Warmsup: using div, grad, curl formulas on Jackson course.

- Evaluate \(\nabla \cdot \vec{F}(x) \)
 - First in spherical \(\Rightarrow \) find \(A_1, A_2, A_3 \) and use formula
 - Then in Cartesian \(\Rightarrow \) show that you get the same result
 - Details and answers on page 141.

\[\vec{F}(x) = \nabla r = \frac{\partial}{\partial x} x + \frac{\partial}{\partial y} y + \frac{\partial}{\partial z} z = 3 \]

- Cylindrical: \(\vec{F} = \hat{r} + z \hat{z} \Rightarrow A_1 = 1, A_2 = 0, A_3 = z \)
 \[\Rightarrow \nabla \cdot \vec{F} = \frac{\partial}{\partial r} (r \hat{r}) + \frac{1}{\rho} \frac{\partial}{\partial \theta} (\rho \hat{\theta}) + \frac{\partial}{\partial z} z \hat{z} = \frac{2}{\rho} + 1 = 3 \]

- Spherical: \(\vec{F} = \hat{r} \Rightarrow A_1 = r, A_2 = 0, A_3 = 0 \)
 \[\Rightarrow \nabla \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \hat{r}) = \frac{3r^2}{r^2} = 3 \]

- How does \(\nabla \times \vec{F} \) work out? All of the partial derivatives are zero.

Homework:

- \(\nabla \times \vec{F} \Rightarrow A_1 = 1, A_2 = 0, A_3 = 0 \)
 \[\frac{\partial}{\partial \theta} (r \hat{r}) = \frac{\partial^2}{r^2} = \frac{2}{r} \text{ units} \]

- \(\nabla \times \vec{F} \) spherical: \(A_0, A_2 = 0, A_3 \) \Rightarrow two(?) non-zero terms

- Convolution revisited (147) \(\Rightarrow \) hint of Green's function
- Comments on Fourier transforms as matrix multiplication
- Electrostatics review
Convolution Revisited

A physical example of a convolution occurs in optics.

Suppose that a point source of light (e.g., from a distant star) is observed in our optical instrument (e.g., our eye) as a blob smeared out with a Gaussian shape. This corresponds to for any \(x_0 \) observing:

\[
g(x-x_0) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(x-x_0)^2}{2\sigma^2}}
\]

Then what would we expect to see from this?

We assume linearity, then for \(f \) the superposition \(S(x-x_0) \) weighted by \(f(x) \):

\[
f(x) = \int S(x-x_0) f(x_0) \, dx_0
\]

of \(S(x-x_0) \) becomes a Gaussian

\[
h(x) = \int g(x-x_0) f(x_0) \, dx_0
\]

The result is the convolution of the input \(f(x) \) and the

Gaussian function \(g(x-x_0) \).

This is how and why a Green's function works \(\Rightarrow \) it tells you

the "response" due to a delta function, then superpose to get \(f(x) \) solution.

Check that \(\hat{h}(k) = \int_0^\infty e^{ikx} \hat{h}(x) \, dx \) or \(\hat{g}(k) \hat{f}(k) \):

\[
\hat{h}(k) = \int_0^\infty \left[\int_0^\infty e^{ikx} \, dx \right] \hat{f}(k) \, \hat{g}(k)
\]

\[
= \int_0^\infty e^{ikx} \, dx \int_0^\infty \hat{f}(k) \, \hat{g}(x) \, dx
\]

\[
= \int_0^\infty \hat{f}(k) \, \hat{g}(x) \, dx
\]

\[
= \int_0^\infty \hat{f}(k) \, \hat{g}(x) \, dx
\]

\[
= \int_0^\infty \hat{g}(k) \hat{f}(k) \, dx
\]

\[
= \int_0^\infty \hat{f}(x) \, dx
\]

\[
= \int_0^\infty \hat{f}(x) \, dx
\]

[To avoid \(\hat{f} \) here we would have \(\hat{f} \) factor explicit in \(h(x) \)]
Electrostatics (Jackson Ch. 1 & Zangwill Ch. 3)

- Time-independence (⇒ "static")

