfigured by adding more steps in the test bench
management process to write new configurations to the Ethernet MAC.

http://www.xilinx.com

54 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 April 19, 2010

Chapter 5: Detailed Example Design

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 55
UG545 March 22, 2010

Appendix A

Using the Client Side FIFO

The example design provided with the Ethernet MAC wrapper contains a LocalLink FIFO
used to interface to the client side of the Ethernet MAC. The source code for the FIFO is
provided and can be used and adjusted for user applications.

The 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO consists of independent transmit and
receive FIFOs embedded in a top-level wrapper. Figure A-1 shows how the FIFO fits into
a typical implementation. Each FIFO is built around a dual port block RAM, providing a
memory capacity of 4096 bytes in each FIFO.

Overview of LocalLink Interface
Data is transferred on the LocalLink interface from source to destination, with the flow
governed by the four active low control signals sof_n, eof_n, src_rdy_n, and
dst_rdy_n. The flow of data is controlled by the src_rdy_n and dst_rdy_n signals.
Only when these signals are asserted simultaneously is data transferred from source to
destination. The individual packet boundaries are marked by the sof_n and eof_n signals.
For more information on the LocalLink interface, see Xilinx Application Note XAPP691.
Figure A-2 shows the transfer of an 8-byte frame.

X-Ref Target - Figure A-1

Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation

EMAC Wrapper

User Logic
EMAC PHY

Interface

GMII/MII, RGMII, SGMII,
100BASE-X PCS/PMA

10M/100M/1G
Ethernet MAC FIFO

Transmit FIFO

Receive FIFO

LocalLink Interface Client Interface

http://www.xilinx.com/support/documentation/application_notes/xapp691.pdf
http://www.xilinx.com

56 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix A: Using the Client Side FIFO

Figure A-3 illustrates frame transfer of a 5-byte frame, where both the src_rdy_n and
dst_rdy_n signals are used to control the flow of data across the interface.

X-Ref Target - Figure A-2

Figure A-2: Frame Transfer across LocalLink Interface

X-Ref Target - Figure A-3

Figure A-3: Frame Transfer with Flow Control

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4 5 6 7

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 57
UG545 March 22, 2010

Receive FIFO Operation

Receive FIFO Operation
The receive FIFO takes data from the client interface of the Ethernet MAC core and
converts it into LocalLink format. See the Virtex®-6 FPGA Embedded Tri-Mode Ethernet MAC
User Guide for a description of the Ethernet MAC receive client interface. If the frame is
marked as good by the Ethernet MAC, that frame is presented on the LocalLink interface
for reading by the user. If the frame is marked as bad, that frame is dropped by the FIFO.

LocalLink Interface
Table A-1 describes the receive FIFO LocalLink interface.

If the receive FIFO memory overflows, the frame currently being received is dropped,
regardless of its status (good or bad), and the rx_overflow is asserted. Frames continue to
be dropped until space is made available in the FIFO by reading data out. The FIFO status
signal indicates the occupancy of the FIFO.

Table A-1: Receive FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

rx_ll_clock Input N/A Read clock for LocalLink
interface

rx_ll_reset Input rx_ll_clock Synchronous reset

rx_ll_data_out[7:0] Output rx_ll_clock Data read from FIFO

rx_ll_sof_out_n Output rx_ll_clock Start of frame indicator

rx_ll_eof_out_n Output rx_ll_clock End of frame indicator

rx_ll_src_rdy_out_n Output rx_ll_clock Source ready indicator

rx_ll_dst_rdy_in_n Input rx_ll_clock Destination ready indicator

rx_fifo_status[3:0] Output rx_ll_clock FIFO memory status

http://www.xilinx.com

58 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix A: Using the Client Side FIFO

Transmit FIFO Operation
The transmit FIFO accepts frames in LocalLink format and stores them in block RAM for
transmission through the Ethernet MAC. When a full frame is written into the transmit
FIFO, the FIFO presents the data to the Ethernet MAC transmitter client interface. On
receiving the acknowledge signal from the Ethernet MAC, the rest of the frame is
transmitted. For a description of the Ethernet MAC transmit client interface, see the
Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

LocalLink Interface
Table A-2 defines the transmit FIFO LocalLink interface signals.

In half-duplex operation, if the client interface collision signal is asserted by the Ethernet
MAC, the current frame transmission is terminated. If the retransmit signal is also asserted,
the FIFO re-queues the frame for transmission.

If the FIFO memory fills to capacity, the dst_rdy_out_n signal is used to halt the
LocalLink interface writing in data until space becomes available in the FIFO. If the FIFO
memory fills to capacity but no frames are available for transmission, that is, if a frame
larger than 4000 bytes is written into the FIFO, the FIFO asserts the tx_overflow signal
and continues to accept the rest of the frame from the user. The overflow frame is dropped
by the FIFO to ensure that the LocalLink interface does not lock up.

Table A-2: Transmit FIFO LocalLink Interface

Signal Direction Clock Domain Description

tx_ll_clock Input N/A Write clock for LocalLink
interface

tx_ll_reset Input tx_ll_clock Synchronous reset

tx_ll_data_in[7:0] Input tx_ll_clock Write data to be sent to
transmitter

tx_ll_sof_in_n Input tx_ll_clock Start of frame indicator

tx_ll_eof_in_n Input tx_ll_clock End of frame indicator

tx_ll_src_rdy_in_n Input tx_ll_clock Source ready indicator

tx_ll_dst_rdy_out_n Output tx_ll_clock Destination ready indicator

tx_fifo_status[3:0] Output tx_ll_clock FIFO memory status

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 59
UG545 March 22, 2010

Clock Requirements

Clock Requirements
The FIFO is designed to work with the client clocks running at speeds in the range of
125 MHz to 1.25 MHz. The FIFO can also operate at 156.25 MHz when a supported
overclocking mode is in use. The rx_ll_clock should be no slower than the clock on the
receiver client interface and the tx_ll_clock should be no slower than the clock on the
transmitter client interface. For this reason, is suggested that the rx_ll_clock and
tx_ll_clock are always 125 MHz or faster.

User Interface Data Width Conversion
Conversion of the user interface 8-bit data path to a 16, 32, 64, or 128 bit data path can be
made by connecting the LocalLink interface directly to the Parameterizable LocalLink
FIFO (XAPP691).

http://www.xilinx.com/support/documentation/application_notes/xapp691.pdf
http://www.xilinx.com

60 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix A: Using the Client Side FIFO

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 61
UG545 March 22, 2010

Appendix B

Ethernet MAC Clocking

The Ethernet MAC example design provides clocking schemes for each supported
interface. This chapter provides details about the supplied clocking schemes. Clocking is
implemented in the <component_name>_example_design.v[hd] file. For more
information about Ethernet MAC clock management, including detailed block diagrams of
all supported clocking schemes, see the Virtex®-6 FPGA Embedded Tri-Mode Ethernet MAC
User Guide.

Single-Speed Clocking

1000BASE-X PCS/PMA and SGMII
In 1000BASE-X PCS/PMA (8-bit client interface) and SGMII modes (Figure B-1), the user
supplies a high quality differential clock to the serial transceiver. This is input to the
wrappers on the CLK_DS port. This clock can be shared between multiple instantiations of
the wrappers.

A 125 MHz clock is used to drive the transmit and receive sections of the wrappers. This is
supplied via a BUFG and input on the CLK125 port. The TXOUTCLK output from the
transceiver is made available to the user and can be used to drive CLK125. This clock can
be shared between multiple instantiations of the wrappers.

http://www.xilinx.com

62 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix B: Ethernet MAC Clocking

X-Ref Target - Figure B-1

Figure B-1: PCS/PMA with 8-bit Client Interface or SGMII Clocking at 1000 Mbps

BUFG

CLK125

CLK125_OUT

IBUFDS

MGTCLK_P
MGTCLK_N

CLK_DS

<component_name>_example_design

LocalLink/Block-level wrapper

Ethernet MAC

Serial
Transceiver

PHYEMACGTXCLK

TXOUTCLK

CLKIN

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 63
UG545 March 22, 2010

Single-Speed Clocking

1000BASE-X PCS/PMA with 16-bit Client Interface
When in 1000BASE-X PCS/PMA mode with the 16-bit client interface, the Ethernet MAC
is capable of operating at 1000, and, in supported devices, 2000 or 2500 Mbps.

When operating with the 16-bit client interface, an additional clock (CLK2X) is input to the
wrappers. This is used to clock the serial transceiver and the physical side of the Ethernet
MAC. CLK2X is generated from an MMCM, which is driven by the TXOUTCLK output of
the transceiver and can be shared between multiple instantiations of the wrappers. The
frequency of CLK2X depends on the rate in use as follows:

• For 1000 Mbps, CLK2X is 125 MHz.

• For 2000 Mbps, CLK2X is 250 MHz.

• For 2500 Mbps, CLK2X is 312.5 MHz.

As in the 1000BASE-X PCS/PMA scheme in Figure B-2, the client logic is driven by the
clock supplied on the CLK125 port. This can be shared between multiple instantiations of
the wrappers. For 2500 Mbps operation only, the serial transceiver reference clock
(MGTCLK_P/N) should be supplied at 156.25 MHz. As a result, CLK125 will also operate at
156.25 MHz in this mode.

http://www.xilinx.com

64 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix B: Ethernet MAC Clocking

X-Ref Target - Figure B-2

Figure B-2: PCS/PMA Clocking When Using the 16-bit Client Interface

CLKIN

TXOUTCLK
CLK125_OUT

IBUFDS

MGTCLK_P
MGTCLK_N

CLK_DS

CLK2X

MMCM

BUFG

BUFG

PHYEMACGTXCLK

<component_name>_example_design

LocalLink/Block-level Wrapper

Ethernet MAC

Serial
 Transceiver

CLK125
BUFG

BUFG

CLKIN1

CLKFBIN

CLKOUT1

CLKOUT0

CLKFBOUT

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 65
UG545 March 22, 2010

Single-Speed Clocking

GMII/RGMII at 1000 Mbps
Figure B-3 shows the clocking for a parallel interface (GMII or RGMII) operating at 1000
Mbps. TX_CLK clocks the transmitter circuitry and is driven by a high quality 125 MHz
clock. This can be shared between multiple instantiations of the wrappers.

The receiver is driven by the input clock from the PHY chip via an IODELAY element. The
IODELAY is used to align the clock to the data inputs as they enter the FPGA. The delayed
clock is routed through BUFIO and BUFR clock buffers and cannot be shared between
multiple Ethernet MACs.

Caution! Use of the BUFIO and BUFR regional clock buffers impose certain location
requirements on PHY-side receiver data and clock pins, and the Embedded TEMAC instance.
For more information on regional clocking for the Ethernet MAC, see “Pinout Requirements" in
Appendix A of the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

X-Ref Target - Figure B-3

Figure B-3: GMII/RGMII Clocking at 1000 Mbps

BUFG

TX_CLK

GMII_RX_CLK
RGMII_RXC

GMII_RX_CLK
RGMII_RXC

PHY IOBs

GTX_CLK

<component_name>_example_design

LocalLink/Block-level Wrapper

Ethernet MAC

IODELAY

BUFR

BUFIO

http://www.xilinx.com

66 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix B: Ethernet MAC Clocking

Multi-Speed Clocking
This section illustrates the clocking for the Ethernet MAC wrapper when operating at
multiple speeds. For most interfaces, the Ethernet MAC supplies a clock output that can be
used to drive the client logic at all speeds. The frequency of the clock output is dependent
on the setting of the speed selection bits in the Ethernet MAC Mode Configuration
Register.

