Delta function property follow-ups: (open dirac_delta.nb)

What if there is a double (or higher) root of \(g(x) \)?

Then \(\int g(x) f(x) \, dx = \sum_{i=1}^{n} \frac{f(x_i)}{|g'(x_i)|} \) does not apply.

Quick check for class:

What is \(\int_{-\infty}^{\infty} f(x) \delta(x^2-9) \, dx \)?

\(g(x) = x^2 - 9 \Rightarrow x_0 = 3 \)

\(\Rightarrow \frac{f(3)}{6} + \frac{f(-3)}{6} = \frac{1}{6} \delta(x+3) + \frac{1}{6} \delta(x-3) \)

What is \(\int_{-\infty}^{\infty} f(x) \delta(x^2+9) \, dx \)?

\(\cos 0 \) \(\Rightarrow \) Only real roots matter here!

Can we do a Dirac delta function in Mathematica?

\(\text{Yes}, \ \delta(x) \Rightarrow \text{DiracDelta}[x] \)

Demonstrate sifting property on \(\delta(x-a) \)

Try \(\text{DiracDelta}[x^2-9] \) // \(\text{FunctionExpand} \) \(+ \) \(\text{DiracDelta}[-3+x] \) \(+ \) \(\text{DiracDelta}[3+x] \)

Predict \(\text{DiracDelta}[x^2+9] \) // \(\text{FunctionExpand} \)

\(\text{Ans: 0} \)

Try an Integrate with \(\text{DiracDelta}[x] \) to show sifting function.

Try doing a double root \(\text{Leg, } \delta(x^2) \) or just \(\delta(x^2) \)

Analytically in Mathematica (fails) then numerically (blows up)

Use \(\lim_{a \to \pm \infty} \int_{-\infty}^{\infty} f(x) \delta(x-a) \, dx = f(a) \)

Can you write this as a delta sequence? \(\text{Ex. 1/n} \)?

\(\Rightarrow \int_{-\infty}^{\infty} f(3x) \delta(x-a) \, dx = \lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{1}{n} \delta(x-a) \, dx = \frac{1}{n} f(3a) \)

\(\Rightarrow f(0) \int_{-\infty}^{\infty} du = 0 \)
Comments on P5 problem 2: delta sequences

Part a. We can write \(\phi_n(x) \) two ways:

\[
\phi_n(x) = \frac{1}{\pi} \frac{4}{1 + 4x^2} = \frac{1}{4\pi} \frac{1}{x^2 + 1/4}
\]

Which form do you think will be most useful for doing a contour integral and taking \(n \to \infty \)? (And why?)

The general idea is:

\[
\lim_{n \to \infty} \left[\int dx \phi_n(x) f(x) \right] = \lim_{n \to \infty} \left[\oint dz \phi_n(z) f(z) \right]
\]

For a suitable contour. Do we close \(\infty \) (or something else?)

Plan: assume \(f(z) \) is analytic first and then relax that assumption as much as possible.

Does \(\phi_n(z) = \frac{1}{\pi} \frac{1}{z^2 + 1/4} \) case which half-plane is closed in?

- No, since \(1/z \), either way is equally good to make \(\phi \) integral over \(C \) vanish if \(f(z) \) doesn't blow up.

- If \(f(z) \) has a \(e^{i\alpha z} \) factor, close according to phase sign.

- Check that \(\phi_n \) answer doesn't depend on sign.

- What other limitations are on \(f(z) \) as \(z \to \infty \)? (Cauchy's lemma, for example).

When you have your first result assuming \(f(z) \) analytic, then ask: what if \(f(z) \) has a pole in the upper half plane and \(\mu \) close there? Does it matter? (What will \(\mu \) weighting of the pole be as \(n \to \infty \)?)
Part b) Now we apply contour integration again but with

\[f_n(z) = \frac{1 - \cos nz}{\pi z^2} \]

Does \(f_n(z) \) have a simple or double pole?
- Be careful: check for Laurent series near \(z = 0 \)
- Expand numerator in Taylor series and look for non-zero \(1/2 \) coefficient in \(f_n(z) \) expansion.

