Recap and comments on P5.8

1. Gauss's Law and capacitance \(\Rightarrow (169) \), for conducting sphere;
 - general: \(Q_i = \frac{1}{\varepsilon_0} E_i V_i \) for \(n \) conductors; for parallel plates
 - for two conductors with equal and opposite \(Q \), then
 \(C_m = C_p = C \).
 - for parallel plates \(C = \frac{\varepsilon_0 A}{d} \). In problems concentric spheres
 and concentric cylinders. In what limit do these look like
 parallel plates? Note: only depend on geometry: \(A \) and \(d \) (\(\varepsilon_0, V, \text{etc.} \)).

2. Recall electrostatic energy
 - work: \(-q \int \vec{E} \cdot d\vec{l} = q\phi_B - q\phi_A \) on conductors
 - energy: \(W = \frac{1}{2 \varepsilon_0} \int \vec{E} \cdot \vec{D} \) \(\Rightarrow \int \left(\frac{\partial \phi}{\partial x} \right) \left(\frac{\partial \phi}{\partial x} \right) ds = \frac{\varepsilon_0}{2} \int \vec{E} \cdot \vec{D} \)

3. Comment on forces on capacitors: imagine pulling apart
 plates from \(d \) to \(d + d\delta \) requires work \(F \delta d \) and this must
 agree the change in energy.
 - recall the idea. If we lift a ball against gravity by \(\Delta h \),
 \(\Delta U = m g \Delta h \)
 force: \(F \Delta h = -mg \Delta h \)
 \(F = -mg \)

 \(\text{be careful:} \)
 a) constant \(G \) means \(W = W_{\text{capacitor}} \)
 b) constant \(V \) mean \(\Rightarrow W = W_{\text{capacitor}} + W_{\text{battery}} \)

4. Variational principle for capacitance
 \(\nabla V = 0 \)
 \(\varepsilon_0 \int \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0} \int \vec{D} \cdot d\vec{A} \leq C \) \(\Rightarrow \frac{1}{2} \sigma(x)^2 \leq \frac{1}{2} \varepsilon_0 \int \vec{E} \cdot d\vec{A} \)
 \(\Rightarrow \) minimize \(\int \vec{E} \cdot d\vec{A} \) to get best estimate of \(C \).
10/28/13

4. Comment: For Coulomb, $\phi(x) = \frac{q}{4\pi \epsilon_0} \frac{1}{r_{x'x}}$.

What would this be for $\phi(x) = \frac{q}{4\pi \epsilon_0} f(|x|)$? Is it from point charge q at x?

If you find $\phi(x)$, does $E(x) = -\nabla \phi(x)$ still hold?

Now return to general solutions to Poisson's equation.

(170) Boundary conditions and uniqueness.

(191) Green's function idea and master formula.

3a. Show $\phi(x) = \frac{1}{4\pi \epsilon_0} \int \Sigma d\Omega \phi(x')$ for x on surface.

Surface integrals of $1/|x-x'|$ is average of $\phi(x')$ on surface.

From master formula, $G(x,x') = \frac{1}{|x-x'|}$ is insufficient to make surface terms vanish.

But what about $\frac{\partial}{\partial x'}$, and so on?
return to master formula:

\[
\Phi(x) = \frac{1}{4\pi}\int_{\mathbb{R}^3} \frac{G(x, x') \Phi(x')}{|x-x'|} \, dx' + \frac{1}{4\pi} \int_{S^2} (\nabla G(x, x')) \cdot \hat{n} \, dS',
\]

General idea of a Green function \(G(x, x') \) for a linear differential equation \(\mathcal{L}_x \Phi(x) = f(x) \)

\(\mathcal{L}_x \Phi(x) = f(x) \)

where \(f(x) \) is known and \(\Phi(x) \) is to be found.

\(e.g. \quad \mathcal{L}_x \Phi = \nabla^2 \Phi, \quad f(x) = -\frac{\Phi(x)}{\epsilon_0} \Rightarrow \Phi(x) \to \phi(x) \)

Then if \(\mathcal{L}_x \Phi(x, x') = \delta(x-x') \Rightarrow \Phi(x) = \int G(x, x') f(x') \, dx' \)

with \(G(x, x') \) including the boundary conditions for \(\Phi(x) \).

We will define \(G \) for electrostatics by \(\nabla^2 G(x, x') = -\frac{\delta(x-x')}{\epsilon_0} \),

with a lot of freedom:

\(G(x, x') = \frac{1}{4\pi|x-x'|} + F(x, x') \) for any \(F \) with \(\nabla^2 F(x, x') = 0 \) in \(V \).

\(\star \star \) We use this freedom for \(F \) to fix boundary conditions for \(G \) on \(S \).

Example: We have an infinite flat conductor, which corresponds to Neumann boundary conditions:

\(\nabla \cdot \mathbf{E} = 0 \) on \(S \)

The Neumann Green's function \(G_N(x, x') \) satisfies

\(\nabla^2 G_N(x, x') = -\frac{\delta(x-x')}{\epsilon_0} \) for \(x, x' \in V \) (other constant terms)

\(\frac{\partial G_N}{\partial n} \) can be chosen, like \(\frac{1}{\epsilon_0} \nabla \Phi \)

Choose \(G_N(x, x') = 0 \) for \(x \notin S \), \(x' \in V \) (\(\Phi \) on surface).

Then master formula reduces to

\(\Phi(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{G_N(x, x') \Phi(x')}{|x-x'|} \, dx' + \frac{1}{4\pi} \int_{S^2} (\nabla G_N(x, x')) \cdot \hat{n} \, dS' \)

Choose \(F(x, x') = -\frac{1}{4\pi|x-x'|} \) where \(x'' = (-x', y', z') \).
So \bar{x}' is the mirror of \bar{x}'. We know
$\nabla^2 F(x, \bar{x}') = 4\pi \delta'(x-\bar{x})$, but \bar{x}'' is not in V,

$\Rightarrow \nabla^2 F(x, \bar{x}') = 0 \text{ in } V$

$\Rightarrow G_D(x, \bar{x}') = \frac{\pi}{x-\bar{x}}$

on the surface, $\bar{x}'' = \bar{x}' \Rightarrow G_D(x, \bar{x}'') = 0$

If $\bar{\delta}(x)$ is 0 on the surface, then we are done.

Otherwise, include contribution of $-\frac{1}{4\pi} \int_{\frac{1}{2}} ds'$

Well consider specific examples of Dirichlet and discuss Neumann boundary conditions next time.