For the implementation of some interfaces the Ethernet MAC EMACSPEEDIS10100 output is
exposed at the wrapper interface. This is asserted when the Ethernet MAC is operating at
10 or 100 Mbps. This signal can be used to select between different clock inputs depending
on the current speed of operation. For information about the Ethernet MAC signals and
register definitions, see the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

SGMII at Multiple Speeds
For SGMII operation at multiple speeds the user supplies the high quality differential clock
(CLK_DS) and 125 MHz reference clock (CLK125) described in Figure B-4. These are used to
clock the serial transceiver and the physical side of the Ethernet MAC and can be shared
between multiple instantiations of the wrappers.

In addition a 1.25/12.5/125 MHz client clock (CLIENT_CLK) must be supplied. This is used
to drive the client logic at all 3 speeds. The EMACCLIENTTXCLIENTCLKOUT output from the
EMAC is made available to the user on the CLIENT_CLK_OUT port and this is used to drive
CLIENT_CLK. This clock cannot be shared between multiple Ethernet MACs unless they all
operate at the same speed. Figure B-4 shows the supplied clocking scheme.

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 67
UG545 March 22, 2010

Multi-Speed Clocking

X-Ref Target - Figure B-4

Figure B-4: SGMII Clocking at 10/100/1000 Mbps

<component_name>_example_design

BUFG

CLK125

CLK125_OUT

IBUFDS

MGTCLK_P
MGTCLK_N

CLK_DS

BUFG

CLIENT_CLK

CLIENT_CLK_OUT

LocalLink/Block-level Wrapper

Ethernet MAC

Serial
Transceiver

EMACCLIENTTXCLIENTCLKOUT

TXOUTCLK

CLKIN

PHYEMACGTXCLK

http://www.xilinx.com

68 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix B: Ethernet MAC Clocking

GMII/MII/RGMII at Multiple Speeds
There are a variety of clocking schemes available when using a parallel PHY interface at
multiple speeds. Figure B-5, Figure B-6, and Figure B-7 show the default methods, where
the user supplies a reference clock and the PHY interface clocks, and the Ethernet MAC
generates the client interface clocks. In the case of GMII, a BUFGMUX is used to select
between the MII_TX_CLK and GTX_CLK based on the operating speed.

Because these methods use a large amount of clocking resources, Xilinx recommends that
you use the Clock Enable method shown in Figure B-8, and Figure B-9.

Caution! Use of the BUFIO and BUFR regional clock buffers impose certain location
requirements on PHY-side receiver data and clock pins, and the Embedded TEMAC instance.
For more information on regional clocking for the Ethernet MAC, see "Pinout Requirements" in
Appendix A of the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

X-Ref Target - Figure B-5

Figure B-5: GMII Clocking at 10/100/1000 Mbps

BUFG

BUFG

EMACCLIENTRXCLIENTCLKOUT

EMACCLIENTTXCLIENTCLKOUT
TX_CLIENT_CLK_OUT

TX_CLIENT_CLK

RX_CLIENT_CLK_OUT

RX_CLIENT_CLK

TX_PHY_CLK_OUT

TX_PHY_CLK

GMII_RX_CLK GMII_RX_CLK

PHYEMACGTXCLK

locallink/block level wrapper

BUFG (or BUFR)

TX Physical
Clock
Domain

RX Physical
Clock
Domain

TX Client
Clock
Domain

RX Client
Clock
Domain

<component_name>_example_design

PHYEMACMIITXCLK

EMACSPEEDIS10100

MII_TX_CLK

Ethernet MAC

GTX_CLK

1

0

EMACPHYTXGMIIMIICLKOUT

BUFR

BUFIO

IODELAY

BUFGMUX

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 69
UG545 March 22, 2010

Multi-Speed Clocking

X-Ref Target - Figure B-6

Figure B-6: RGMII Clocking at 10/100/1000 Mbps

BUFG

BUFG

EMACCLIENTRXCLIENTCLKOUT

EMACCLIENTTXCLIENTCLKOUT
TX_CLIENT_CLK_OUT

TX_CLIENT_CLK

RX_CLIENT_CLK_OUT

RX_CLIENT_CLK

TX_PHY_CLK_OUT

TX_PHY_CLK

RGMII_RXC

PHYEMACGTXCLK

locallink/block level wrapper

BUFG (or BUFR)

TX Physical
Clock
Domain

RX Physical
Clock
Domain

TX Client
Clock
Domain

RX Client
Clock
Domain

<component_name>_example_design

Ethernet MAC

GTX_CLK

EMACPHYTXGMIIMIICLKOUT

BUFR

BUFIO

IODELAY

PHY IOBs

RGMII_RXC

http://www.xilinx.com

70 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix B: Ethernet MAC Clocking

X-Ref Target - Figure B-7

Figure B-7: MII Clocking at 10/100 Mbps

BUFG

BUFG

TX_CLIENT_CLK_OUT

TX_CLIENT_CLK

RX_CLIENT_CLK_OUT

RX_CLIENT_CLK

TX_PHY_CLK

BUFG (or BUFR)

BUFG (or BUFR)

TX Physical
Clock
Domain

RX Physical
Clock
Domain

TX Client
Clock
Domain

RX Client
Clock
Domain

<component_name>_example_design

MII_RX_CLK MII_RX_CLK

MII_TX_CLK

Ethernet MAC

EMACCLIENTTXCLIENTCLKOUT

EMACCLIENTRXCLIENTCLKOUT

LocalLink/Block-level Wrapper

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 71
UG545 March 22, 2010

Multi-Speed Clocking

GMII/MII at Multiple Speeds with Clock Enable
Clock Enable mode is used to reduce the amount of clocking resources that are used when
running at multiple speeds with a parallel interface (Figure B-8). In this mode the
transmitter clock is supplied from a high quality 125 MHz reference clock (GTX_CLK) at
1000 Mbps and from the 2.5/25 MHz TX input clock from the PHY (MII_TX_CLK) at 10/100
Mbps. The receiver is clocked by the 2.5/25/125 MHz receiver clock from the PHY
(GMII/MII_RX_CLK). In GMII mode an IODELAY element is also used to align the clock to
the data inputs as they enter the FPGA.

The clock enable outputs (tx_enable_i and rx_enable_i) are used by the 8-bit client
logic in order to maintain the correct data rate through the system. At 1000 Mbps the clock
enables are held high. At slower speeds the clock enables are high on each alternate clock
cycle. This gives a data throughput of 100 Mbps on the 25 MHz clock and 10 Mbps on the
2.5 MHz clock.

If the MII interface is used (10/100 Mbps only) the BUFGMUX is replaced by a BUFG with
MII_TX_CLK as its input. It should be noted that, together with the receiver clock, the
transmitter clock must still be constrained to run at 125 MHz even if the design does not
operate at 1000Mbps.

Caution! Use of the BUFIO and BUFR regional clock buffers impose certain location
requirements on PHY-side receiver data and clock pins, and the Embedded TEMAC instance.
For more information on regional clocking for the Ethernet MAC, see "Pinout Requirements" in
Appendix A in the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

X-Ref Target - Figure B-8

Figure B-8: GMII/MII Clocking at 10/100/1000 Mbps with Clock Enables

BUFGMUX

GMII_RX_CLK
MII_RX_CLK

TX_CLK

GMII_RX_CLK

PHY IOBs

MII_RX_CLK

GTX_CLK

MII_TX_CLK

tx_enable_i

rx_enable_i

1

0

<component_name>_example_design

TX Clock
Domain

RX Clock
Domain

LocalLink/Block-level Wrapper

Ethernet MAC

BUFR

BUFIO

IODELAY

EMACCLIENTRXCLIENTCLKOUT

EMACCLIENTTXCLIENTCLKOUT

EMACSPEEDIS10100

http://www.xilinx.com

72 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix B: Ethernet MAC Clocking

RGMII at Multiple Speeds with Clock Enable
Figure B-9 shows the clocking scheme used when running at multiple speeds with the
RGMII interface. In this case, the transmit clock runs at 2.5, 25, or 125 MHz depending on
the speed of operation. The TX_CLK_OUT output carries the EMACPHYTXGMIIMIICLKOUT
output from the Ethernet MAC and is used to drive the transmitter input clock (TX_CLK).

The receiver is clocked by the input clock from the PHY through an IODELAY and a
BUFIO-BUFR pair of clock buffers. The IODELAY element is used to align the clock to the
data inputs as they enter the FPGA. Clock enables are used to control the data throughput
at the client interface.

Caution! Use of the BUFIO and BUFR regional clock buffers impose certain location
requirements on PHY-side receiver data and clock pins, and the Embedded TEMAC instance.
For more information on regional clocking for the Ethernet MAC, see "Pinout Requirements" in
Appendix A in the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

X-Ref Target - Figure B-9

Figure B-9: RGMII Clocking at 10/100/1000 Mbps with Clock Enable

BUFG

RGMII_RXC

TX_CLK

tx_enable_i

rx_enable_i

TX_CLK_OUT

RGMII_RXC

GTX_CLK

<component_name>_example_design

TX Clock
Domain

RX Clock
Domain

LocalLink/Block-level Wrapper

Ethernet MAC

PHYEMACGTXCLK

EMACCLIENTTXCLIENTCLKOUT

EMACPHYTXGMIIMIICLKOUT

EMACCLIENTRXCLIENTCLKOUT

BUFR

IODELAY

PHY IOBs

BUFIO

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 73
UG545 March 22, 2010

Appendix C

Constraining the Example Design

A UCF (<component_name>_example_design.ucf) is provided with the example
design, and includes the necessary constraints for proper Ethernet MAC operation. The file
is separated into four sections: basic constraints, clock constraints, physical interface
constraints, and LocalLink FIFO constraints.

The UCF details the application of the constraints for the specific hierarchical level of
wrappers used.

Basic Constraints
An example CONFIG PART constraint is provided for the Virtex®-6 FPGA family chosen
within the CORE Generator™ tool. In this example, the 6VLX240TFF1156-1 part results
from choosing a Virtex-6 LXT device.

The 6vlx240tff1156-1 part is chosen for this example
design.
This value should be modified to match your device.
CONFIG PART = 6vlx240tff1156-1;

To facilitate placement, routing, and timing closure, an example Ethernet MAC instance
location constraint is provided. Some configurations may include additional location and
area group constraints.

Locate the Tri-Mode Ethernet MAC instance
INST "*v6_emac" LOC = "TEMAC_X0Y0";

http://www.xilinx.com

74 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix C: Constraining the Example Design

Clock Constraints
The clock constraints section of the UCF is tuned to the selected clocking and physical
interface configuration.

Clock Constraints for MII Configurations
When the Clock Enable advanced clocking scheme is used, the transmit and receive PHY-
side clocks must be constrained as if operation were at 1 Gbps. These clocks are also used
for client-side logic.

Ethernet MII PHY-side transmit clock
NET "MII_TX_CLK" TNM_NET = "phy_clk_tx";
TIMEGRP "<component_name>_clk_phy_tx" = "phy_clk_tx";
TIMESPEC "TS_<component_name>_clk_phy_tx" = PERIOD
"<component_name>_clk_phy_tx" 8 ns HIGH 50 %;

Ethernet MII PHY-side receive clock
NET "MII_RX_CLK" TNM_NET = "phy_clk_rx";
TIMEGRP "<component_name>_clk_phy_rx" = "phy_clk_rx";
TIMESPEC "TS_<component_name>_clk_phy_rx" = PERIOD
"<component_name>_clk_phy_rx" 7.5 ns HIGH 50 %;

When the standard clocking methodology is used, both the transmit and receive, client-
and PHY-side clocks are constrained for nominal 100 Mbps operation. See the generated
UCF for this scenario's full syntax.