- Can we close \(\oint f_n(z) \, dz \) in the upper half plane? lower half plane?
- How can we rewrite \(1 - \cos nz \)?
 - Real part of exponential
 - The exponentials

- If we introduce a pole (or poles) as intermediate steps, we don't want to include that contribution in the integral \(\Rightarrow \) principal value

 \[\alpha, \beta \]

 Omit this part and take \(\epsilon = \delta^+ \)

- Evaluate principal value as in past examples, problems.
Fourier representations:

\[S(x) = \frac{1}{2L} \sum_{m=-\infty}^{\infty} C_m e^{im\pi x/L} \quad \text{for} \quad -L < x < L \]

Key feature: all of the \(C_m \) coefficients are the same constant!

\[\Rightarrow \text{every harmonic contributes equally.} \]

Note that this sum is quite ill-defined, but we don't intend to use it in this form, but in an integral.

Leu has an extended discussion of how to make this well-defined, but we won't consider this now.

Where does this come from?

On \(-L < x < L\), use the Fourier series of a delta sequence:

\[\delta_n(x) = \frac{1}{2L} \sum_{m=-\infty}^{\infty} C_m e^{im\pi x/L} \]

Plan: find \(C_m \) for given \(\{\delta_n\} \) and then take \(n \to \infty \Rightarrow \sum_{m=-\infty}^{\infty} C_m \delta_n \to \delta \)

Try this out in Mathematica with explicit example and also build \(S(x) \) directly. \Rightarrow \text{dirac_delta.nb}

Check the shifting property (in the limit \(n \to \infty \)):

\[\int S(x) \delta_n(x) \, dx = \int \frac{1}{2L} \sum_{m=-\infty}^{\infty} C_m e^{im\pi x/L} \delta_n(x) \, dx \]

\[= \frac{1}{2L} \sum_{m=-\infty}^{\infty} \int C_m e^{im\pi x/L} \delta_n(x) \, dx \]

But if \(\delta_n(x) = \sum_{m=-\infty}^{\infty} C_m e^{im\pi x/L} \), what coefficient is projected out? \(\text{Ans: } C_m \)

\[\int S(x) \delta_n(x) = \sum_{m=-\infty}^{\infty} C_m = \sum_{m=-\infty}^{\infty} C_m = f(0) \]

\[\sum_{m=-\infty}^{\infty} C_m e^{im\pi x/L} \]

\[\sum_{m=-\infty}^{\infty} C_m e^{im\pi x/L} \]

\[\sum_{m=-\infty}^{\infty} C_m e^{im\pi x/L} = \sum_{m=-\infty}^{\infty} C_m e^{im\pi x/L} \]
When we go from \(-L < x < L\) to infinite intervals, \(\mathcal{F}\) have the Fourier transform representation:

\[
\mathcal{F}[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} f(t) e^{-i\omega t} \, dt + \int_{0}^{\infty} f(t) e^{-i\omega t} \, dt \right)
\]

(Why?)

We can find other representations, e.g.,

\[
\mathcal{F}[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} e^{-i\omega t} f(t) \, dt + \int_{0}^{\infty} e^{-i\omega t} f(t) \, dt \right)
\]

\[
= \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} e^{-i(\omega t - i\omega t)} \, dt \right)
\]

\[
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(\omega t) \, dt
\]

Similarly, \(\mathcal{F}(x-a) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \cos(\omega x) \cos(\omega a) \, d\omega\)

More later!
Consider example 6.3 in Lea.

We have an initially stationary string that we hit with impulse here at \(x = \frac{1}{3} \) at \(t = 0 \) with impulse \(I_0 \).

\[\text{So force} \quad \text{at} \quad x = \frac{1}{3} \]

\[\text{\Delta} P = \mathbf{F} \Delta t = I_0 \quad \text{impulse!} \]

- We consider the limit \(\varepsilon \to 0 \) and also that the impulse is delivered just at \(x = \frac{1}{3} \).

The wave equation is \(\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \).

We solve by separation of variables with the boundary conditions in \(x \) given by \(y(x, 0) = y(L, t) = 0 \).

