Differential equation solving

Activities 7 Follow-ups

Activities 8 Stuff
Solving differential equations step-by-step

- Builds on numerical derivatives

\[\frac{dx}{dt} = f(x, t) \quad \text{e.g.,} \quad \frac{dx}{dt} = -ax \quad \text{or} \quad \frac{dx}{dt} = -bt \quad \text{or} \quad \ldots \]

- Instruction on how to change \(x \) from one \(t \) value to a nearby one (i.e., \(t + \Delta t = t + h \))

- Goal: Given \(x(t = t_0) \), find \(x(t = t_f) \)

- Plan: the diff. eq. tells us how to take one step at a time

\[\implies \text{find } x(t_0 + h), \text{ then } x(t_0 + 2h), \text{ then } x(t_0 + 3h) \text{ until } x(t_f) \]

\[
x(t_0 + h) = x(t_0) + h \left. \frac{dx}{dt} \right|_{t=t_0} + \mathcal{O}(h^2) \quad \text{from Taylor expansion}
\]

\[
= x(t_0) + hf(x(t_0), t_0) + \mathcal{O}(h^2)
\]

- How to do better?

- Explore errors, other strategies, how to pick \(h \), etc.
- Some tricky parts: look for implementation errors if you get unexpected results
The differential equation does not have $y(t = 0)$ on the right side.

The approximate solution crosses the exact sometimes. What happens to the error?
You should not interpret the slope as the diff. eq. error? Why not?

How should you look for the global approximation error here?

What is the local vs. global error? What are the dips from?
Activities 7: Implementation of coupled equations

- $y[0]$ is not y at time $t = 0$: it is the zeroth component of a vector
- Consider Newton’s Second Law:
 \[
 \frac{d^2 x}{dt^2} = \frac{F(x, v, t)}{M},
 \]
 re-express as vector differential equation:
 \[
 \frac{dy}{dt} = f \quad \text{where} \quad y = \begin{pmatrix} y^{(0)} \\ y^{(1)} \end{pmatrix} \quad \text{and} \quad f = \begin{pmatrix} y^{(1)}(t) \\ \frac{1}{M} F(y, t) \end{pmatrix}
 \]
 if we make the definitions
 \[
 y^{(0)}(t) \equiv x(t) \quad \text{and} \quad y^{(1)}(t) \equiv v = \frac{dx}{dt} = \frac{dy^{(0)}}{dt}.
 \]
- In the code, at each t
 \[
 y^{(0)}(t) \rightarrow y[0] \quad \text{and} \quad y^{(1)}(t) \rightarrow y[1]
 \]
- Euler increment from t to $t + h$:
 \[
 y[i] += h * f (t, y, i, params_ptr);
 \]
Activities 7: Other things to look for

- What step size h to use? See the Activities 7 notes for a discussion of how to make it adaptive (changes as you go to keep the error fixed).
 - Conserved quantities should be constant with time! Are they?
 - Remember to look at the relative error, not the full value

- Period vs. amplitude: for a harmonic oscillator they are independent. But not for other potentials!
 - Energy diagrams like those used for central potentials can help you understand the observed relation (see next slide)

- When doing damping: make sure phase space plots are reproduced (see handout)
 - With increasing time, does the phase space trajectory go clockwise, counter-clockwise, or both?
Activities 7: Other things to look for

- Where is the mass moving fastest and where slowest for each of the potential energies shown?
- To increase the amplitude, you need to increase the energy. What does this do to the speed?
- By how much does the amplitude increase in each case?
- Is the round-trip time (period) greater, smaller, the same?
Activities 8 Stuff

- Damped, driven harmonic oscillator

\[\ddot{x} + \gamma \dot{x} + \omega_0^2 x = f(t) \quad \dot{x} \equiv \frac{dx}{dt}, \quad \ddot{x} \equiv \frac{d^2 x}{dt^2}\]

- *linear* equation \(\implies\) only single powers of \(\ddot{x}, \dot{x}, x\)

\[\implies\] important for superposition:

\[x_{\text{total}}(t) = x_{\text{homogeneous}}(t) + x_{\text{particular}}(t)\]

- \(x_{\text{homogeneous}}(t)\) will always be damped \(\implies\) transient!
- particular solution will have \(x \propto e^{i\omega_{\text{ext}} t}\)

\[\implies (-\omega_{\text{ext}}^2 + i\omega_{\text{ext}} \gamma + \omega_0^2) e^{-i\omega_{\text{ext}} t} = A e^{-i\omega_{\text{ext}} t}\]

- so the driving frequency \(\omega_{\text{ext}}\) *is* the frequency \(\text{in the linear domain}\) \(\implies\) green dots are on top of each other
- What if nonlinear? More interesting possibilities!
Chaos

- Characteristics of chaos (see Activities 8 notes)
 - past behavior not repeated (not periodic)
 - deterministic but not predictable, because uncertainty (or imprecision) in initial conditions grows exponentially in time
 - system has distributed power spectrum (see Mathematica notebooks)