Clock Constraints for GMII Configurations
When configured for single-speed 1 Gbps operation, the high-quality Ethernet reference
clock is constrained to the specified 125 MHz, and the receive PHY-side clock is slightly
over-constrained to handle the transient case. Additionally, the delay element reference
clock is constrained to 200 MHz.

Ethernet GTX_CLK high quality 125 MHz reference clock
NET "GTX_CLK" TNM_NET = "ref_gtx_clk";
TIMEGRP "<component_name>_clk_ref_gtx" = "ref_gtx_clk";
TIMESPEC "TS_<component_name>_clk_ref_gtx" = PERIOD
"<component_name>_clk_ref_gtx" 8 ns HIGH 50 %;

Ethernet GMII PHY-side receive clock
NET "GMII_RX_CLK" TNM_NET = "phy_clk_rx";
TIMEGRP "<component_name>_clk_phy_rx" = "phy_clk_rx";
TIMESPEC "TS_<component_name>_clk_phy_rx" = PERIOD
"<component_name>_clk_phy_rx" 7.5 ns HIGH 50 %;

IDELAYCTRL 200 MHz reference clock
NET "REFCLK" TNM_NET = "clk_ref_clk";
TIMEGRP "ref_clk" = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "ref_clk" 5 ns HIGH 50 %;

When configured for tri-speed operation and the Clock Enable advanced clocking scheme
is used, the high-quality Ethernet reference clock (and the output of the BUFGMUX it
drives) are constrained to the specified 125 MHz. The receive, PHY-side clock is
constrained for nominal 1 Gbps operation, and is slightly over-constrained to handle the
transient case. This clock is also used for client-side logic. Additionally, the delay element
reference clock is constrained to 200 MHz.

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 75
UG545 March 22, 2010

Clock Constraints

Ethernet GTX_CLK high quality 125 MHz reference clock
NET "GTX_CLK" TNM_NET = "ref_gtx_clk";
TIMEGRP "<component_name>_clk_ref_gtx" = "ref_gtx_clk";
TIMESPEC "TS_<component_name>_clk_ref_gtx" = PERIOD
"<component_name>_clk_ref_gtx" 8 ns HIGH 50 %;

Multiplexed 1 Gbps, 10/100 Mbps output inherits constraint from
GTX_CLK
NET "tx_clk" TNM_NET = "ref_mux_clk";
TIMEGRP "<component_name>_clk_ref_mux" = "ref_mux_clk";
TIMESPEC "TS_<component_name>_clk_ref_mux" = PERIOD
"<component_name>_clk_ref_mux" TS_<component_name>_clk_ref_gtx HIGH
50%;

Ethernet GMII PHY-side receive clock
NET "GMII_RX_CLK" TNM_NET = "phy_clk_rx";
TIMEGRP "<component_name>_clk_phy_rx" = "phy_clk_rx";
TIMESPEC "TS_<component_name>_clk_phy_rx" = PERIOD
"<component_name>_clk_phy_rx" 7.5 ns HIGH 50 %;

IDELAYCTRL 200 MHz reference clock
NET "REFCLK" TNM_NET = "clk_ref_clk";
TIMEGRP "ref_clk" = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "ref_clk" 5 ns HIGH 50 %;

When configured for tri-speed operation and the standard clocking methodology is used,
the high-quality Ethernet reference clock is constrained to the specified 125 MHz, and the
PHY clock is constrained for nominal 100 Mbps operation; their multiplexed output is
constrained to the higher frequency. Both the transmit and receive, client- and PHY-side
clocks are constrained for nominal 1 Gbps operation, and the receive PHY-side clock is
slightly over-constrained to handle the transient case. Additionally, the delay element
reference clock is constrained to 200 MHz. See the generated UCF for this scenario's full
syntax.

Clock Constraints for RGMII Configurations
When configured for single-speed 1 Gbps operation, the high-quality Ethernet reference
clock is constrained to the specified 125 MHz, and the receive PHY-side clock is slightly
over-constrained to handle the transient case. Additionally, the delay element reference
clock is constrained to 200 MHz.

Ethernet GTX_CLK high quality 125 MHz reference clock
NET "GTX_CLK" TNM_NET = "ref_gtx_clk";
TIMEGRP "<component_name>_clk_ref_gtx" = "ref_gtx_clk";
TIMESPEC "TS_<component_name>_clk_ref_gtx" = PERIOD
"<component_name>_clk_ref_gtx" 8 ns HIGH 50 %;

Ethernet RGMII PHY-side receive clock
NET "RGMII_RXC" TNM_NET = "phy_clk_rx";
TIMEGRP "<component_name>_clk_phy_rx" = "phy_clk_rx";
TIMESPEC "TS_<component_name>_clk_phy_rx" = PERIOD
"<component_name>_clk_phy_rx" 7.5 ns HIGH 50 %;

IDELAYCTRL 200 MHz reference clock
NET "REFCLK" TNM_NET = "clk_ref_clk";
TIMEGRP "ref_clk" = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "ref_clk" 5 ns HIGH 50 %;

http://www.xilinx.com

76 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix C: Constraining the Example Design

When configured for tri-speed operation and the Clock Enable advanced clocking scheme
is used, the high-quality Ethernet reference clock is constrained to the specified 125 MHz.
The transmit and receive PHY-side clocks are constrained for nominal 1 Gbps operation,
and the receive PHY-side clock is slightly over-constrained to handle the transient case.
These clocks are also used for client-side logic. Additionally, the delay element reference
clock is constrained to 200 MHz.

Ethernet GTX_CLK high quality 125 MHz reference clock
NET "GTX_CLK" TNM_NET = "ref_gtx_clk";
TIMEGRP "<component_name>_clk_ref_gtx" = "ref_gtx_clk";
TIMESPEC "TS_<component_name>_clk_ref_gtx" = PERIOD
"<component_name>_clk_ref_gtx" 8 ns HIGH 50 %;

Ethernet RGMII PHY-side transmit clock
NET "tx_clk_o" TNM_NET = "phy_clk_tx";
TIMEGRP "<component_name>_clk_phy_tx" = "phy_clk_tx";
TIMESPEC "TS_<component_name>_clk_phy_tx" = PERIOD
"<component_name>_clk_phy_tx" 8 ns HIGH 50 %;

Ethernet RGMII PHY-side receive clock
NET "RGMII_RXC" TNM_NET = "phy_clk_rx";
TIMEGRP "<component_name>_clk_phy_rx" = "phy_clk_rx";
TIMESPEC "TS_<component_name>_clk_phy_rx" = PERIOD
"<component_name>_clk_phy_rx" 7.5 ns HIGH 50 %;

IDELAYCTRL 200 MHz reference clock
NET "REFCLK" TNM_NET = "clk_ref_clk";
TIMEGRP "ref_clk" = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "ref_clk" 5 ns HIGH 50 %;

When configured for tri-speed operation and the standard clocking methodology is used,
the high-quality Ethernet reference clock is constrained to the specified 125 MHz. Both the
transmit and receive, client- and PHY-side clocks are constrained for nominal 1 Gbps
operation, and the receive PHY-side clock is slightly over-constrained to handle the
transient case. Additionally, the delay element reference clock is constrained to 200 MHz.
See the generated UCF for this scenario's full syntax.

Clock Constraints for 1000BASE-X PCS/PMA Configurations
The serial transceiver's TXOUTCLK is used as the high-quality Ethernet reference clock.
When the 8-bit client interface is used, this clock is constrained to 125 MHz.

Ethernet MAC reference clock driven by transceiver
NET "clk125_o" TNM_NET = "clk_gt_clk";
TIMEGRP "<component_name>_gt_clk" = "clk_gt_clk";
TIMESPEC "TS_<component_name>_gt_clk" = PERIOD
"<component_name>_gt_clk" 8 ns HIGH 50 %;

When the 16-bit client interface is used, an MMCM derives two outputs from the serial
transceiver's TXOUTCLK: a clock for client-side logic, and a PHY-side (serial transceiver)
clock. A period constraint is only applied to the input of the MMCM, since this constraint
is automatically propagated to its outputs. Overclocking up to 2.5 Gbps is supported in
this case, and the constrained period depends on the selected rate. The 2.5 Gbps case is
shown in this example.

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 77
UG545 March 22, 2010

Clock Constraints

Ethernet MAC reference clock driven by transceiver
NET "clk125_o" TNM_NET = "clk_gt_clk";
NET "clk125_pre_bufg" TNM_NET = "clk125_clk";
NET "clk2x_pre_bufg" TNM_NET = "clk2x_clk";
TIMEGRP "<component_name>_gt_clk" = "clk125_clk" "clk2x_clk";
In 2.5 Gbps overclocking mode, note that clk125_o
operates at 156.25 MHz
TIMESPEC "TS_<component_name>_gt_clk" = PERIOD "clk_gt_clk" 6.4 ns HIGH
50 %;

Clock Constraints for SGMII Configurations
The serial transceiver's TXOUTCLK is used as the high-quality Ethernet reference clock,
and is constrained to 125 MHz. When configured for tri-speed operation, the client-side
clock is constrained for nominal 1 Gbps operation.

Ethernet MAC reference clock driven by transceiver
NET "clk125_o" TNM_NET = "clk_gt_clk";
TIMEGRP "<component_name>_gt_clk" = "clk_gt_clk";
TIMESPEC "TS_<component_name>_gt_clk" = PERIOD
"<component_name>_gt_clk" 8 ns HIGH 50 %;

Tri-speed client clock from Ethernet MAC
NET "client_clk_o" TNM_NET = "clk_client";
TIMEGRP "<component_name>_gt_clk_client" = "clk_client";
TIMESPEC "TS_<component_name>_gt_clk_client" = PERIOD
"<component_name>_gt_clk_client" 8 ns HIGH 50 %;

When configured for single-speed 1 Gbps operation, only the high-quality Ethernet
reference clock is constrained. This is identical to the 8-bit client, 1000BASE-X case.

Clock Constraints for the Host Interface
When the host or DCR interface is selected, an example constraint is provided which
constrains HOSTCLK or DCREMACCLK, respectively, to 100 MHz. The host interface case
is shown here.

Constrain the host interface clock to an example
frequency of 100 MHz
NET "HOSTCLK" TNM_NET = "host_clock";
TIMEGRP "clk_host" = "host_clock";
TIMESPEC "TS_clk_host" = PERIOD "clk_host" 10 ns HIGH 50 %;

http://www.xilinx.com

78 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix C: Constraining the Example Design

Physical Interface Constraints
The physical interface constraints section of the UCF is tuned to the selected physical
interface. The location constraints shown here should be considered an example only, and
may differ with device family. See the generated UCF for the appropriate location
constraints for your target device.

Physical Interface Constraints for MII Configurations
Constraints are provided which locate the physical interface flip-flops in IOBs, check
whether the appropriate receive MII bus setup and hold times are present at the input to
the FPGA, and provide example pin locations.

Constrain the MII physical interface flip-flops to IOBs
INST "*mii?RXD_TO_MAC*" IOB = true;
INST "*mii?RX_DV_TO_MAC" IOB = true;
INST "*mii?RX_ER_TO_MAC" IOB = true;
INST "*mii?MII_TXD_?" IOB = true;
INST "*mii?MII_TX_EN" IOB = true;
INST "*mii?MII_TX_ER" IOB = true;

Constrain MII inputs for 10 ns setup time and 10 ns hold
time with respect to MII_RX_CLK
INST "MII_RXD<?>" TNM = "mii_rx";
INST "MII_RX_DV" TNM = "mii_rx";
INST "MII_RX_ER" TNM = "mii_rx";
TIMEGRP "mii_rx" OFFSET = IN 10 ns VALID 20 ns BEFORE "MII_RX_CLK"
RISING;

Location constraints are chosen for this example design.
These values should be modified to suit your design.