So \(y(x, t) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{L} \left(a_n \sin \frac{n\pi vt}{L} + b_n \cos \frac{n\pi vt}{L} \right) \) (by form)

In this case, \(y(x, 0) = 0 \) for all \(x \leq b_0 \equiv 0 \). (by projecting or uniqueness of expansion)

\[y(x, t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} \sin \frac{n\pi vt}{L} \]

\[\frac{\partial y}{\partial t}(x, t) = \sum_{n=1}^{\infty} b_n \frac{n\pi \cos \frac{n\pi vt}{L}}{L} \sin \frac{n\pi x}{L} \sin \frac{n\pi vt}{L} \]

What is the initial condition on \(\frac{\partial y}{\partial t} \)?

We apply an impulse to length \(dx \), which has mass \(\mu dx \) and so the change in momentum is \((I = \Delta P) \)

\[(\mu \, dx) \left(\frac{\partial y(x, t)}{\partial t} - \frac{\partial y(0, t)}{\partial t} \right) = c_0 \delta(x - \frac{L}{3}) \, dx \]

When we integrate over \(x \), the total impulse is \(I_0 \) \(\implies C = I_0. \)
\[y(x, t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi}{L}}{m^2 \sin \frac{m\pi}{L}} \cos \left(\frac{m\pi}{L} x \right) \sin \left(\frac{m\pi}{L} t \right) \]

\[u_x(x, t) = \frac{2}{\mu} \int_0^L \mu \phi(x - \frac{L}{3}) \sin \left(\frac{m\pi}{L} x \right) \sin \left(\frac{m\pi}{L} t \right) \, dx \]

\[a_n = \frac{2}{L} \int_0^L \phi(x - \frac{L}{3}) \sin \left(\frac{m\pi}{L} x \right) \sin \left(\frac{m\pi}{L} t \right) \, dx \]

\[a_n = \frac{2}{m^2 \sin \frac{m\pi}{L}} \int_0^L \phi(x - \frac{L}{3}) \sin \left(\frac{m\pi}{L} x \right) \sin \left(\frac{m\pi}{L} t \right) \, dx \]

\[a_n = \frac{2}{m \sin \frac{m\pi}{3}} \frac{1}{m^2 \sin \frac{m\pi}{3}} \]

\[y(x, t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi}{3}}{m^2 \sin \frac{m\pi}{3}} \cos \left(\frac{m\pi}{L} x \right) \sin \left(\frac{m\pi}{L} t \right) \]

If \(n = 3m \), this is zero \(\Rightarrow \) third harmonics are missing.

Try this out in Mathematica!
Problem 6.17 in text

A line of charge with uniform line charge density \(\lambda \) (units: charge/length) lies along the z-axis. Find the
volume charge density a) in cylindrical coordinates
and b) in spherical coordinates.

In Cartesian, \(\rho_{\text{ch}}(x) = \rho_{\text{ch}}(x, y, z) = C \equiv \lambda \) constant.

What if it only went from \(0 \leq z < \infty \)?

\[\Rightarrow \rho_{\text{ch}}(y) = C \Theta(z) \]

\(\Theta \) is a step or delta function.

What if from \(-1 \leq z \leq 1 \)?

\[\Rightarrow \rho_{\text{ch}}(x) = C \Theta(z+1) \Theta(1-z) \Theta(x) \]

Recall \(\Theta(x) = \int_{-\infty}^{x} \delta(z) \mathrm{d}z = \left\{ \begin{array}{ll} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{array} \right. \)

and \(\frac{\mathrm{d}\Theta(z)}{\mathrm{d}z} = \delta(z) \)

Find \(C \) by the condition that length \(L \) has charge \(\lambda L \)

\[\Rightarrow \lambda L = \int_{-1}^{1} \int_{0}^{1} \int_{0}^{1} \rho_{\text{ch}}(x, y, z) \mathrm{d}x \mathrm{d}y \mathrm{d}z \]

\(\rho_{\text{ch}}(x, y, z) = C \Theta(z+1) \Theta(1-z) \Theta(x) \)

units: \(\rho = \frac{1}{\text{length}^3} \) so \(C \propto 1/\text{length}^3 \)

\(\checkmark \)
What about our coordinates?