- Coulomb's Law
 - Experiment on forces between two charges \(q_1 \) and \(q_2 \)
 - Coulomb observed that
 - i) force \(F = \frac{k q_1 q_2}{r^2} \), where \(q_1 \) is a scalar with a sign:
 - opposite sign charges attract \((+ -) \)
 - same sign charges repel \((+ + \text{ or } - -) \)
 - ii) strength is proportional to the product of charge magnitudes
 - iii) force decreases with separation \(r \)
 - by \(F \propto \frac{1}{r^2} \) ("inverse square law")

- The force has a definite direction: lined up with vector connecting charges
 \(\Rightarrow F \parallel \vec{r} \)

These characteristics can be summarized by referring to the vector positions \(\vec{x}_1 \) and \(\vec{x}_2 \) of \(q_1 \) and \(q_2 \), after specifying an origin by:

\[
F = \frac{k q_1 q_2}{|\vec{x}_1 - \vec{x}_2|^2}
\]

- The proportionality constant \(k \) has units and is different in different systems of units, e.g., SI vs. Gaussian.
 - We will use SI this semester.

- Check that \(F \) is in the correct direction for a force on \(q_2 \):
 - Can rewrite \(F = \frac{k q_1 q_2}{R^2} \left(\frac{x_2 - x_1}{|x_2 - x_1|} \right) \) as magnitude \(x \) (direction) \(\Rightarrow \) origin:

\[
\vec{F} = \frac{k q_1 q_2}{R^2} \left(\frac{x_2 - x_1}{|x_2 - x_1|} \right)
\]
10/18/2013

Comments on units
- electric charge unit: Coulomb (charge on e^- = 1.6 x 10^{-9} C)
- force ~ Newtons, length ~ meters

\[F = k \frac{q_1 q_2}{r^2} \Rightarrow 1 \text{N} = \frac{1 \text{C}^2}{1 \text{m}^2} \]

Value of k in SI:

\[k = 1 \parallel \varepsilon_0 \]

\[\varepsilon_0 = 8.854 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2} \]

Summary: Coulomb's Law (SI) \[F = \frac{1}{4 \pi \varepsilon_0} \frac{q_1 q_2}{r^2} \]

Electric Field
- We define electric field E as force per unit charge:

\[F = qE \]

Implication is that the vector F/q_a goes to a limit as q_a is made smaller ("test charge"), independent of q_a.

\[E = \frac{1}{4 \pi \varepsilon_0} \frac{q_a}{r^2} \]

is E-field at r due to charge q_a at r_a.

Units:

\[[E] = \frac{\text{N} \cdot \text{C}^2}{\text{m}^2} = \frac{\text{N} \cdot \text{m}}{\text{C}^2} = \frac{\text{V}}{\text{m}}

\]

Check with $q_1 q_2 \frac{1}{4 \pi \varepsilon_0} \frac{q_2}{r^2} \text{C} \cdot \text{V} = \text{force} \cdot \text{distance} = \text{N} \cdot \text{m}/\text{V}$.
Note: Coulomb's law is action at a distance and E as defined also has this character here.

- inconsistent with finite speed of light if we go beyond statics, move x, it looks like E changes without time delay.
- Later: E is a local (at x) field.
- For electrostatics, no difference in practice, but keep in mind the conceptual difference.

We assume the equations for electrostatics are linear in E (true for Maxwell's equations as applied here).

\Rightarrow we have the superposition principle:
- given many charges q_1, q_2, \ldots at $x_1, x_2, \ldots x_n$, then combined electric field at x is

$$E(x) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} q_i \frac{x-x_i}{|x-x_i|^3}$$

When does superposition not hold?