Locate the MII physical interface pins
INST "MII_COL" LOC = "BANK33";
INST "MII_CRS" LOC = "BANK33";
INST "MII_TXD<?>" LOC = "BANK33";
INST "MII_TX_EN" LOC = "BANK33";
INST "MII_TX_ER" LOC = "BANK33";
INST "MII_TX_CLK" LOC = "BANK33";
INST "MII_RXD<?>" LOC = "BANK33";
INST "MII_RX_DV" LOC = "BANK33";
INST "MII_RX_ER" LOC = "BANK33";
INST "MII_RX_CLK" LOC = "AP11";

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 79
UG545 March 22, 2010

Physical Interface Constraints

Physical Interface Constraints for GMII Configurations
Constraints are provided which align the receiver bus to the receiver clock and check
whether the appropriate setup time results from these adjustments. More detail on these
constraints immediately follows.

Set the IDELAY values on the PHY inputs, tuned for this
example design. These values should be modified to suit
your design.
INST "*gmii?ideldv" IDELAY_VALUE = 28;
INST "*gmii?ideld0" IDELAY_VALUE = 28;
INST "*gmii?ideld1" IDELAY_VALUE = 28;
INST "*gmii?ideld2" IDELAY_VALUE = 28;
INST "*gmii?ideld3" IDELAY_VALUE = 28;
INST "*gmii?ideld4" IDELAY_VALUE = 28;
INST "*gmii?ideld5" IDELAY_VALUE = 28;
INST "*gmii?ideld6" IDELAY_VALUE = 28;
INST "*gmii?ideld7" IDELAY_VALUE = 28;
INST "*gmii?ideler" IDELAY_VALUE = 28;
INST "*gmii_rxc_delay" IDELAY_VALUE = 0;
INST "*gmii_rxc_delay" SIGNAL_PATTERN = CLOCK;

Group all IDELAY-related blocks to use a single
IDELAYCTRL
INST "*dlyctrl" IODELAY_GROUP = gmii_idelay;
INST "*ideld?" IODELAY_GROUP = gmii_idelay;
INST "*ideldv" IODELAY_GROUP = gmii_idelay;
INST "*ideler" IODELAY_GROUP = gmii_idelay;
INST "*gmii_rxc_delay" IODELAY_GROUP = gmii_idelay;

The following constraints work in conjunction with
IDELAY_VALUE settings to check that the GMII receive
bus remains in alignment with the rising edge of
GMII_RX_CLK, to within 2ns setup time and 750ps
hold time. In addition to adjusting IDELAY_VALUE
settings for your system's timing characteristics, you
may wish to refine these constraints to match the
GMII specification; see Answer Record 33195 on
xilinx.com for details.
INST "GMII_RXD<?>" TNM = "gmii_rx";
INST "GMII_RX_DV" TNM = "gmii_rx";
INST "GMII_RX_ER" TNM = "gmii_rx";
TIMEGRP "gmii_rx" OFFSET = IN 2 ns VALID 2.75 ns BEFORE "GMII_RX_CLK"
RISING;

Constraints are also provided to locate the physical interface flip-flops in IOBs, and for
example pin and clock buffer resource locations.

Constrain the GMII physical interface flip-flops to IOBs
INST "*gmii?RXD_TO_MAC*" IOB = true;
INST "*gmii?RX_DV_TO_MAC" IOB = true;
INST "*gmii?RX_ER_TO_MAC" IOB = true;
INST "*gmii?GMII_TXD_?" IOB = true;
INST "*gmii?GMII_TX_EN" IOB = true;
INST "*gmii?GMII_TX_ER" IOB = true;

Location constraints are chosen for this example design.
These values should be modified to suit your design.
* Note that regional clocking imposes certain
requirements on the location of the physical interface

http://www.xilinx.com

80 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix C: Constraining the Example Design

pins and the TEMAC instance. Please see the
Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide
for additional details. *

Locate the GMII physical interface pins
INST "GMII_TXD<?>" LOC = "BANK33";
INST "GMII_TX_EN" LOC = "BANK33";
INST "GMII_TX_ER" LOC = "BANK33";
INST "GMII_TX_CLK" LOC = "BANK33";
INST "GMII_RXD<?>" LOC = "BANK33";
INST "GMII_RX_DV" LOC = "BANK33";
INST "GMII_RX_ER" LOC = "BANK33";
INST "GMII_RX_CLK" LOC = "AP11";

Locate the 125 MHz reference clock buffer
INST "bufg_tx" LOC = "BUFGCTRL_X0Y6";

Locate the 200 MHz delay controller clock buffer
INST "refclk_bufg" LOC = "BUFGCTRL_X0Y7";

GMII IDELAY_VALUE Constraints

Figure C-1 and Table C-1 illustrate the input setup and hold time window for the input
GMII signals. These are the worst-case data valid window presented to the FPGA device
pins.

There is, in total, a 2 ns data valid window of guaranteed data that is presented across the
GMII input bus. This must be correctly sampled by the FPGA.

In order to do this IODELAY elements are placed on the GMII_RX_CLK, GMII_RXD[7:0],
GMII_RX_EN and GMII_RX_ER inputs. The IDELAY_VALUE parameters of these
elements is set in the UCF so that the data is sampled correctly.

X-Ref Target - Figure C-1

Figure C-1: Input GMII Timing

Table C-1: Input GMII Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

tSETUP

tHOLD

GMII_RX_CLK

GMII_RXD[7:0]
GMII_RX_EN
GMII_RX_ER

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 81
UG545 March 22, 2010

Physical Interface Constraints

The IDELAY_VALUE settings delivered in the example design UCF are intended as an
example only. They must be modified to accommodate each design's specific timing
details. Xilinx does not recommend that a single tap value will be effective across all
hardware families. This OFFSET constraint syntax provided in the example design UCF
will cause the Xilinx implementation tools to analyze the input setup and hold constraints
for the input GMII bus. If these constraints are not met, the tools will report timing errors.
However, the tools will not attempt to automatically correct the timing in the case of
failure. These must be corrected manually by changing the IDELAY_VALUE settings in the
UCF.

Physical Interface Constraints for RGMII Configurations
Constraints are provided which align the receiver bus to the rising and falling edges of the
receiver clock, and check whether the appropriate setup and hold times result from these
adjustments. More detail on these constraints immediately follows.

Set the IDELAY and ODELAY values, tuned for this example
design. These values should be modified to suit your
design.
INST "*rgmii?rgmii_rx_ctl_delay" IDELAY_VALUE = 20;
INST "*rgmii?rgmii_rx_d0_delay" IDELAY_VALUE = 20;
INST "*rgmii?rgmii_rx_d1_delay" IDELAY_VALUE = 20;
INST "*rgmii?rgmii_rx_d2_delay" IDELAY_VALUE = 20;
INST "*rgmii?rgmii_rx_d3_delay" IDELAY_VALUE = 20;
INST "*rgmii_rxc_delay" IDELAY_VALUE = 0;
INST "*rgmii_rxc_delay" SIGNAL_PATTERN = CLOCK;
INST "*rgmii?rgmii_tx_clk_delay" ODELAY_VALUE = 6;
INST "*rgmii?rgmii_tx_clk_delay" SIGNAL_PATTERN = CLOCK;

Group all IODELAY-related blocks to use a single
IDELAYCTRL
INST "*dlyctrl"
IODELAY_GROUP = rgmii_v2_0_iodelay;
INST "*rgmii_rx_ctl_delay"
IODELAY_GROUP = rgmii_v2_0_iodelay;
INST "*rgmii_rx_d?_delay"
IODELAY_GROUP = rgmii_v2_0_iodelay;
INST "*rgmii_rxc_delay"
IODELAY_GROUP = rgmii_v2_0_iodelay;
INST "*rgmii_tx_clk_delay"
IODELAY_GROUP = rgmii_v2_0_iodelay;

The following constraints work in conjunction with
IDELAY_VALUE settings to check that the RGMII
receive bus remains in alignment with the rising and
falling edges of RGMII_RXC, to within 1.35ns setup
time and 1.35ns hold time. In addition to adjusting
IDELAY_VALUE settings for your system's timing
characteristics, you may wish to refine these
constraints to match the RGMII specification; see
Answer Record 33195 on xilinx.com for details.
INST "RGMII_RXD<?>" TNM = "rgmii_rx";
INST "RGMII_RX_CTL" TNM = "rgmii_rx";
TIMEGRP "rgmii_rx" OFFSET = IN 1.35 ns VALID 2.7 ns BEFORE "RGMII_RXC"
RISING;
TIMEGRP "rgmii_rx" OFFSET = IN 1.35 ns VALID 2.7 ns BEFORE "RGMII_RXC"
FALLING;

http://www.xilinx.com

82 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix C: Constraining the Example Design

If RGMII v2.0 is selected, an OFFSET OUT constraint is provided in 1 Gbps configurations
to report the skew between output data bits, relative to the transmitted clock. This can be
helpful in tuning ODELAY_VALUEs to meet PHY setup and hold time requirements.

Constrain the RGMII transmitter signals to provide edge skew analysis
in the timing report. This can be used to tune the ODELAY_VALUE for
your system.
INST "RGMII_TXD<?>" TNM = "rgmii_tx";
INST "RGMII_TX_CTL" TNM = "rgmii_tx";
INST "RGMII_TXC" TNM = "rgmii_tx";
TIMEGRP "rgmii_tx" OFFSET = OUT AFTER "GTX_CLK" REFERENCE_PIN
"RGMII_TXC" RISING;
TIMEGRP "rgmii_tx" OFFSET = OUT AFTER "GTX_CLK" REFERENCE_PIN
"RGMII_TXC" FALLING;

Example pin and clock resource location constraints are provided. If RGMII v2.0 is
selected, the 1.5V HSTL_I logic standard is also specified for the physical interface I/Os.

Location constraints are chosen for this example design.
These values should be modified to suit your design.
* Note that regional clocking imposes certain
requirements on the location of the physical interface
pins and the TEMAC instance. Please refer to the
Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide
for additional details. *

Locate the RGMII physical interface pins and IDELAYCTRL
element
INST "RGMII_TXD<?>" LOC = "BANK33";
INST "RGMII_TX_CTL" LOC = "BANK33";
INST "RGMII_TXC" LOC = "BANK33";
INST "RGMII_RXD<?>" LOC = "BANK33";
INST "RGMII_RX_CTL" LOC = "BANK33";
INST "RGMII_RXC" LOC = "AP11";

RGMII v2.0 logic standards
INST "RGMII_TXD<?>" IOSTANDARD = HSTL_I;
INST "RGMII_TX_CTL" IOSTANDARD = HSTL_I;
INST "RGMII_TXC" IOSTANDARD = HSTL_I;
INST "RGMII_RXD<?>" IOSTANDARD = HSTL_I;
INST "RGMII_RX_CTL" IOSTANDARD = HSTL_I;
INST "RGMII_RXC" IOSTANDARD = HSTL_I;

Locate the 125 MHz reference clock
INST "GTX_CLK" IOSTANDARD = HSTL_I;
INST "GTX_CLK" LOC = "BANK33";

Locate the 200 MHz delay controller clock
INST "REFCLK" IOSTANDARD = HSTL_I;
INST "REFCLK" LOC = "BANK33";
INST "refclk_bufg" LOC = "BUFGCTRL_X0Y7";

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 83
UG545 March 22, 2010

Physical Interface Constraints

RGMII IDELAY_VALUE Constraints

Figure C-2 and Table C-2 illustrate the input setup and hold time window for the input
RGMII signals. These are the worst-case data valid window presented to the FPGA device
pins.