What is \(S(x-x_0) \) in spherical and cylindrical?

\[
S(x-x_0) = S(r-r_0)S(\theta-\theta_0)S(\phi-\phi_0)
\]
\[
= S(r-r_0)S(\phi-\phi_0)S(z-z_0)
\]

Doesn't work that \(\int S(x-x_0)\,d^3x = 1 \)

due to

\[
\int_{\text{all space}} d\phi = 2\pi
\]

\[
d\phi = 2\pi \sin \alpha \, d\alpha \
\]

\[
\Rightarrow S(x-x_0) = \frac{1}{2\pi} S(r-r_0)S(\theta-\theta_0)S(\phi-\phi_0)
\]

\[
S(x-x_0) = \frac{4}{\pi} S(r-r_0)S(\phi-\phi_0)S(z-z_0)
\]

How do we deal with \(X_0 \)?

Then \(X_0 \) and \(\phi_0 \) don't matter \(\Rightarrow \) average over \(X_0 \) is one way

\[
S(x) \Rightarrow \frac{1}{4\pi^2} S(r) \Rightarrow S(r) \Rightarrow \frac{1}{2\pi} \int 0 \, dz
\]

Check it!

\[
[\text{requires } \int_S = 1 \text{ (not 0)} \because \text{this is } S(r,\theta,\phi)]
\]

So in problem 17

\[
\text{a) } S(\bar{x}) = \lambda S(r_0 \bar{y}) = \lambda \left(\frac{r_0}{\bar{r}} \right) \frac{1}{2\pi} = \lambda \int_0^{2\pi} S(r) \, d\phi \text{ check it!}
\]

\[
\text{b) } \text{check it}
\]

\[
\text{Next time!}
\]

(assumes \(\int_0^{2\pi} d\phi = 1 \))
9/27/13

Theta function follow up

\[\theta(t-t_0) = \begin{cases} 1 & t \geq t_0 \\ 0 & t < t_0 \end{cases} \]

What is \(t = t_0 \)?

Note \(\theta(t-t_0) + \theta(t_0-t) = 1 \) for any \(t, t_0 \) suggests \(\theta(0) = \frac{1}{2} \).

What is \(\frac{d}{dt} \theta(t-t_0) \)? (Is \(\theta(t) \) a well-defined function?)

Consider \(\int f(t) \frac{d}{dt} \theta(t-t_0) \ dt \) when \(f(t) \to 0 \) as \(t \to \infty \).

Then partially integrate \(f(t) \theta(t-t_0) \) (with \(\theta(t-t_0) = 0 \) for \(t > t_0 \), \(\theta(t-t_0) = 1 \) for \(t < t_0 \)).

\[
\int_0^\infty f(t) \frac{d}{dt} \theta(t-t_0) \ dt = \left. f(t) \theta(t-t_0) \right|_0^\infty - \int_0^\infty \frac{df}{dt} \theta(t-t_0) \ dt
\]

\[
= \left[f(t) \right]_0^\infty - \int_0^\infty \frac{df}{dt} \ dt
\]

Arbitrary \(f(t) \) \(\Rightarrow \) \(\frac{d}{dt} \theta(t-t_0) = \delta(t-t_0) \).

See Mathematica examples:

\[
\text{HeavisideTheta} \quad \left\langle \begin{array}{c}
\text{use most} \\
\text{UnitStep}
\end{array} \right. \\
\text{only this one knows}
\]

\[
\text{N[HeavisideTheta[1],10]} = \text{DiracDelta[1]}
\]
The charge on x-axis: \(q(x) = \delta(y) S(z) \) just stays the same.

Cylindrical: \(y = r \sin \phi \), \(x = r \cos \phi \).

That about \(\phi = \pi \) is on negative x-axis.

So: \(S(y) = S(r \sin \phi) \) because no \(S(x) \).

Spherical: \(\rho \), \(\theta \).

\[
S(\rho \sin \theta) = \frac{1}{\rho} S(r \sin \phi) \quad \text{because} \quad S(\rho \sin \theta) = S(r \sin \phi)
\]

Back to the issue of \(S(x, z) \) in spherical and cylindrical.

Getting to \(r \to 0 \) limit.

If we take the actual limit with \(\mathbf{r}_0 = (r_0, \theta_0, \phi_0) \) in spherical coordinates, then we could keep \(\theta_0 \) and \(\phi_0 \) fixed and take \(r \to 0^+ \).

\[
S(x) \to \frac{1}{2} S(r) S(\cos \theta_0 - \cos \phi_0) S(\phi_0 - \phi_0)
\]

So averaging over angles is just as good: \(S(x) = \frac{1}{4 \pi} S(r) \to \frac{1}{\rho} S(r) \to \frac{1}{\rho} S(r) \).