- If the (continuous) charge density is defined as the electric charge per unit volume,
 $$\delta q = \delta(x) dy = \delta(x, y, z) \Delta x \Delta y \Delta z \quad (\text{Cartesian})$$

\Rightarrow

$$E(x) = \frac{1}{4\pi\varepsilon_0} \int d^3 x' \frac{x-x'}{|x-x'|^3} \cdot \delta(x')$$

Clearly we relate these by

$$\delta(x') = \frac{1}{|x-x'|^3}$$

Of our example of a convolution, if we know how to find the response (electric field here) from a point charge (this is what we will call a Green's function), then the full response follows from a well-defined integral. This solution to electrostatics by summation requires knowing $\delta(x')$.
Gauss's Law

Suppose point charge q at the origin and consider a surrounding surface S. The electric field at r is

$$\mathbf{E}(r) = \frac{q}{4\pi\varepsilon_0 r^2} = \frac{q}{4\pi\varepsilon_0 r^2} \hat{r}$$

To find the flux of \mathbf{E} through a small surface area $d\mathbf{a}$, we need to account for \mathbf{E} being at a net angle to \mathbf{a} (not parallel).

Project \mathbf{E} on $\hat{\mathbf{n}}$ (unit normal vector to surface):

$$\mathbf{E} \cdot \hat{\mathbf{n}} = \frac{q}{4\pi\varepsilon_0} \frac{\cos \theta}{r^2} = \frac{q}{4\pi\varepsilon_0} \cos \theta$$

The surface area element $d\mathbf{a}$ subtends a solid angle $d\Omega$ and these are related by $d\mathbf{a} \cdot \cos \theta = r^2 d\Omega$

(eg. on a sphere, the area is just $r^2 d\Omega$, as $\alpha = 0$).

$$\Rightarrow \quad \mathbf{E} \cdot \hat{\mathbf{n}} d\mathbf{a} = \frac{q}{4\pi\varepsilon_0} \frac{r^2 d\Omega}{r^2} = \frac{q}{4\pi\varepsilon_0} d\Omega$$

But integrating over all angles:

$$\int d\Omega = \int_0^{2\pi} d\phi \int_0^\pi \sin \theta d\theta = 4\pi$$

Integrate over closed surface S:

$$\int_S \mathbf{E} \cdot d\mathbf{a} = \frac{q}{4\pi\varepsilon_0} \int_S d\Omega = \frac{q}{4\pi\varepsilon_0} \times 4\pi = \frac{q}{\varepsilon_0}$$

For many point charges, use superposition (with appropriate origins):

$$\sum_s \mathbf{E} \cdot \hat{n} d\mathbf{a} = \frac{1}{\varepsilon_0} \sum q_i$$
For a continuous charge density \(\rho_i \), so the total charge enclosed by surface \(S \) is

\[
\oint_S \vec{E} \cdot \hat{n} \, d\mathbf{a} = \frac{1}{\varepsilon_0} \int_V d\mathbf{x} \, \rho(x) = \frac{1}{\varepsilon_0} Q,
\]

Gauss's Law.

You are familiar from previous E&M courses how to exploit this law in the case of symmetric situations, e.g., a spherical charge distribution. One of the homework problems is a review of this.

We can choose \(S \) to reflect the symmetry and then evaluate \(\int_S \vec{E} \cdot \hat{n} \, d\mathbf{a} \) is easy to evaluate in terms of the magnitude \(\vec{E} \) on the surface, which is then directly found by an integral over the charge distribution (assumed to be given).

The surface integral over \(\vec{E} \) has the form on one side of the divergence theorem:

\[
\oint_S \vec{A} \cdot \hat{n} \, d\mathbf{a} = \int_V \nabla \cdot \vec{A} \, d\mathbf{x} \quad \text{for any "well-behaved" vector field } \vec{A}
\]

\[
\Rightarrow \oint_S \vec{E} \cdot \hat{n} \, d\mathbf{a} = \int_V \nabla \cdot \vec{E} \, d\mathbf{x} = \frac{1}{\varepsilon_0} \int_V d\mathbf{x} \, \rho(x)
\]

because this is true for any volume \(V \), the integrands must be equal

\[
\Rightarrow \nabla \cdot \vec{E}(x) = \frac{1}{\varepsilon_0} \rho(x)
\]

- Differential form of Gauss's Law
- A local relation: \(\nabla \cdot \vec{E} \) involves \(\vec{E} \) near \(x \) (derivative) only.
Scalar Potential

Let's see how the result that \(E \) can always be written as a gradient of a scalar field, \(E = -\nabla \phi \), arises.