There is, in total, a 2 ns data valid window of guaranteed data that is presented across the
RGMII input bus. This must be correctly sampled by the FPGA.

In order to do this IODELAY elements are placed on the RGMII_RXC, RGMII_RXD[3:0]
and RGMII_RX_CTL inputs. The IDELAY_VALUE parameters of these elements is set in
the UCF so that the data is sampled correctly.

The IDELAY_VALUE settings delivered in the example design UCF are intended as an
example only. They must be modified to accommodate each design's specific timing
details. Xilinx does not recommend that a single tap value will be effective across all
hardware families. This OFFSET constraint syntax provided in the example design UCF
will cause the Xilinx implementation tools to analyze the input setup and hold constraints
for the input RGMII bus. If these constraints are not met, the tools will report timing errors.
However, the tools will not attempt to automatically correct the timing in the case of
failure. These must be corrected manually by changing the IDELAY_VALUE settings in the
UCF.

Physical Interface Constraints for 1000BASE-X PCS/PMA Configurations
Example location constraints are provided for the serial transceiver and its differential
reference clock pins.

Place the transceiver components, chosen for this example
design. These values should be modified according to your
specific design.
INST "MGTCLK_N" LOC = "V5";
INST "MGTCLK_P" LOC = "V6";
INST "TXP" LOC = "Y1";
INST "TXN" LOC = "Y2";
INST "RXP" LOC = "AA3";
INST "RXN" LOC = "AA4";
INST "*gtx0_v6_gtxwizard_i?gtxe1_i" LOC = "GTXE1_X0Y8";

X-Ref Target - Figure C-2

Figure C-2: RGMII Input Timing

Table C-2: Input RGMII Timing

Symbol Min Max Units

tSETUP 1.00 - ns

tHOLD 1.00 - ns

tSETUP

tHOLD

tSETUP

tHOLD

RGMII_RXC

RGMII_RXD[3:0],
RGMII_RX_CTL

http://www.xilinx.com

84 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix C: Constraining the Example Design

Physical Interface Constraints for SGMII Configurations
Example location constraints are provided for the serial transceiver and its differential
reference clock pins. If the SGMII fabric elastic buffer is used, its necessary timing
constraints are also included.

Place the transceiver components, chosen for this example
design. These values should be modified according to your
specific design.
INST "MGTCLK_N" LOC = "V5";
INST "MGTCLK_P" LOC = "V6";
INST "TXP" LOC = "Y1";
INST "TXN" LOC = "Y2";
INST "RXP" LOC = "AA3";
INST "RXN" LOC = "AA4";
INST "*gtx0_v6_gtxwizard_i?gtxe1_i" LOC = "GTXE1_X0Y8";

###
SGMII FABRIC RX ELASTIC BUFFER TIMING CONSTRAINTS
The following constraints are necessary for proper
operation of the SGMII fabric Rx elastic buffer.
###

Constrain the recovered clock frequency to 125 MHz
NET "*v6_gtxwizard_top_inst?RXRECCLK" TNM_NET = "clk_rec_clk";
TIMEGRP "<component_name>_client_rec_clk" = "clk_rec_clk";
TIMESPEC "TS_<component_name>_client_rec_clk" = PERIOD
"<component_name>_client_rec_clk" 8 ns HIGH 50 %;

Control gray code delay and skew
INST "*v6_gtxwizard_top_inst?rx_elastic_buffer_inst?rd_addr_gray_?"
TNM = "rx_elastic_rd_to_wr";
TIMESPEC "TS_rx_elastic_rd_to_wr" = FROM "rx_elastic_rd_to_wr" TO
"clk_rec_clk" 7.5 ns DATAPATHONLY;
INST "*v6_gtxwizard_top_inst?rx_elastic_buffer_inst?wr_addr_gray_?"
TNM = "elastic_metastable";
TIMESPEC "TS_elastic_meta_protect" = FROM "elastic_metastable" 5 ns
DATAPATHONLY;

Reduce clock period to allow for metastability settling
time
INST "*v6_gtxwizard_top_inst?rx_elastic_buffer_inst?rd_wr_addr_gray*"
TNM = "rx_graycode";
INST "*v6_gtxwizard_top_inst?rx_elastic_buffer_inst?rd_occupancy*"
TNM = "rx_binary";
TIMESPEC "TS_rx_buf_meta_protect" = FROM "rx_graycode" TO "rx_binary"
5 ns;

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 85
UG545 March 22, 2010

LocalLink FIFO Constraints

LocalLink FIFO Constraints
The LocalLink FIFO section of the UCF includes FROM-TO constraints to facilitate clock
domain crossing and reduce the probability of metastable events.

LocalLink client FIFO transmit-side constraints

Group the clock crossing signals into timing groups
INST "*client_side_FIFO?tx_fifo_i?rd_tran_frame_tog"
TNM = "tx_fifo_rd_to_wr";
INST "*client_side_FIFO?tx_fifo_i?rd_retran_frame_tog"
TNM = "tx_fifo_rd_to_wr";
INST "*client_side_FIFO?tx_fifo_i?rd_col_window_pipe_1"
TNM = "tx_fifo_rd_to_wr";
INST "*client_side_FIFO?tx_fifo_i?rd_addr_txfer*"
TNM = "tx_fifo_rd_to_wr";
INST "*client_side_FIFO?tx_fifo_i?rd_txfer_tog"
TNM = "tx_fifo_rd_to_wr";
INST "*client_side_FIFO?tx_fifo_i?wr_frame_in_fifo"
TNM = "tx_fifo_wr_to_rd";

TIMESPEC "TS_tx_fifo_rd_to_wr" = FROM "tx_fifo_rd_to_wr"
TO "<component_name>_gt_clk_client" 8 ns DATAPATHONLY;
TIMESPEC "TS_tx_fifo_wr_to_rd" = FROM "tx_fifo_wr_to_rd"
TO "<component_name>_gt_clk_client" 8 ns DATAPATHONLY;

Reduce clock period to allow for metastability settling time
INST "*client_side_FIFO?tx_fifo_i?wr_tran_frame_tog"
TNM = "tx_metastable";
INST "*client_side_FIFO?tx_fifo_i?wr_rd_addr*"
TNM = "tx_metastable";
INST "*client_side_FIFO?tx_fifo_i?wr_txfer_tog"
TNM = "tx_metastable";
INST "*client_side_FIFO?tx_fifo_i?frame_in_fifo"
TNM = "tx_metastable";
INST "*client_side_FIFO?tx_fifo_i?wr_retran_frame_tog*"
TNM = "tx_metastable";
INST "*client_side_FIFO?tx_fifo_i?wr_col_window_pipe_0"
TNM = "tx_metastable";
TIMESPEC "TS_tx_meta_protect" = FROM "tx_metastable" 5 ns DATAPATHONLY;

Transmit-side client FIFO address bus timing
INST "*client_side_FIFO?tx_fifo_i?rd_addr_txfer*"
TNM = "tx_addr_rd";
INST "*client_side_FIFO?tx_fifo_i?wr_rd_addr*"
TNM = "tx_addr_wr";
TIMESPEC "TS_tx_fifo_addr" = FROM "tx_addr_rd" TO "tx_addr_wr" 10 ns;

LocalLink client FIFO receive-side constraints

Group the clock crossing signals into timing groups
INST "*client_side_FIFO?rx_fifo_i?wr_store_frame_tog"
TNM = "rx_fifo_wr_to_rd";
INST "*client_side_FIFO?rx_fifo_i?rd_addr_gray*"
TNM = "rx_fifo_rd_to_wr";

http://www.xilinx.com

86 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix C: Constraining the Example Design

TIMESPEC "TS_rx_fifo_wr_to_rd" = FROM "rx_fifo_wr_to_rd"
TO "<component_name>_gt_clk_client" 8 ns DATAPATHONLY;
TIMESPEC "TS_rx_fifo_rd_to_wr" = FROM "rx_fifo_rd_to_wr"
TO "<component_name>_gt_clk_client" 8 ns DATAPATHONLY;

Reduce clock period to allow for metastability settling time
INST "*client_side_FIFO?rx_fifo_i?wr_rd_addr_gray_sync*"
TNM = "rx_metastable";
INST "*client_side_FIFO?rx_fifo_i?rd_store_frame_tog"
TNM = "rx_metastable";
TIMESPEC "TS_rx_meta_protect" = FROM "rx_metastable" 5 ns;

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 87
UG545 March 22, 2010

Appendix D

SGMII Capabilities

SGMII Receiver Elastic Buffer
The Ethernet MAC wrapper GUI provides two SGMII Receiver Elastic Buffer options:

• 10/100/1000 Mb/s (clock tolerance compliant with Ethernet specification). Default
setting; provides the implementation using the Receiver Elastic Buffer in FPGA fabric.
This alternative Receiver Elastic Buffer utilizes a single block RAM to create a buffer
twice as large as the one present in the transceiver, subsequently consuming extra
logic resources. However, this default mode provides reliable SGMII operation under
all conditions.

• 10/100/1000 Mb/s (restricted tolerance for clocks) OR 100/1000 Mb/s. Uses the
receiver elastic buffer present in the serial transceivers. This is half the size and can
potentially under- or overflow during SGMII frame reception at 10 Mbps operation.
However, there are logical implementations where this can be proven reliable; if so it
is favored because of its lower logic utilization.

FPGA Fabric Rx Elastic Buffer Requirement
Figure D-1 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. Separate oscillator sources are used for the
FPGA and the external PHY. The Ethernet specification uses clock sources with a tolerance
of 100 parts per million (ppm). In Figure D-1, the clock source for the PHY is slightly faster
than the clock source to the FPGA. For this reason, during frame reception, the receiver
elastic buffer (shown here as implemented in the serial transceiver) starts to fill.

Following frame reception, in the interframe gap period, idles will be removed from the
received data stream to return the Rx Elastic Buffer to half full occupancy; this is performed
by the clock correction circuitry (see the Virtex-6 FPGA GTX Transceiver User Guide).

http://www.xilinx.com

88 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix D: SGMII Capabilities

X-Ref Target - Figure D-1

Analysis

Assuming separate clock sources, each with a tolerance of 100 ppm, the maximum
frequency difference between the two devices can be 200 ppm. It can be shown that this
translates into a full clock period difference every 5000 clock periods.

Relating this to an Ethernet frame, a single byte of difference every 5000 bytes of received
frame data occurs, causing the Rx Elastic Buffer to either fill or empty by an occupancy of
one.

The maximum sized Ethernet frame (non-jumbo) is of size 1522 bytes for a VLAN frame:

• At 1 Gbps operation, this translates into 1522 clock cycles

• At 100 Mbps operation, this translates into 15220 clock cycles (since each byte is
repeated 10 times).

• At 10 Mbps operation, this translates into 152200 clock cycles (since each byte is
repeated 100 times).

Considering the 10 Mbps case, we would need 152200/5000 = 31 FIFO entries in the Elastic
Buffer above and below the half way point to guarantee that the buffer will not under or
overflow during frame reception. This assumes that frame reception begins when the
buffer is exactly half full.

The size of the Rx Elastic Buffer in the serial transceivers is of size 64 entries. However, we
cannot assume that the buffer is exactly half-full at the start of frame reception.
Additionally, the underflow and overflow thresholds are not exact. See the Virtex-6 FPGA
GTX Transceiver User Guide.