Because \(r \to 0^+ \), \(\int_0^\infty S(x) dx = \int_0^\infty S(r) dr = 1 \) (and not \(\frac{1}{3} \)).

So back to problem 6.17, where \(g(x) = \frac{1}{2} S(x) \).

Take the limit in cylindrical and spherical coordinates from it not being at the origin.

Cylindrical: \(x = r \cos \phi, y = r \sin \phi \) \(\Rightarrow S(x) \to \frac{1}{2} \int_0^\infty S(r) \).

Spherical: \(\rho = \frac{1}{2} \int_0^\infty S(r) \).

\[
\text{note: This is sometimes taken to be } \frac{1}{2}.
\]

Find data functions in coordinates that take on single values.

1. Determine function that multiplies appropriate region.

\[
S(x) \text{ and } S(y)
\]

This may be considered a mnemonic rather than a formal analysis.

\[
\int_0^\infty S(\rho) d\rho = 1
\]

\[
\int_0^\infty S(y) dy = 1
\]
Consider the comparison of a line of charge along
the x-axis, y-axis, and z-axis, in turn.
• You have the x-axis problem for homework.
• So we'll consider y-axis and z-axis here.
• Also consider on a sheet: \(y = \frac{1}{x} \)

In general, you want to follow a procedure something like this:
• Identify the range of each variable. May be dependent on each other (line of charge on slant)
• Use delta functions for constraints: combination that are fixed
• If a variable is ignorable, it can be replaced by a constant (example from 114)
• Simplify delta functions (and introduce measure factors)
• If not already included – e.g., FROM converting Cartesian expressions)
• Use \(\theta \) functions for finite endpoints.

Cylindrical \(\int_{r=a}^{r=b} dx \Rightarrow \theta = \frac{\theta}{\theta} \]
\(x = 0, y = 0, -L < z < L \)
\(\Rightarrow \phi(\theta) = \phi(x, y) \) \[\theta(z+L) - \theta(z-L) \]

Additive is often easier, but not always.

To go to lines of charge on other axes, just switch labels \(\Rightarrow \) same form.
• Check normalization \(\int_{-L}^{L} e^{-\lambda} = e^{-\lambda} \) \(\Rightarrow e^{-\lambda} \)
$S(g(x)) = \frac{2}{\pi} \frac{g(x)}{\sin(x)} \quad \text{when } x_0 \text{ are zeros of } g(x)$

What if μ_2 is in the $z=0$ plane?

Then $\phi(r) \neq S(2)$ for sure.

Range of x: $-\frac{1}{3} \leq x \leq \frac{1}{3}$

Constraint: $y = x$ or $y - x = 0 \Rightarrow S(y - x)$

$\Rightarrow S(\alpha(x)) = C \cdot S(y - x) \cdot S(z) \cdot g(x + \frac{1}{3}) - g(x - \frac{1}{3}) \cdot [6(y - x) - 6(y + x)]$

Check $S(\alpha(x)) = C \int_{\frac{1}{3}}^{\frac{1}{3}} dy \int dz \cdot S(y - x) \cdot S(z) = C \int_{\frac{1}{3}}^{\frac{1}{3}} dy \int dz = C \int_{\frac{1}{3}}^{\frac{1}{3}} = C \frac{1}{2}$

$\Rightarrow C = S(2)$

Or: y'

$x' = \frac{1}{2} x + \frac{1}{2} y \quad \Rightarrow S(y') = S(-\frac{1}{3} x + \frac{1}{3} y) = S(\frac{1}{3} y - x) = \frac{4}{\pi} S(y - x) = \frac{4}{\pi} S(\phi)$

$\Rightarrow S(\phi) = \frac{4}{\pi} [S(y - x)] \cdot [y - x] - y' = \text{as before}$

Now cylindrical on z-axis: $\rho = 0, \phi = \text{anything} \leq \pi$ replace by $\rho = \text{average over } z = \text{limit}$

$S(x) \cdot S(y) = \frac{4}{\pi} S(y - x) \exp \left[i \sin(\phi) - \theta(z) \right]$