- Necessary conditions for chaos
 - ≥ 3 independent variables and the equations have nonlinear terms coupling
 - Three equations for the pendulum (with $\phi = \omega_{\text{ext}} t$)

$$\begin{align*}
\frac{d\theta}{dt} &= \omega \\
\frac{d\omega}{dt} &= -\alpha \omega - \omega_0^2 \sin \theta - f_{\text{ext}} \cos \phi \\
\frac{d\phi}{dt} &= \omega_{\text{ext}}
\end{align*}$$

- Activities 10: Mathematica notebook pendulum.nb
 - gives results for Activities 8 “Looking for Chaos”
 - power spectrum: what frequencies are in the $\theta(t)$ plot?
GslHamiltonian class: Sample usage

// Create the Hamiltonian object called my_hamiltonian
Hamiltonian my_hamiltonian(dimension);

// Load the Hamiltonian matrix pointed to by Hmat_ptr
for (int i = 1; i <= dimension; i++)
{
 for (int j = 1; j <= dimension; j++)
 {
 ho_parameters.i = i-1;
 ho_parameters.j = j-1;
 // set the i,j element to Hij
 my_hamiltonian.set_element(i,j,Hij(ho_parameters));
 }
}

// Find eigenvalues and eigenvectors in ascending order
my_hamiltonian.find_eigenstuff();

// Get the first eigenvalue [i=1]
double eigenvalue = my_hamiltonian.get_eigenvalue(1);
GslHamiltonian class header

```cpp
#include <gsl/gsl_eigen.h>  // include the GSL header file
class Hamiltonian
{
  public:
    Hamiltonian (const int dim);  // constructor [when declared]
    ~Hamiltonian ();  // destructor [when destroyed or at end]

    // accessor functions
    void set_element(const int i, const int j, double value);
    void find_eigenstuff();
    double get_eigenvalue(const int i);
    double get_eigenvector(const int i, const int j);
  
  private:
    int dimension;  // the matrix dimension
    gsl_matrix *Hmat_ptr;  // gsl matrix with Hamiltonian
    gsl_vector *Eigval_ptr;  // gsl vector with eigenvalues
    gsl_matrix *Eigvec_ptr;  // gsl matrix with eigenvectors
    gsl_eigen_symmv_workspace *worksp;  // the workspace for gsl
    gsl_vector *eigenvector_ptr;  // one of the eigenvectors
};
```
GslHamiltonian class constructor

// Constructor for Hamiltonian (same name as class!)
Hamiltonian::Hamiltonian (const int dim)
{
 dimension = dim; // dimension is a private class variable

 // Allocate space for the vectors, matrices, and workspace
 // Hamiltonian
 Hmat_ptr = gsl_matrix_alloc (dimension, dimension);

 // eigenvalue vector
 Eigval_ptr = gsl_vector_alloc (dimension);
 // eigenvector matrix
 Eigvec_ptr = gsl_matrix_alloc (dimension, dimension);
 // one eigenvector
 eigenvector_ptr = gsl_vector_alloc (dimension);

 // workspace
 worksp = gsl_eigen_symmv_alloc (dimension);
}

GslHamiltonian class destructor and one method

Hamiltonian::~Hamiltonian () // Destructor for Hamiltonian
{
 // free the space used by the vectors, matrices, workspace
 gsl_matrix_free (Eigvec_ptr);
 gsl_vector_free (Eigval_ptr);
 gsl_matrix_free (Hmat_ptr);
 gsl_vector_free (eigenvector_ptr);
 gsl_eigen_symmv_free (worksp);
}

// Set an element [Note the use of "const" here!]
void Hamiltonian::set_element(const int i, const int j, const double value)
{
 // The i,j element of the matrix is stored as the
 // i-1,j-1 element of the GSL matrix
 gsl_matrix_set (Hmat_ptr, i-1, j-1, value);
}
GslHamiltonian class other methods

```cpp
void Hamiltonian::find_eigenstuff()
{
    // Find the eigenvalues and eigenvectors of the real, symmetric
    // matrix pointed to by Hmat_ptr. [other comments suppressed]
    gsl_eigen_symmv (Hmat_ptr, Eigval_ptr, Eigvec_ptr, worksp);

    // Sort the eigenvalues and eigenvectors in ascending order
    gsl_eigen_symmv_sort (Eigval_ptr, Eigvec_ptr,
                          GSL_EIGEN_SORT_VAL_ASC);
}

double Hamiltonian::get_eigenvalue(int i) // i'th eigenvalue
{
    return gsl_vector_get (Eigval_ptr, i-1);
}

double Hamiltonian::get_eigenvector(int i, int j)
{
    gsl_matrix_get_col (eigenvector_ptr, Eigvec_ptr, i-1);
    return gsl_vector_get (eigenvector_ptr, j-1);
}
```
How about a Potential class? What features would you like?

- Define different potentials by name
- Allow for changing parameters
- Be able to get the value at radius r

```cpp
// Create a Potential object
V0 = -30.; R_width = 3.; // depth and width
Potential my_square_well("Square well", V0, R_width);

// Create another Potential object (Z*e*e strength)
Potential my_coulomb_potential("Coulomb", Ze_sq)

// Evaluate the potentials
r = 2.;
V1 = my_square_well.evaluate(r);
V2 = my_coulomb_potential.evaluate(r);

// Change the square well width
R_width = 4.;
my_square_well.set_width(R_width);
```