Figure D-1: SGMII Implementation: Separate Clock Sources

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

SGMII Link

10 BASE-T
100BASE-T
1000BASE-T

PHY

FPGA

125 MHz -100 ppm 125 MHz + 100ppm

Virtex-6 Embedded
Tri-Mode Ethernet

MAC Wrapper

Serial
Transceiver

Twisted
Copper

Pair

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 89
UG545 March 22, 2010

SGMII Receiver Elastic Buffer

To guarantee reliable SGMII operation at 10 Mbps (non-jumbo frames), the serial
transceiver Elastic Buffer must be bypassed and a larger buffer implemented in the FPGA
fabric. The fabric buffer, provided by the example design, is twice the size and so
nominally provides 64 entries above and below the half full threshold. This has been
proven to cope with standard (non-jumbo) Ethernet frames at all three SGMII speeds.

The Serial Transceiver Rx Elastic Buffer
The Elastic Buffer in the serial transceiver can be used reliably under the following
conditions:

• When 10 Mbps operation is not required. Both 1 Gbps and 100 Mbps operation are
guaranteed.

• When the clocks are closely related (see the following section).

If any uncertainty exists, select the FPGA fabric Rx Elastic Buffer Implementation.

Closely Related Clock Sources

Scenario 1

Figure D-2 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. A common oscillator source is used for both
the FPGA and the external PHY.

If the PHY device sources the receiver SGMII stream synchronously from the shared
oscillator (check PHY data sheet), then the serial transceiver will receive data at exactly the
same rate as that used by the core; the receiver elastic buffer will neither empty nor fill,
having the same frequency clock on either side.

In this situation, the receiver elastic buffer will not under or overflow and the elastic buffer
implementation in the serial transceiver should be used to save logic resources.

X-Ref Target - Figure D-2

Figure D-2: SGMII Implementation: Shared Clock Sources

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

SGMII Link

10 BASE-T
100BASE-T
1000BASE-T

PHY

FPGA

125MHz -100ppm

Virtex-6 Embedded
Tri-Mode Ethernet

MAC Wrapper

Serial
Transceiver

Twisted
Copper

Pair

http://www.xilinx.com

90 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix D: SGMII Capabilities

Scenario 2

Now consider again the case illustrated by Figure D-1. However, this time, assume that the
clock sources used are both 50 ppm. Now the maximum frequency difference between the
two devices is 100 ppm. It can be shown that this translates into a full clock period
difference every 10000 clock periods, resulting in a requirement for 16 FIFO entries above
and below the half-full point. It can be demonstrated that this provides reliable operation
with the serial transceiver Rx Elastic Buffers. Again, see the PHY data sheet to ensure that
the PHY device sources the receiver SGMII stream synchronously to its reference
oscillator.

Jumbo Frame Reception
A jumbo frame is an Ethernet frame that is deliberately larger than the maximum-size
Ethernet frame allowed in the IEEE Std 802.3-2005 specification. Jumbo frames require
special consideration to reliably receive frames. Table D-1 defines the maximum-size
jumbo frames that can be received reliably when using the Receiver Elastic Buffer.

SGMII / 1000BASE-X PCS/PMA Mode Switching
When the Ethernet MAC wrappers are configured for tri-speed operation with the SGMII
physical interface, it is possible to switch between SGMII and 1000BASE-X PCS/PMA
modes of operation without reconfiguring the FPGA. This includes both transitions from
SGMII to 1000BASE-X, and from 1000BASE-X to SGMII.

This is useful when using off-the-shelf PHY devices with the ability to perform both BASE-
X and BASE-T standards, or when a single Virtex®-6 FPGA bitstream may be used with
either a BASE-X or BASE-T PHY device.

Mode switching is performed by writing to the host interface and is explained in detail in
the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

However, the Ethernet MAC wrappers can automate the process if the optional SGMII /
1000BASE-X mode switching block is included. This option is available in the SGMII
Capabilities section of the CORE Generator™ software when all three of the following
selections are made:

• An SGMII physical interface

• Tri-speed operation

• Either the host or DCR interface

Table D-1: Maximum Frame Sizes for Fabric Rx Elastic Buffers (100 ppm Clock
Tolerance)

Standard/Speed Maximum Frame Size

1000BASE-X (1 Gbps only) 280000

SGMII (1 Gbps) 280000

SGMII (100 Mbps) 28000

SGMII (10 Mbps) 2800

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 91
UG545 March 22, 2010

SGMII / 1000BASE-X PCS/PMA Mode Switching

Switching Modes and Speeds
The Ethernet MAC wrappers execute the necessary mode switching commands based on a
single signal, BASE_X_ENABLE, present as an input to the Block- and LocalLink-level
wrappers, and to the top-level example design. When BASE_X_ENABLE is driven to logic
'0', the Ethernet MAC operates according to the SGMII standard. When BASE_X_ENABLE
is driven to logic '1', the Ethernet MAC operates according to the 1000BASE-X standard.

When operating in SGMII mode (BASE_X_ENABLE = 0), switching between 10, 100, and
1000 Mbps is supported as usual. When operating in 1000BASE-X PCS/PMA mode
(BASE_X_ENABLE = 1), only 1000 Mbps is supported. When switching from SGMII at
10/100 Mbps to 1000BASE-X PCS/PMA, the speed is automatically changed to 1000 Mbps.

The BASE_X_ENABLE signal may be driven by logic internal to the FPGA, or by an external
resource, such as a switch or jumper.

Operational Requirements

Dynamic Switching

The Ethernet MAC wrapper must be held in reset when the value of BASE_X_ENABLE is
changed. Dynamic switching during Ethernet MAC operation is not supported and can
result in unknown behavior.

Host Interface Arbitration

The BASE_X_ENABLE signal is translated to the appropriate host interface commands by
the serial mode switching plug-in block. The host interface arbiter manages the
multiplexing of mode switching commands and standard user-initiated host or DCR
commands. The BASE_X_ENABLE signal must be driven during Ethernet MAC operation;
a floating input can result in unknown behavior.

http://www.xilinx.com

92 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix D: SGMII Capabilities

X-Ref Target - Figure D-3

As a result of this multiplexing scheme, the host or DCR bus cannot be used for a short
period of time following a change to BASE_X_ENABLE:

• If BASE_X_ENABLE is logic '0' following deassertion of reset to the Ethernet MAC
wrappers, the host or DCR bus can be used immediately.

• If BASE_X_ENABLE is logic '1' following deassertion of reset to the Ethernet MAC
wrappers, the host or DCR bus cannot be used for an additional 16 HOSTCLK cycles
beyond when the serial transceiver asserts both of its RESETDONE signals.

Runtime modification of BASE_X_ENABLE without the assertion of reset to the Ethernet
MAC wrappers is not allowed.

Auto-Negotiation

In addition to changing the physical interface mode of operation, the serial mode
switching plug-in sets the Auto-Negotiation link timer to the appropriate value for the
new standard in use. When in SGMII mode of operation, the link timer value specified in
the GUI is used. When in 1000BASE-X PCS/PMA mode of operation, the hexadecimal
value 0x13D is used, corresponding to approximately 10 ms.

However, Auto-Negotiation is not automatically restarted following a mode change. The
user is responsible for programming the PCS/PMA registers as appropriate and restarting
Auto-Negotiation.

For more information on SGMII/1000BASE-X PCS/PMA mode switching, including a
more in-depth details on Auto-Negotiation requirements, see "Switching Between SGMII
and 1000BASE-X Standards" in the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User
Guide.

Figure D-3: Host Interface Arbiter and Serial Mode Switching Plug-in

Ethernet MAC Block-level Wrapper

Ethernet MAC Instance-level
Wrapper

Host or DCR Bus Signals

BASE_X_ENABLE

Ethernet MAC

Host Interface

Host
Interface

Arbiter Serial Mode
Switching Plug-in

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 93
UG545 March 22, 2010

Appendix E

Debugging Designs

This appendix defines a step-by-step debugging procedure to assist in the identification
and resolution of any issues that might arise during each phase of the design process. It
contains the following sections:

• “Debug Tools”

• “Simulation Debug”

• “Implementation and Timing Errors”

• “Hardware Debug”

If this appendix does not help to resolve the problem, see “Additional Resources” and
“Technical Support” in Chapter 1 for additional support.

Debug Tools
There are many tools available to debug Ethernet MAC design issues. It is important to
know which tools are useful for debugging various situations. This section references the
following tools:

Example Design
Virtex®-6 FPGA Embedded Tri-Mode Ethernet MAC Wrappers come with a synthesizable
example design complete with functional and post-place and route simulation test
benches. Information on the example design can be found throughout this document.

ChipScope Pro Tool
The ChipScope™ Pro tool inserts logic analyzer, bus analyzer, and virtual I/O cores
directly into your design. The ChipScope Pro tool allows you to set trigger conditions to
capture application and integrated block port signals in hardware. Captured signals can
then be analyzed through the ChipScope Pro Logic Analyzer tool. For detailed information
on the ChipScope Pro tool, visit www.xilinx.com/tools/cspro.htm.

http://www.xilinx.com
http://www.xilinx.com/tools/cspro.htm

94 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix E: Debugging Designs

Available Reference Boards
The ML605 is a Xilinx development board supporting 10/100/1000 Mbps Ethernet. The
ML605 board can be used to prototype designs and establish that the core can
communicate with the system.

Xilinx application note 1144 describes a Virtex-6 Embedded Tri-Mode Ethernet MAC
Hardware Demonstration Platform based on the Ethernet MAC wrapper and targeted to
the ML605. See www.xilinx.com/support/documentation for XAPP 1144 and supporting
files.

Link Analyzers
Link analyzers can be used to generate and analyze traffic for hardware debug and testing.
Common link analyzers include:

• Spirent SmartBits

• IXIA brand 10/100/1000 Ethernet test chassis

• Wireshark (a free packet sniffer software application)

http://www.xilinx.com
http://www.xilinx.com/support/documentation

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 95
UG545 March 22, 2010

Appendix E: Debugging Designs

Simulation Debug
The simulation debug flow for ModelSim follows.

X-Ref Target - Figure E-1

Figure E-1: Simulation Debug Flow Chart

ModelSim
Simulation Debug

Does simulating the TEMAC
Wrapper Example Design give the

expected output?

Do you get errors referring to
failing to access library?

No

No

No

Yes

Do you get errors indicating
"GTX_QUAD" or other elements like

"BUFG" not de ned?

Are you able to transmit and
recieve frames on the client interface?

No

No

The TEMAC Wrapper Example Design
should allow the user to quickly
determine if the simulator is set up
correctly. The TEMAC Wrapper Example
Design simulation will recieve four
frames and transmit back out the valid
frames using loopback on the client
side.

SecureIP models are used to simulate
the TEMAC and serial transceiver. To
use these models, a Verilog
LRM-IEEE 1364-2005 encryption-
compliant simulator is required.

A Verilog license is required to
simulate with the SecureIP models.
If the user design uses VHDL, a
mixed-mode simulation license is
required.

Yes

Need to compile and map the
proper libraries. See "Compiling
Simulation Libraries Section."

Yes

Yes

For verilog simulations add the "-L" switch
with the appropriate library reference to the
vsim command line. For example: -L secureip
or -L unisims_ver. See the Example Design

simulate_mti.do for an example.

See Simulating the TEMAC Wrapper
 Example Design in the TEMAC Wrapper

Getting Stated Guide.