Note that $\int_{-\infty}^{\infty} S(\phi) d\phi = 0$

Cylindrical on y-axis: $z = 0, x = 0, -1 \leq y \leq 1 \Rightarrow \beta = 0, 0 \leq \phi \leq \pi$

$\Rightarrow \text{expect } S \{ \phi(x) \} \left[S(\phi - \frac{\pi}{2}) + S(\phi + \frac{\pi}{2}) \right]$

Try translating: $S(x) = S(\cos \phi) = \frac{1}{2} \sin(\phi) \left[S(\phi - \frac{\pi}{2}) + S(\phi + \frac{\pi}{2}) \right]$

Since $\sin^2 \phi = 1, \sin^2 \phi = -1$ works.

So check both ways!

Similar for spherical: 2-axis $\theta = 0 \text{ or } \pi; \phi = \text{any angle}, 0 \leq \theta \leq \pi \text{ or } \pi \leq \theta \leq 2 \pi$

y-axis: $\theta = \frac{\pi}{2}, \phi = \frac{3\pi}{2}$

$0 \leq \theta \leq \pi$
Important equations we'll see again:

\[\nabla \cdot \frac{\mathbf{A}}{r^3} = 4\pi S(\mathbf{r}) \]

or

\[\nabla^2 \left(\frac{1}{r} \right) = -4\pi S(\mathbf{r}) \quad \text{(note } \nabla^2 \left(\frac{1}{r} \right) = -\frac{\delta}{r^2} \text{)} \]

On homework, \[\nabla^2 \left(\ln \frac{r}{a} \right) = 2\pi S(\mathbf{r}) \], in the xy plane

where \[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}, \quad a \text{ is any constant}, \quad r = \sqrt{x^2 + y^2} \]

Prove these by usual steps:

i) Easy to show \[\nabla^2 \left(\frac{1}{r} \right) = 0 \text{ for } r \neq 0 \text{ (we've done this!)} \]

ii) Show satisfying properly

\[\int \nabla^2 \left(\frac{1}{r} \right) f(\mathbf{r}) \, d^3r = -4\pi f(0) \]

and other vector calculus.

Proofs in Leo, Boos, etc. \Rightarrow \text{ use divergence theorem, but it's non-trivial } \Rightarrow \text{ some terms cancel}

Extension:

\[\nabla \cdot \frac{\mathbf{A}}{r^3} = -4\pi S(\mathbf{r} - \mathbf{r}_0) \]

we'll return to this!
An E&M example (see example 6.9)

Find the solution for the electric field due to a sheet of charge with charge density \(\rho(x) = \sigma_0 S(x-a) \).

Usual method: invoke a Gaussian cylinder.

Instead, integrate from \(a-x \) to \(a+x \).

\[
\int_{a-x}^{a+x} \frac{dE_x}{dx} \cdot dx = E_x(a+x) - E_x(a-x) = \int_{a-x}^{a+x} \frac{\sigma_0 S(x-a)}{\varepsilon_0} \, dx = \frac{\sigma_0}{\varepsilon_0} S(a-x)
\]

By symmetry, \(E_x(a+x) = -E_x(a-x) \) [can we get this any other way?]

\[
\Rightarrow 2E_x(a+x) = \frac{\sigma_0}{\varepsilon_0} \quad \text{or} \quad E_x(a+x) = \frac{\sigma_0}{2\varepsilon_0}
\]

\[
E_x(x) = \frac{\sigma_0}{2\varepsilon_0} \left[\theta(x-a) + \theta(a-x) \right]
\]

Plug in to check the equation

\[
\frac{dE_x}{dx} = \frac{\sigma_0}{\varepsilon_0} \left(\frac{d\theta(x)}{dx} - \frac{d\theta(x-a)}{dx} \right) \Rightarrow \frac{d\theta(x-a)}{dx} = -\theta(x-a)
\]

\[
= \frac{\sigma_0}{\varepsilon_0} \left[\theta(x-a) - (-\theta(x-a)) \right] \Rightarrow \frac{\sigma_0}{\varepsilon_0} \theta(x-a) \quad \text{important to get the signs!}
\]

\[
= \frac{\sigma_0}{\varepsilon_0} S(x-a)
\]