The key starting point is the identity

\[
\frac{x-x'}{x-x'^2} = -\frac{1}{x-x'}
\]

How to prove this? Cartesian coordinates is direct

\[
\vec{r} = (x, y, z), \quad \vec{r}' = (x', y', z')
\]

\[
E = \frac{1}{\sqrt{x-x'^2}} \frac{d}{dx} \left(\frac{1}{\sqrt{x-x'^2}} \right) = \frac{1}{x-x'} \frac{d}{dx} \left(\frac{1}{x-x'} \right) = -\frac{1}{x-x'} \frac{d}{dx} \left(\frac{x-x'}{x-x'} \right) = -\frac{1}{(x-x')^2} \frac{d}{dx} (x-x')
\]

and similarly for the y and z components. QED

\[
E(x) = \frac{1}{4\pi\varepsilon_0} \int \frac{\vec{E} \cdot \vec{r}'}{|\vec{r}'|^3} \cdot \vec{r}' \left(\frac{1}{|\vec{r}'|} \right) = \frac{1}{4\pi\varepsilon_0} \int \frac{dE}{dx} \left(\frac{1}{x-x'} \right) \frac{d}{dx} \left(\frac{1}{x-x'} \right)
\]

\[
= -\nabla_x \left[\frac{1}{4\pi\varepsilon_0} \int \frac{dE}{dx} \left(\frac{1}{x-x'} \right) \right]
\]

\[
= -\nabla \phi(x)
\]

where \(\phi(x) = \frac{1}{4\pi\varepsilon_0} \int \frac{dE}{dx} \left(\frac{1}{x-x'} \right) \) is electrostatic (scalar) potential

"Gauge freedom": \(\phi(x) = \phi(x') + \text{(constant)} \) gives same \(E \)

If we know \(\phi(x) \) everywhere, we can find \(\phi(x') \). How is this modified if we have conductors that give boundary conditions?
\(\nabla \times E = \frac{1}{\varepsilon_0} \varepsilon \phi \), what is \(\nabla \times E \)?

\[
\nabla \times E = \nabla \times (-\nabla \phi) \Rightarrow (\nabla \times \phi)_{j_k} = \varepsilon_{ijk} \partial_j \phi_{k} = 0
\]

\Rightarrow \nabla \times E = 0

We'll come back to specific implications next time. For now, let's look at equations satisfied by \(\phi(x) \):

\[
\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \phi) = -\nabla^2 \phi = \frac{\phi}{\varepsilon_0}
\]

\Rightarrow Poisson equation:

\[
\nabla^2 \phi(x) = -\frac{\phi(x)}{\varepsilon_0}
\]

So if you are given \(\phi \), you can find \(\phi(x) \) by taking Poisson's.

⇒ homework problem.

But be careful. Let's check whether this works with:

\[
\nabla^2 \phi(x) = \nabla^2 \left[\frac{1}{4\pi \varepsilon_0} \int \frac{\varepsilon \phi(y)}{|x-x'|} \right] = -\frac{\phi(x)}{\varepsilon_0}
\]

We need \(\nabla^2 \frac{1}{|x-x'|} \) to do this.

But if we follow the procedure we did with \(\frac{1}{|x-x'|} \):

\[
\left(\partial_x^2 + \partial_y^2 + \partial_z^2 \right) \frac{1}{\sqrt{x-x'^2 + y^2 + z^2}} = -3 \frac{3 \left(x-x'^2 \right) \left(y-y'^2 \right) \left(z-z'^2 \right)}{\left(x-x'^2 \right)^2 \left(y-y'^2 \right)^2 \left(z-z'^2 \right)^2} = 0 ! !
\]

So we don't get \(-\frac{\phi(x)}{\varepsilon_0} \). What went wrong?

\[
\int_{\partial x'} \left(\frac{1}{|x-x'|} \right) |\phi(x)| = -4\pi \frac{\phi(x)}{\varepsilon_0}
\]

implies \(\frac{1}{|x-x'|} = -4\pi \frac{\phi(x)}{\varepsilon_0} \), verify.