Recasting a problem in Fourier space

Amplitude as a function of time for plucked guitar:

Same information is contained in amplitude of *frequencies*

Energy by adding up frequencies/wavelengths

Figure 1(a) (Amplitude set frequency). Trumpet with Harmon mule; 95.5 dB at Aco 7016 microphone 4 feet away. Microphone aimed at bell, which was angled down about 20 degrees. Upper Trace: Trumpet + Background, corrected to 70 kHz (see text). Lower trace: Background alone.

 Describe energy by where particle is and how fast it is moving or by adding up energy in each wavelength given the distribution of wavelengths

2D Fourier transforms of images

- Single-particle radial wf $\psi(r)$
- Expand in harmonic oscillator wfs:

$$\psi_{N_{\max}}(r) = \sum_{\alpha=0}^{N_{\max}} c_{\alpha} \phi_{\alpha}(r)$$

ullet Find c_lpha s by diagonalizing $\widehat{H}\Psi=E\Psi$

 $N_{\text{max}} = 0, E_0 = +5.23$

10

- Single-particle radial wf $\psi(r)$
- Expand in harmonic oscillator wfs:

$$\psi_{N_{\max}}(r) = \sum_{\alpha=0}^{N_{\max}} c_{\alpha} \phi_{\alpha}(r)$$

ullet Find c_{lpha} s by diagonalizing $\widehat{H}\Psi=E\Psi$

- Single-particle radial wf $\psi(r)$
- Expand in harmonic oscillator wfs:

$$\psi_{N_{\max}}(r) = \sum_{\alpha=0}^{N_{\max}} c_{\alpha} \phi_{\alpha}(r)$$

• Find c_{α} s by diagonalizing $\widehat{H}\Psi = E\Psi$

10

0.5

1.5

2.0

2.5

- Single-particle radial wf $\psi(r)$
- Expand in harmonic oscillator wfs:

$$\psi_{N_{\max}}(r) = \sum_{\alpha=0}^{N_{\max}} c_{\alpha} \phi_{\alpha}(r)$$

• Find c_{α} s by diagonalizing $\widehat{H}\Psi=E\Psi$

- Single-particle radial wf $\psi(r)$
- Expand in harmonic oscillator wfs:

$$\psi_{\mathsf{N}_{\mathrm{max}}}(r) = \sum_{\alpha=0}^{\mathsf{N}_{\mathrm{max}}} c_{\alpha} \phi_{\alpha}(r)$$

- Find c_{α} s by diagonalizing $\widehat{H}\Psi = E\Psi$
- Extend to many-body system

 $N_{\rm max} = 8$. $E_8 = -1.43$