If the libraries are not compiled and
mapped correctly, it will cause errors
such as:
** Error: (vopt-19) Failed to access
 library 'secureip' at "secureip".
No such le or directory.
 (errno = ENOENT)
** Error: ../../example_design/
 emac_block.v(820):
 Library secureip not found.

To model the TEMAC block and serial
transceivers, the SecureIP models are
used. These models must be referenced
during the vsim call. Also, it is necessary
to reference the unisims library.

No

Check that the link status is OK if using
the PCS/PMA and Check that the core is
properly enabled and con gured.

See the following debug sections for more
details.

Yes
If problem is more design speci c, open

a case with Xilinx Technical Support
and include a wlf le dump of the simulation.
For the best results, dump the entire design

hierarchy.

Check for the latest supported
versions of Modelsim in the TEMAC Wrapper Core

 Datasheet. Is this version being used?

Update to this version.

If using VHDL, do you have a
mixed-mode simulation license?

Obtain a mixed-mode
simulation license.

Yes

http://www.xilinx.com

96 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix E: Debugging Designs

Compiling Simulation Libraries
Compile the Xilinx simulation libraries, either by using the Xilinx Simulation Library
Compilation Wizard, or by using the compxlib command line tool.

Xilinx Simulation Library Compilation Wizard

A GUI wizard provided as part of the Xilinx software can be launched to assist in
compiling the simulation libraries by typing compxlib in the command prompt.

Compxlib

A compxlib command line can also be used to compile simulation libraries. This tool is
delivered as part of the Xilinx software. For more information see the ISE® Software
Manuals and specifically the Command Line Tools Reference Guide under the section titled
compxlib.

Assuming the Xilinx and ModelSim environments are set up correctly, this is an example
of compiling the SecureIP and Unisims libraries for Verilog into the current directory.

compxlib -s mti_se -arch virtex6 -l verilog -lib secureip -lib unisims
 -dir ./

There are many other options available for compxlib described in the Command Line Tools
Reference Guide.

Compxlib will produce a modelsim.ini file containing the library mappings. In ModelSim,
to see the current library mappings, type vmap at the prompt. The mappings can be
updated in the ini file or to map a library at the ModelSim prompt type:

vmap [<logical_name>] [<path>]

For example:

vmap unisims_ver C:\my_unisim_lib

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 97
UG545 March 22, 2010

Appendix E: Debugging Designs

Implementation and Timing Errors
The example design provided with the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC
Wrappers comes complete with implementation scripts. For more details on using these
scripts, see Chapter 5, “Detailed Example Design.” If implementation or timing errors are
encountered with the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC, it is
recommended to first try running the example design to see if the failures are seen there. If
the failures do not exist in the example design, then differences between the example
design and the design in which failures are seen can be compared.

Regional Clocking Errors in Map
When implementing the Ethernet MAC with either a GMII or RGMII physical interface,
regional clocking methodologies are used. This means that there are the following
requirements:

1. The receive-side physical interface clock (GMII_RX_CLK for GMII, or RGMII_RXC or
RGMII) must be placed at a clock-capable I/O (CCIO) pin. If this requirement is not
met, an error similar to the following one will be seen during implementation:

ERROR:Place:839 - The component GMII_RX_CLK has been physically constrained to a
location which is an invalid placement for this component.

2. All receive-side physical interface signals must be placed at package pins that
correspond to the same clock region as the receive-side physical interface. If this
requirement is not met, an error similar to the following one will be seen during
implementation:

ERROR:Place:901 - IO Clock Net "gmii_rx_clk_bufio" cannot possibly be routed to
component v6_emac_gmii_locallink_inst/v6_emac_gmii_block_inst/gmii/RXD_TO_MA
C<2>" (placed in clock region "CLOCKREGION_X0Y1"), since it is too far away from source
BUFIO "bufio_rx" (placed in clock region "CLOCKREGION_X1Y1"). The situation may be
caused by user constraints, or the complexity of the design. Constraining the components
related to the regional clock properly may guide the tool to find a solution.

3. An available Embedded Tri-Mode Ethernet MAC block must be present in a clock
region that is reachable by the regionally buffered physical interface clock net. If this
requirement is not met, an error similar to the following one will be seen during
implementation:

ERROR:Place:905 - Components driven by Regional clock net <rx_clk_i> can't be placed and
routed because location constraints are causing the clock region rules to be violated. Regional
Clock net <rx_clk_i> is being driven by BUFR <bufr_rx> locked to site "BUFR_X0Y10"
Because of this location constraint, <rx_clk_i> can only drive clock regions
"CLOCKREGION_X0Y5, CLOCKREGION_X0Y4".

The following components driven by <rx_clk_i> have been locked to sites outside of these clock
regions:
v6_emac_gmii_locallink_inst/v6_emac_gmii_block_inst/v6_emac_gmii_inst/v6_emac
(Locked Site: TEMAC_X0Y0 CLOCKREGION_X1Y2)

For more information on these requirements, see the Virtex-6 FPGA Embedded Tri-Mode
Ethernet MAC User Guide, Appendix A, "Pinout Requirements".

http://www.xilinx.com

98 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix E: Debugging Designs

Timing Failed for GMII/RGMII/MII OFFSET IN Constraint
To satisfy setup and hold requirements for these standards, fixed-mode IODELAYs are
placed on the receive clock, data and control signals when using the GMII, RGMII, or MII
wrapper files. In the example design UCF, the fixed value delays are set based on the
pinout used in the example design. With a different pinout, it may be required to adjust the
fixed DELAY value to still meet the setup and hold requirements. For more details on how
to adjust this delay to meet setup and hold requirements, see Appendix C, “Constraining
the Example Design”.

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The ChipScope tool is a valuable resource
to use in hardware debug and the signal names mentioned in the following individual
sections can be probed using the ChipScope tool for debugging the specific problems.
Many of these common issues can also be applied to debugging design simulations.
Details are provided on:

• “General Checks”

• “Problems with Transmitting and Receiving Frames”

• “Link Bring-up Using 1000BASE-X or SGMII”

• “Problems with the MDIO”

• “Configuring the Ethernet MAC to the Correct Speed”

General Checks
• Ensure that all the timing constraints for the core were properly incorporated from the

example design delivered from the CORE Generator™ software and are met during
place and route.

• Does it work in post-place and route timing simulation? If problems are seen in
hardware but not in timing simulation, this could indicate a PCB issue.

• Ensure that all clock sources are active and clean. If using MMCMs in the design,
ensure that all MMCMs have obtained lock by monitoring the LOCKED port.

Problems with Transmitting and Receiving Frames
Problems with data reception or transmission can be caused by a wide range of factors. The
following list contains common causes to check for:

• Verify that the whole TEMAC block is not being held in reset. The whole block will be
held in reset if the main reset input is asserted or if CLIENTTEMACDCMLOCKED is
held low.

• Verify that both the receiver and transmitter are enabled and not being held in reset.
For more information, see “Receiver and Transmitter Configuration Words” in the
Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide, Chapter 4, "Host/DCR
Bus Interfaces".

• Verify that the Ethernet MAC is configured correctly and that the latest cores from the
CORE Generator software or EDK are being used. Try running a simulation to check if
the failure is hardware-specific.

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 99
UG545 March 22, 2010

Appendix E: Debugging Designs

• If using GMII or RGMII, check if setup and hold requirements are met using IDELAY
components. For more information, see the section on debugging “Implementation
and Timing Errors”.

• Verify that the link is up between the PHY and its link partner. If using 1000BASE-X
or SGMII configurations of the Ethernet MAC, see the “Link Bring-up Using
1000BASE-X or SGMII” section for more details.

• If using an external PHY, is data received correctly if the PHY is put in loopback? If so,
the problem may be on the link between the PHY and its link partner.

• Check if the address filter is enabled. If frames are not being received correctly, try
disabling the address filter to ensure that the frame is not being dropped by the
address filter. The output signals EMACCLIENTRXDVLD and
EMACCLIENTRXFRAMEDROP can also be monitored to check if frames are
dropped due to the address filter. For more information, see the "Address Filtering"
section in the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

• Verify that the Ethernet MAC has been configured to operate at the correct speed
negotiated with the PHY. For more information, see the “Configuring the Ethernet
MAC to the Correct Speed” section.

• Are received frames being dropped by client logic because
EMACCLIENTRXBADFRAME is asserted? See "Frame Reception with Errors," in the
Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide for details on why frames
are marked bad by the Ethernet MAC. The ChipScope tool can be inserted to get more
details on the bad frames.

• Add the ChipScope tool to the design to look at the RX and TX client and physical
interface data signals, control signals and statistics vectors.

Link Bring-up Using 1000BASE-X or SGMII

Problems with Data Reception or Transmission

When no data is being received or transmitted:

• Ensure that a valid link has been established between the core and its link partner,
either by auto-negotiation or manual configuration.

♦ EMACPHYSYNCACQSTATUS should be high to indicate that the
SYNC_ACQUIRED state from the IEEE Std 802.3-2005, clause 36 state machine
has been achieved.

♦ If auto-negotiation is enabled, then PCS Status register bit 1.5 should be read to
verify that auto-negotiation has completed. The auto-negotiation interrupt output
can also be used to verify that auto-negotiation has completed.

If no link has been established, see the topics discussed in the next section.

• “Problems with Auto-Negotiation”

• “Problems in Obtaining a Link (Auto-Negotiation Disabled)”

http://www.xilinx.com

100 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix E: Debugging Designs

Note: Transmission through the core is not allowed unless a link has been established. This
behavior can be overridden by setting the Unidirectional Enable attribute.

• Ensure that the Isolate state has been disabled.

By default, the Isolate state is set by the attribute EMAC_PHYISOLATE. The Isolate state
can be changed by writing to PCS Control Register bit 0.10 after power-up. If the Isolate
state is enabled, this will result in no data transferred across the internal GMII interface
between the PCS/PMA and MAC. See "Physical Interface Attributes" Table 2-18 and
Control Register Table 5-3 and Table 5-15 in the Virtex-6 FPGA Embedded Tri-Mode Ethernet
MAC User Guide for more information.

If data is being transmitted and received between the core and its link partner, but with a
high rate of packet loss, see “Problems with a High Bit Error Rate.”

Problems with Auto-Negotiation

Determine whether auto-negotiation has completed successfully by doing one of the
following.

• Poll the auto-negotiation completion bit 1.5 in "Status Register (Register 1)"

• Use the auto-negotiation interrupt port of the core (see "Using the Auto-Negotiation
Interrupt" in the Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide)

If auto-negotiation is not completing:

1. Ensure that auto-negotiation is enabled in both the core and in the link partner (the
device or test equipment connected to the core). Auto-negotiation cannot complete
successfully unless both devices are configured to perform auto-negotiation. The auto-
negotiation procedure requires that the auto-negotiation handshaking protocol
between the core and its link partner, which lasts for several link timer periods, occurs
without a bit error. A detected bit error will cause auto-negotiation to restart.
Therefore, a link with an exceptionally high bit error rate may not be capable of
completing auto-negotiation, or may lead to a long auto-negotiation period caused by
the numerous restarts. If this appears to be the case, try the next step and see
“Problems with a High Bit Error Rate.”

2. Try disabling auto-negotiation in both the core and the link partner and see if both
devices report a valid link and are able to pass traffic. If they do, it proves that the core
and link partner are otherwise configured correctly. If they do not pass traffic, see the
next section, “Problems in Obtaining a Link (Auto-Negotiation Disabled).”

Problems in Obtaining a Link (Auto-Negotiation Disabled)

Determine whether the device has successfully obtained a link with its link partner by
doing the following:

• Monitoring the state of EMACPHYSYNCACQSTATUS. If this is logic '1,' then
synchronization, and therefore a link, has been established.

• Reading bit 1.2, Link Status, in "Status Register (Register 1)" when using the MDIO
management interface.

If the devices have failed to form a link then do the following:

• Ensure that auto-negotiation is disabled in both the core and in the link partner (the
device or test equipment connected to the core).

• Monitor the state of the PHYEMACSIGNALDET input to the core. This should either
be:

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 101
UG545 March 22, 2010

Appendix E: Debugging Designs

♦ connected to an optical module to detect the presence of light. Logic '1' indicates
that the optical module is correctly detecting light; logic '0' indicates a fault.
Therefore, ensure that this is driven with the correct polarity, or

♦ tied to logic '1' (if not connected to an optical module).

Note: When PHYEMACSIGNALDET is set to logic '0,' this forces the receiver synchronization state
machine of the core to remain in the loss of sync state.

• See the section, “Problems with a High Bit Error Rate.”

Serial Transceiver-Specific

• Ensure that the polarities of the TXN/TXP and RXN/RXP lines are not reversed. If
they are, this can be easily fixed by using the TXPOLARITY and RXPOLARITY ports
of the serial transceiver.

• Check that the serial transceiver is not being held in reset by monitoring the
mgt_tx_reset and mgt_rx_reset signals between the core and the serial
transceiver.

• Monitor the RXBUFSTATUS signal when auto-negotiation is disabled. If this is being
asserted, the elastic buffer in the receiver path of the serial transceiver is either
underflowing or overflowing. This indicates a clock correction problem caused by
differences between the transmitting and receiving ends. Check all clock management
circuitry and clock frequencies applied to the core and to the serial transceiver.

Note: It is normal to see buffer errors during auto-negotiation since clock correction sequences are
not sent during auto-negotiation. The PCS/PMA logic will mask buffer errors during auto-negotiation
and reset the RX buffer so that it recovers.

Problems with a High Bit Error Rate

Symptoms

The severity of a high-bit error rate can vary and cause any of the following symptoms:

• Failure to complete auto-negotiation when auto-negotiation is enabled.

• Failure to obtain a link when auto-negotiation is disabled in both the core and the link
partner.

• High proportion of lost packets when passed between two connected devices that are
capable of obtaining a link through auto-negotiation or otherwise. This can usually be
accurately measured if the Ethernet MAC is attached to the Ethernet Statistics core.

Note: All bit errors detected by the PCS/PMA logic during frame reception will show up as frame
check sequence (FCS) errors in the Ethernet MAC statistics vector.

Debugging

• Compare the problem across several devices or PCBs to ensure that the problem is not
a one-off case.

• Try using an alternative link partner or test equipment and then compare results.

• Try putting the core into loopback (both by placing the core into internal loopback,
and by looping back the optical cable) and compare the behavior. The core should
always be capable of auto-negotiating with itself and looping back its transmitter to
receiver so direct comparisons can be made. If the core exhibits correct operation
when placed into internal loopback, but not when loopback is performed via an
optical cable, this may indicate a faulty optical module or a PCB problem.

• Try swapping the optical module on an erroneous device and repeat the tests.

http://www.xilinx.com

102 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix E: Debugging Designs

Serial Transceiver-Specific Checks

Perform these additional checks when using a serial transceiver:

• Directly monitor the following ports of the serial transceiver by attaching error
counters to them, or by triggering on them using the ChipScope tool or an external
logic analyzer.

RXDISPERR
RXNOTINTABLE

These signals should not be asserted over the duration of a few seconds, minutes or
even hours. If they are frequently asserted, it may indicate a problem with the serial
transceiver. Consult UG366, Virtex-6 FPGA GTX Transceivers for debugging serial
transceiver issues.

• Place the serial transceiver into parallel or serial loopback.

♦ If correct operation is seen in serial loopback, but not when loopback is performed
via an optical cable, it may indicate a faulty optical module or issues on the PCB
between the serial transceiver pins and the optical module.

♦ If the core exhibits correct operation in serial transceiver parallel loopback but not
in serial loopback, this may indicate a serial transceiver problem. See UG366,
Virtex-6 FPGA GTX Transceivers for more details.

• Minor bit error rates may be solved by adjusting the transmitter TXPREEMPHASIS,
TXDIFFCTRL and TERMINATION_CTRL attributes of the serial transceiver.

Problems with the MDIO
See "MDIO Implementation in the Ethernet MAC" in the Virtex-6 FPGA Embedded Tri-Mode
Ethernet MAC User Guide for detailed information about performing MDIO transactions.

Things to check for:

• Ensure that the MDIO is driven properly and correctly terminated. Even if only using
the internal MDIO interface correct termination is needed to ensure the MDIO
interface will operate correctly.

• Check that the mdc clock is running and that the frequency is 2.5 MHz or less. If using
the host interface to access the MDIO registers, the MDIO interface will not work until
the clock frequency is set with CLOCK_DIVIDE. The MDIO clock with a maximum
frequency of 2.5 MHz is derived from the host clock.

• Ensure that the TEMAC and PHY are not held in reset. Be sure to check the polarity of
the reset to your external PHY. Many PHYs have an active-low reset.

• Read from a configuration register that does not have all 0s as a default. If all 0s are
read back, the read was unsuccessful.

• If using the host interface to access the MDIO registers, check if the problem is just
with the MDIO interface or if there are also problems reading and writing MAC
registers with the host interface.

• If using the host interface to access the MDIO registers, make sure the HOSTMIIMSEL
on the host interface is held until a read is complete.

• If accessing MDIO registers for the internal PCS/PMA, check that the PHYAD field
placed into the MDIO frame matches the value placed on the PHYEMACPHYAD[4:0]
port of the Ethernet MAC.

http://www.xilinx.com

Virtex-6 FPGA Embedded TEMAC Wrapper v1.4 www.xilinx.com 103
UG545 March 22, 2010

Appendix E: Debugging Designs

• If an external PHY is being used, check the PHY address. PHY address 0 is a global
address for writing to all PHYs on the MDIO bus at the same time. If you have more
than one PHY on the MDIO bus, you will have contention reading address 0. Unless
the attribute EMAC_MDIO_IGNORE_PHYADZERO is enabled the internal
PCS/PMA will respond to address 0 if it is not held in reset. This is the case even if the
TEMAC is not configured for a 1000BASE-X or SGMII interface. For more information
on the EMAC_MDIO_IGNORE_PHYADZERO attribute see Table 2-18 of the Virtex-6
FPGA Embedded Tri-Mode Ethernet MAC User Guide.

• Has a simulation been run? Verify in simulation and/or a ChipScope tool capture that
the waveform is correct for accessing the host interface for a MDIO read/write. The
Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC Wrappers example design test
bench generated with 1000BASE-X or SGMII configurations performs MDIO writes to
disable auto-negotiation.

Configuring the Ethernet MAC to the Correct Speed
When operating in tri-mode, the PHY will negotiate the highest speed available with its
link partner. The speed of the Ethernet MAC can be set by the user client application after
auto-negotiation completes by doing the following:

1. The user application can either monitor auto-negotiation interrupt from the external
PHY or internal PCS/PMA, or poll for auto-negotiation, register bit 1.5, to complete
via MDIO.

2. Once auto-negotiation completes the user application can read the MDIO auto-
negotiation registers to obtain the negotiated speed.

3. The user application will then need to set this speed in the Ethernet MAC
configuration registers via the host interface.

If auto-negotiation is disabled, the Ethernet MAC, PHY, and the PHY's link partner must
all be set to the same speed.

http://www.xilinx.com

104 www.xilinx.com Virtex-6 FPGA Embedded TEMAC Wrapper v1.4
UG545 March 22, 2010

Appendix E: Debugging Designs

http://www.xilinx.com

	Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC Wrapper v1.4
	Revision History
	Table of Contents
	Schedule of Figures
	About This Guide
	Guide Contents
	Conventions
	Typographical
	Online Document

	Introduction
	System Requirements
	About the Ethernet MAC Wrapper Core
	Designs Using Serial Transceivers

	Recommended Design Experience
	Additional Resources
	Technical Support
	Feedback
	Ethernet MAC Wrapper
	Document

	Licensing the Core
	Before you Begin
	License Options
	Obtaining Your Full License Key
	Installing Your License File

	Quick Start Example Design
	Overview
	Generating the Ethernet MAC Wrapper
	Implementing the Example Design
	Running the Simulation
	Functional Simulation
	Timing Simulation

	What’s Next?

	Customizing the Core
	Ethernet MAC Wrapper Screens
	Interface Configuration Options: Screen 1
	Transmitter and Receiver Configuration: Screen 2
	MDIO Configuration: Screen 3

	Detailed Example Design
	Directory Structure and File Descriptions
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example_design
	<component name>/example_design/client
	<component_name>/example_design/client/fifo
	<component_name>/example_design/physical
	<component name>/implement
	implement/results
	<component name>/simulation
	simulation/functional
	simulation/timing

	Implementation and Test Scripts
	Setting up for Simulation
	Virtex-6 Device Requirements
	Implementation Scripts for Timing Simulation
	Test Scripts For Timing Simulation
	Test Scripts For Functional Simulation

	Example Design
	HDL Example Design
	10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO
	Address Swap Module
	Physical Interface

	Demonstration Test Bench
	Test Bench Functionality
	Changing the Test Bench

	Using the Client Side FIFO
	Overview of LocalLink Interface
	Receive FIFO Operation
	LocalLink Interface

	Transmit FIFO Operation
	LocalLink Interface

	Clock Requirements
	User Interface Data Width Conversion

	Ethernet MAC Clocking
	Single-Speed Clocking
	1000BASE-X PCS/PMA and SGMII
	1000BASE-X PCS/PMA with 16-bit Client Interface
	GMII/RGMII at 1000 Mbps

	Multi-Speed Clocking
	SGMII at Multiple Speeds
	GMII/MII/RGMII at Multiple Speeds
	GMII/MII at Multiple Speeds with Clock Enable
	RGMII at Multiple Speeds with Clock Enable

	Constraining the Example Design
	Basic Constraints
	Clock Constraints
	Clock Constraints for MII Configurations
	Clock Constraints for GMII Configurations
	Clock Constraints for RGMII Configurations
	Clock Constraints for 1000BASE-X PCS/PMA Configurations
	Clock Constraints for SGMII Configurations
	Clock Constraints for the Host Interface

	Physical Interface Constraints
	Physical Interface Constraints for MII Configurations
	Physical Interface Constraints for GMII Configurations
	Physical Interface Constraints for RGMII Configurations
	Physical Interface Constraints for 1000BASE-X PCS/PMA Configurations
	Physical Interface Constraints for SGMII Configurations

	LocalLink FIFO Constraints

	SGMII Capabilities
	SGMII Receiver Elastic Buffer
	FPGA Fabric Rx Elastic Buffer Requirement
	The Serial Transceiver Rx Elastic Buffer
	Jumbo Frame Reception

	SGMII / 1000BASE-X PCS/PMA Mode Switching
	Switching Modes and Speeds
	Operational Requirements

	Debugging Designs
	Debug Tools
	Example Design
	ChipScope Pro Tool
	Available Reference Boards
	Link Analyzers

	Simulation Debug
	Compiling Simulation Libraries

	Implementation and Timing Errors
	Regional Clocking Errors in Map
	Timing Failed for GMII/RGMII/MII OFFSET IN Constraint

	Hardware Debug
	General Checks
	Problems with Transmitting and Receiving Frames
	Link Bring-up Using 1000BASE-X or SGMII
	Problems with the MDIO
	Configuring the Ethernet MAC to the Correct Speed

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

